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Abstract

Aging is a complex, multifactorial process, where different life stages reflect changes in metabolic processes, immune capacities, and genetic/
epigenetic repertoires. With accumulating exposure to environmental stresses and deterioration of physiological functions, body systems 
become more prone to low-grade chronic inflammation and an increasing range of pathologies. We hypothesized that differential susceptibility 
to diseases across life span reflects phased changes in an organism’s physiological capacity that may highlight when interventions may be 
appropriately used. Furthermore, the number of life stages may vary between species and be impacted by signalment such as breed. We tested 
this hypothesis using disease diagnoses data from veterinary electronic medical records containing almost 2 million cats and over 4 million 
dogs. Bi-clustering (on rates of disease diagnoses) and adaptive branch pruning were used to identify age clusters that could be used to define 
adult life stages. Clustering among diagnoses were then interpreted within the context of each defined life stage. The analyses identified 5 age 
clusters in cats and 4 age clusters within each of the 4 canine breed size categories used. This study, using population scale data for two species, 
one with differential size and life expectancies, is the first to our knowledge to use disease diagnosis data to define adult life stages. The life 
stages presented here are a result of a data-driven approach to age and disease stratification and are intended to support conversations between 
clinicians and clients about appropriate health care recommendations.
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Health span and life span can be impacted by factors across all 
life stages from pre-birth, through growth to adulthood and old 
age. Physiological change can be specific to certain developmental 
windows (eg, sexual development), and therefore interventions to 
support health may be time limited. For example, delivery method 
and weaning may impact immune function (1,2); sexual maturity 
(and age when neutered in cats and dogs) can impact behavior and 
growth and are risk factors in specific conditions and diseases (3–5); 
appropriate growth/weight gain prior to epiphysial plate closure im-
pact load-bearing and risk factors to osteoarthritis (6,7). At the other 
end of development, no active programming directly causes aging 
(8). The physiological criteria are less discrete because they relate 
more to loss of function and/or dysfunction, and these may be highly 
dependent on the individuals’ exposure to risks, their cumulative ex-
perience, and their resilience (9).

We postulated that health conditions may reflect differential 
physiological capacity (eg, loss of function/dysfunction in later life 
stages) and that the relative risk of developing diseases through life 
would segment different developmental stages. These phenotype-
derived life stages would then be relevant for both identifying ap-
propriate clinical recommendations and assisting tailored lifestyle 
changes. The hypotheses under test here were: that the frequency of 
disease diagnoses would differ across life stage, that animals with dif-
ferent physiologies would also have different frequencies of disease 
diagnoses across life stage, and that these trends would be visible in a 
large database of canine and feline disease diagnoses data. The latter 
was tested by comparing and contrasting 2 companion animal spe-
cies that exist in similar environments (cat and dog) and also, within 
the dog, comparing dogs of different body weights. The latter was 
investigated as size in the dog has a wide-ranging impact, effecting, 
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for example, mitochondrial function (10,11), disease predisposition 
(12–14), and life span (15,16). To summarize, the objective of this 
research was to identify evidence-based canine and feline life stages 
based on medical phenotypes from electronic medical records.

Materials and Methods

Data were accessed from proprietary electronic medical records 
from Banfield Pet Hospitals. As the largest networks of primary 
care veterinary hospitals in the United States, Banfield operates over 
1 000 locations in 42 U.S. states.

Canine and feline patients in the study data set were those that: 
had at least one hospital visit during which the pet was examined by 
a veterinarian at a Banfield hospital between January 1, 2010 and 
August 31, 2016; were at least 1 year old but less than 16 years old 
at this visit; and were recorded in the pet record as spayed/neutered. 
Feline patients in the study included only domestic shorthair cats, a 
mixed breed group that accounts for the majority of Banfield feline 
patients. Canine patients were purebred dogs of 40 popular breeds 
seen at a Banfield hospital during the study period, with the 10 most 
popular breeds taken from each of 4 different breed size categories 
(<6.5 kg, 6.5–9 kg, 9–30 kg, and 30 kg+, which we refer to as “toy,” 
“small,” “medium,” and “large,” respectively). This set of purebred 
dogs accounts for over half of all Banfield canine patients. The ca-
nine breed size categories were based upon those previously defined 
(16), with less prevalent groups merged to adjacent groups—namely, 
the third and fourth groups were combined into the “medium” cat-
egory, and the fifth and sixth groups combined to make the “large” 
category. Breeds were assigned to size categories according to the 
average adult weight of individuals (excluding those recorded as 
being over- or underweight) between 2 and 10 years old in the pa-
tient record database.

