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Abstract

Background:  Multiple organ dysfunction syndrome (MODS) is associated with a high risk of mortality among older patients. Current severity 
scores are limited in their ability to assist clinicians with triage and management decisions. We aim to develop mortality prediction models for 
older patients with MODS admitted to the ICU.
Methods:  The study analyzed older patients from 197 hospitals in the United States and 1 hospital in the Netherlands. The cohort was divided 
into the young-old (65–80 years) and old-old (≥80 years), which were separately used to develop and evaluate models including internal, 
external, and temporal validation. Demographic characteristics, comorbidities, vital signs, laboratory measurements, and treatments were used 
as predictors. We used the XGBoost algorithm to train models, and the SHapley Additive exPlanations (SHAP) method to interpret predictions.
Results:  Thirty-four thousand four hundred and ninety-seven young-old (11.3% mortality) and 21 330 old-old (15.7% mortality) patients 
were analyzed. Discrimination AUROC of internal validation models in 9 046 U.S. patients was as follows: 0.87 and 0.82, respectively; 
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discrimination of external validation models in 1 905 EUR patients was as follows: 0.86 and 0.85, respectively; and discrimination of temporal 
validation models in 8 690 U.S. patients: 0.85 and 0.78, respectively. These models outperformed standard clinical scores like Sequential Organ 
Failure Assessment and Acute Physiology Score III. The Glasgow Coma Scale, Charlson Comorbidity Index, and Code Status emerged as top 
predictors of mortality.
Conclusions:  Our models integrate data spanning physiologic and geriatric-relevant variables that outperform existing scores used in older 
adults with MODS, which represents a proof of concept of how machine learning can streamline data analysis for busy ICU clinicians to 
potentially optimize prognostication and decision making.

Keywords:   International multicenter, Interpretable models, Machine learning, Mortality, Multiple organ dysfunction syndrome

Multiple organ dysfunction syndrome (MODS) is a continuous 
process with physiologic derangement in more than one organ (1), 
usually occurring after physiologic insults such as infection, burns, 
trauma, and shock (2). MODS is the leading cause of morbidity and 
mortality in patients who are admitted to intensive care unit (ICU) 
(1,3). Older patients (≥65  years old) with MODS have a signifi-
cantly higher mortality risk compared with younger patients due to 
decreased physiologic reserve and pre-existing comorbidities (4,5). 
Accurate prognostication can help clinicians provide appropriate 
and individualized care.

A growing body of literature has demonstrated that clinical 
scoring systems—such as the Sequential Organ Failure Assessment 
(SOFA) score and the Acute Physiology and Chronic Health 
Evaluation-II (APACHE-II) score—fail to accurately assess and 
predict the risk of death (6) for the following reasons: the entailed 
prognostic factors had their weights assigned by experts, not fully re-
flecting the characteristics of larger populations (7); the fixed mono-
tonic aggregation of each organ system state does not represent 
the complexity of the associations between the organ systems (7); 
and models were not adequately validated in multicenter and large 
sample cohorts. In recent years, the use of electronic health records 
(EHR) data has allowed researchers to develop machine learning 
(