For each pet, diagnosis history during the study period was ex-
tracted, as well as demographic information on breed, birth date, 
gender, dates of first and last hospital visits, and last contact with 
a Banfield hospital. The diagnosis history was constructed from 
the structured diagnostic codes reported during the study period. 
The diagnostic codes used at Banfield hospitals include both ac-
tual illnesses (eg, “diabetes mellitus”) and—more rarely—descrip-
tive stages (eg, “healthy pet” and “geriatric pet”). The diagnosis 
history initially included all diagnostic codes received at hospital 
visits during the study period (totaling 1 261 distinct codes). To ex-
clude very rare codes, data were limited to include only those used 
at least 10,000 times in either cats or dogs during the study period 
(n = 353 codes).

Data sets for cats and for each breed size category of dogs were 
analyzed separately, using the same methodology. For each combin-
ation of diagnosis code, breed, and gender, a “diagnosis profile” was 
constructed, showing the event count per pet-year at-risk for that 
diagnostic code at each year of age. Whenever a pet received a diag-
nosis, the age of the patient was calculated from the diagnosis date 
and date of birth and rounded down to the nearest whole year in 
order to bin into 1-year age categories. The event count was then 
calculated as the occurrences of a given diagnostic code within an 
age bin. This was used as the numerator of the diagnosis profile cal-
culation. The denominator was the number of pets at-risk within 
each age group. A pet was counted as being “at-risk” from either its 
age at its first Banfield visit or its age on January 1, 2010, whichever 
was later. The minimum of the pet’s age on August 31, 2016, and 
the mean of the pet’s age at last contact and last hospital visit was 
taken as the last age at which the pet would be counted as being 

at-risk. If a pet was not considered to be at-risk for the entire year 
of age, for example, if its first visit was partway through that year 
of age, then the fraction of the year it was at-risk was used. If a pet 
only visited a Banfield hospital once during the study period, then its 
time at-risk was taken to be the average of all times at-risk for the 
age group in which it visited and zero for all other age groups. At 
any point in a profile where the number of at-risk pets was equal to 
zero, this necessarily implied zero events, and the profile was set to 
zero at that point.

Individual profiles were then combined over breed (dogs only) 
and gender to create a single profile per diagnostic code by breed 
size combination (for dogs) or per diagnostic code (for cats). This 
was done via the use of weighted means with weights equal to the 
number of pets at-risk.

Bi-clustering (a technique used to cluster both rows and columns 
of a data set) and seriation (re-ordering so that similar rows and 
similar columns are placed close together) (17) were applied to each 
set of profiles. The bi-clustering analysis provides information on 2 
aspects of the data—first, how the 1 year age groups cluster together 
and then second, how the diagnosis codes group together into sets 
of codes that have similar patterns of events per pet-year at-risk. 
This can help us characterize the different age groups in terms of the 
diagnosis codes that are more or less prevalent during that age range.

Sparse profiles—those where the count of events per pet-year 
at-risk was less than a parameter “diagnosis threshold” for all age 
groups—were removed from the data set. Various values of “diag-
nosis threshold” were tried before a final value was selected; this 
process is described shortly. The remaining profiles were scaled by 
their root mean square and stacked one on top of another to create 
a new data set with rows representing diagnoses and columns repre-
senting age groups. Hierarchical clustering (18) using the Euclidean 
distance metric and complete (or furthest neighbor) linkage (19) was 
then applied to both the rows and columns, followed by optimal leaf 
ordering (20) to re-order the age groups and diagnoses.

Adaptive branch pruning, using the dynamic hybrid algorithm 
(21), was then used to identify major clusters in the age groups and 
diagnoses. This method detects clusters according to their shape ra-
ther than the dendrogram height at which the cluster splits off (as 
in the traditional height cut-off technique) and is considered to be 
more flexible (21). The number of clusters detected by this algorithm 
is governed by a “deep split” parameter, which must be set separately 
for each group of variables to which the algorithm is to be applied 
(diagnosis codes and age groups in this case). This was set to zero 
for the diagnosis codes (to detect only the most major clusters), and 
3 different values (described below) were tried for the age groups.

In order to avoid reporting clusters arising as artifacts of par-
ticular hyperparameter choices, combinations of “diagnosis 
threshold” and “age deep split” were evaluated in combination to 
test the sensitivity of the resulting splits to these parameters. The 
splits reported for cat and each breed size category of the dog were 
those that consistently appeared across the different combinations. 
Values used were between 0.05 and 0.08 diagnoses per pet-year 
at-risk (in increments of 0.005) for “diagnosis threshold” and values 
of 0, 0.5, and 1 for “age deep split.” A set of parameter values giving 
clusters most representative of the common splits was then chosen 
for the final analysis. Had the results shown extreme sensitivity to 
the parameter values (as shown by a lack of consistent splits), then 
the suitability of the methodology would have been re-examined.

Based on these results, a heat map was generated, with each cell 
shaded according to the (scaled) count of diagnoses per pet-year 
at-risk. Dendrograms representing the clustering were added to the 
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top, and left-hand sides of the grid, and the clusters detected by the 
adaptive branch pruning were additionally shown by white lines in 
the grid.

Principal component analyses (PCAs) were additionally carried 
out on each set of species/breed size diagnosis profiles (treating each 
diagnosis as a variable with centering and scaling to unit variance) 
to see whether evidence for the existence of dog and cat life stages 
might be seen in an unguided analysis.

Two-parameter exponential growth models (equivalent in form 
to the Gompertz equation) were fitted to diagnosis profiles using or-
dinary least squares, to examine if diseases associated with older life 
stages showed an exponential growth with age.

All analyses were done using R, version 3.4.1 (R Core Team. R: 
A language and environment for statistical computing. R Foundation 
for Statistical Computing. Vienna, Austria, 2017), using libraries 
“seriation” (17,22), “dynamicTreeCut” (23) for the bi-clustering and 
cluster identification and “stats” for the PCA.

Results

The study population consisted of almost 2.0 million cats and over 
4.4 million dogs, the latter divided into 1.4 million (30.3%) toy, 
0.9 million (20.3%) small, 1.3 million (30.0%) medium, and 0.8 
million (19.4%) large breed dogs. Figure 1 shows the study popu-
lation stratified by species (and by breed and breed size for dogs) 
and gender. In each canine breed size category, the predominant 
breeds were the following: chihuahua (54.3% of the toy), dachs-
hund (65.6% of the small), American Staffordshire terrier (32.2% 
of the medium), and Labrador retriever (62.8% of the large). The 
total exposure time in the data was 2.9 million pet-years for toy, 
1.3 million pet-years for small, 1.9 million pet-years for medium 
and 1.7 million pet-years for large breed dogs, and 1.7 million pet-
years for cats. Within combinations of breed size and year of age, 
exposure time ranged between 4 308 pet-years for 15-year-old large 
breed dogs and 333,871 pet-years for 2-year-old toy breeds. For 

Figure 1.  Diagram illustrating the frequency distribution of breed and gender (FS = female spayed; MN = male neutered) within each breed size category for 
the dog data set.
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cat, exposures ranged between 35,829 pet years at 15 years old to 
224,321 at 1 year old.

Examination of the sensitivity of the clustering to values of 
“diagnosis threshold” and “age deep split” showed the age groups 
remained in chronological order for every combination of values 
examined, even after the optimal re-ordering was applied. The age 
clusters found can therefore be described in terms of the ages at 
which splits occurred between neighboring clusters. Supplementary 
Table 1 shows how many age clusters were created by each of the 
21 different combinations of “diagnosis threshold” and “age deep 
split,” for cat and each dog size, and Supplementary Table 2 shows 
where the splits between these clusters were located. For cats, all 
combinations of parameters resulted in splits at some combination 
of 4–5, 9–10, 11–12, and 13–14 years, with the most common re-
sult being for all of these splits to be present (i.e., 5 clusters). A pair 
of values for “diagnosis threshold” and “age deep split” which gave 
these splits was therefore chosen to be used in the final analysis, and 
these were 0.05 and 0.5, respectively. The resulting diagram pro-
duced by the bi-clustering and adaptive branch-pruning algorithms 
is shown in Figure 2.

For all canine size categories, the most common result was 4 clus-
ters. For both toy and small dog, the 3 most common splits were at 
6–7, 11–12, and 13–14 years old, with rarer splits appearing at 7–8 
and 9–10  years old. For medium dog, the 3 most common splits 

were at 5–6, 9–10, and 13–14 years old, with rarer splits appearing 
at 6–7  years old and 11–12  years old. For large dog, the 3 most 
common splits were at 5–6, 9–10, and 11–12 years old, with rarer 
splits appearing at 7–8 and 12–13 years old. No one combination of 
“diagnosis threshold” and “age deep split” replicated this clustering 
pattern for all breed sizes, so final values of 0.06 and 0.5, respect-
ively, were chosen for toy, medium and large size categories, and 
0.05 and 0.5, respectively for the small category. Figure 3 shows the 
resulting diagram for each breed size.

The age groups in Figures 2 and 3 were optimally re-ordered 
into chronological order by the bi-clustering algorithm. The clus-
ters identified by the adaptive branch pruning algorithm for age may 
therefore be interpreted as different life stages, and this interpret-
ation is shown in Tables 1 and 2 and Supplementary Table 4. As 
an illustration of how the clustering algorithm finds similar ailment 
profiles, Supplementary Figure 1 shows the profiles for each cluster 
for cat. Supplementary Table 5 compares how ailments are clustered 
across species and breed size with an emphasis on the cluster inter-
pretation, which can be roughly ordered from “young” ailments to 
“old” ailments.

Existing research shows that there are groups of diseases in hu-
mans that increase exponentially with age (24). Most of the disease 
profiles in this analysis belonging to clusters interpreted as being 
“Diagnoses of senior life stage onwards” or “Diagnoses of senior 
and (especially) super senior life stage” are fitted well by a 2-param-
eter exponential growth model—out of the 38 ailments thus classi-
fied, 20 have an R2 of at least 90% in all species/breed size where 
they feature and a further 8 have an R2 of at least 80%. Diagnoses 
of senior and/or super-senior life stages poorly suited to this model 
(yielding R2 values of less than 70%) were “Tooth, Fracture,” 
“Lipoma,” and “Nuclear Sclerosis.” Perhaps unsurprisingly, the diag-
noses found to be of “senior and (especially) super senior life stage” 
tended to have a larger maximum growth rate than those of “senior 
life stage onwards,” with median fitted values of 0.29–0.36 years−1 
for the former and 0.15–0.20 years−1 for the latter. Across the 6 “se-
nior” and “super-senior” diagnoses shared between the species, the 
maximum growth rate appeared to be slightly higher in the dog than 
a cat. However, there was no marked difference in maximum growth 
rates between breed sizes of dogs—the maximum growth rate esti-
mate found from the exponential model was not significantly asso-
ciated with dog breed size, for either of the “senior and (especially) 
super senior life stage” or “senior life stage onwards” diagnoses, in 
a model with terms breed size class and diagnosis (p-values =  .14 
and .33, respectively), although a decreasing directional trend with 
increasing breed size was evident in the former.

A potential criticism of clustering-type approaches is that they 
can force splits in continuous data, even where these are artifacts 
of the method and not truly justified. It can therefore be useful to 
compare results with PCA, which is an unguided approach and 
should therefore be less subject to producing such artificial points 
of change. Trajectories for ages 1–15 on the first 3 principal compo-
nents are shown in Supplementary Figure 2 (cat) and Supplementary 
Figure 3 (dog).

Discussion

Aging may be considered a consequence of a gradual, progressive 
deterioration in physiological function/dysfunction, underpinned by 
cellular processes described as the hallmarks of aging (25). However, 
the different timing and type of specific age-related pathologies ex-
perienced by individuals are likely to be related to both the inherent 

Figure 2.  Diagram illustrating results produced by the bi-clustering and 
adaptive branch-pruning algorithms for cat (using the final values of 
“diagnosis threshold” and “age deep split”). Cells are colored to show the 
(scaled) count of diagnoses per pet-year with darker shading indicating 
higher values. Clusters identified by the adaptive branch-pruning algorithm 
are separated from neighboring clusters by white lines.
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Figure 3.  Diagram illustrating results produced by the bi-clustering and adaptive branch-pruning algorithms for 4 breed-sizes of dog (using the final values 
of “diagnosis threshold” and “age deep split”), with A–D representing toy, small, medium, and large, respectively. Cells are colored to show (scaled) count 
of diagnoses per pet-year with darker shading indicating higher values. Clusters identified by the adaptive branch-pruning algorithm are separated from 
neighboring clusters by white lines.
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functional capacity and the environmental stresses experienced. We 
considered that differential disease susceptibility with age may rep-
resent transition points in physiological functions that might expose 
differential aging processes and that these could be presented as dis-
crete life stages. If such transitions were observed, we believed it may 
make possible more targeted preventive care and treatment recom-
mendations throughout life. To identify if such transitions exist we 
undertook a data-driven stratification of life stages by disease sus-
ceptibility using differences in the occurrence of age-related health 
conditions in species (cat and dog) and within a species with diverse 
morphologies (breed size in dog), provided by an extensive database 
of companion animal health records.

While electronic clinical health records have been used to deter-
mine the incidence of age-, size-, and breed-related causes of death in 
dogs (26,27), this analysis is the first we are aware of to utilize diag-
nosis data from a large canine and feline population data set to es-
tablish adult life stages in these species. Although previous life stage 
definitions included descriptions that indicated that the pets in age 
groups were at higher risk for certain diseases, they did not include 
analyses from pet population data that supported the descriptions of 
disease risk for the stages—details of previously published life stages 
can be found in Supplementary Table 3. The construction of the life 
stage, defined in terms of propensity to different disease conditions, 
as presented in Tables 1 and 2, notably resulted in ages falling in 
chronological order. These life stages can then be described based on 
the occurrence of the different groups of diagnostic codes, as shown 
in Supplementary Table 4.

Supplementary Table 5 demonstrates that most ailments are 
placed similarly in all clusterings where they were included. However, 
some trends can be seen, for example, gingivitis and all grades of peri-
odontal disease tend to feature in “younger” clusters in smaller dogs 
than in their larger counterparts, reflecting existing research showing 
smaller breeds to be more prone to oral health conditions (28).

Most of the disease profiles belonging to clusters interpreted as 
being “Diagnoses of senior life stage onwards” or “Diagnoses of senior 
and (especially) super senior life stage” fit well to a 2-parameter expo-
nential growth model, showing that these diagnoses increase exponen-
tially with age. This is consistent with research on human diseases (24) 
and suggests that the health span, on average, extends to the onset of 
the “Senior” life stage. For “exponential” disease clusters in humans, 

the corresponding doubling rate has been seen to be numerically close 
to the mortality rate doubling time from the Gompertz mortality law 
(24). The exponential model used here is equivalent in form to the 
Gompertz equation so that the maximum growth rate in our model 
would be equivalent to the “actuarial aging rate” of the Gompertz 
equation if applied to mortality data and inversely proportional to the 
doubling time (29). The maximum growth rate estimates found for 
“senior and (especially) super senior life stage” and “senior life stage 
onwards” diagnoses are indeed consistent with the approximate range 
of actuarial aging rates found for the oldest group of dogs in ref. (30) 
suggesting that this relationship between doubling time for exponential 
diseases and doubling time for mortality is also true of dogs.

It has been noted that life stages can be detected visually in PCAs 
of various markers in humans (31,32). The PCA trajectories showed 
marked changes in direction and/or gradient at several points, which 
correspond with the life stages identified using bi-clustering, although 
changes in PC3 for toy and small dogs around age 4–5 years do not 
lead to a new life stage according to the bi-clustering. This may be 
because PC3 is a comparatively minor component, accounting for 
3%–4% of the total variance in those breed sizes. The PCA showed 
transition points despite being an unguided analysis, and these were 
similar to the life stages we see in the bi-clustering analysis. This cor-
roborates that these identify transition points in aging.

There are some considerations in this study that are worth 
noting. First, those related to the animal population. The medical 
records used in the analysis were from one large primary care vet-
erinary hospital network, and it is unknown how representative 
this pet population is of pets in general—in particular, it can be 
assumed that seriously unwell patients may transfer to speciality 
clinics and are potentially under-represented in primary care rec-
ords. Additionally, the analysis only considers neutered animals, 
which represents the majority of the pet population in the United 
States. However, it may not reflect the impact of reproductive cap-
acity and may exaggerate or obscure any impact of neutering on 
age-related disease occurrence. Also, some of the size categories for 
the dog were dominated by a single breed (eg, Labrador retriever 
for the large category and chihuahua for the toy category), and the 
results of the analysis are strongly skewed toward these breeds. 
Similarly, this should not markedly impact the utility of the results 
as they reflect the popularity of these breeds in the pet dog popula-
tion of the United States (33) and, therefore, relevance to vets and 
owners. Second, diagnosis profiles were constructed based on diag-
nostic codes per pet-year at-risk. As a diagnosis is not necessarily 
a first occurrence for an individual, this quantity has a different 
interpretation for a chronic condition than it does for a condition 
that resolves quickly. However, patterns should still be detectable 
and relevant, regardless of the exact interpretation of the quantity 
used. Other approaches to creating profiles have been reported (34) 
where profiles according to age at first onset were used to cluster 
human diseases, although these were created from questionnaire 
data rather than medical records. Furthermore, there are a variety 
of ways that hierarchical clustering can be enacted depending on 
the combination of distance metric and linkage used. Although the 
settings here were picked to be appropriate to the application, they 
do not form a uniquely appropriate choice, and other combinations 
of metric and linkage could produce different results. Similarly, the 
dynamic tree-cut method chosen to detect the final clusters is not 
the only such algorithm. The cut-height method is the most notable 
alternative, although others creating clusters in human disease (34) 
used the PAM algorithm (35), which is, like the method used here, a 
more objective way of deciding on the final clusters.

Table 1.  Age Group Clusters Identified by the Adaptive Branch 
Pruning Algorithm for Cat

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Youth 
(years)

Early midlife 
(years)

Late midlife 
(years)

Senior 
(years)

Super-Senior 
(years)

1–4 5–9 10–11 12–13 ≥14

Table 2.  Age Group Clusters Identified by the Adaptive Branch 
Pruning Algorithm for Each Breed Size Category of Dog

Breed Size 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Youth  
(years)

Midlife 
(years)

Senior 
(years) Super-Senior

Toy 1–6 7–11 12–13 ≥14
Small 1–6 7–11 12–13 ≥14
Medium 1–5 6–9 10–13 ≥14
Large 1–5 6–9 10–11 ≥12
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For cats, this study identified up to 2 additional life stages than 
those previously published (Supplementary Table 3), resulting in 
“Senior” and “Super Senior” stages starting, for the most part, at a 
later age than previously published guidelines. Similarly, compared 
to previously published charts defining canine life stages by breed 
size (36,37), even with the differing weights used to define breed size, 
the results from this study define “Senior” and “Super Senior” at no-
ticeably later ages than previously defined for the equivalent stages 
(“Senior” and “Geriatric”). We also noted that the smaller-sized dogs 
classified as senior 2 years later than larger dogs, consistent with them 
simply living longer (15,16) and also having an extended health span, 
potentially due to mitochondrial bienenergetics (11). Differences to 
previous approaches may reflect that we only considered one as-
pect of aging, that of the development of disease conditions, and not 
including characteristics described in other life stage guidelines (be-
havioral/psychologic and physical characteristics, such as lean tissue 
and activity levels). Despite these differences and the complexity and 
the many unknowns regarding aging, the findings of this analysis can 
still be utilized by clinicians to support conversations on the import-
ance of preventive care services and better target recommendations 
for diagnostic tests and other care recommendations.

We also expect the data will provide insights into stratified care 
pathways. For example, the data indicate an increased incidence of 
retained teeth and earlier onset of periodontal disease in smaller dog 
groups, and also increased incidence of later heart conditions and 
renal health issues. This association was previously reported as risk 
issues for these later-onset diseases in dogs, regardless of breed size 
(38,39). Such insights could lead to relatively easy and early inter-
ventions, such as teeth cleaning, focused on those breeds that might 
have far more valuable health span-related benefits in later life. 
Additionally, we believe the information may support healthy aging 
research. For example, one application would be in large-scale studies 
where the differential onset of age-related disease in specific dog size 
groups (rather than an “average” dog) could be used as an outcome 
to identify more personalized care pathways to extend health span.

In summary, we postulated that the type and timing of disease diag-
noses derived from an extensive electronic medical records database 
would enable data-driven stratification of life stages that would dis-
tinguish between different physiologies and potentially highlight those 
biological processes that underpin differential aging. We have developed 
a tool to support tailored discussions between clinicians and clients re-
garding care to reduce the risk of age-related diseases, derive insights 
for researchers, and also enhance understanding of the importance of 
physiology on the development and progression of age-related diseases.
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Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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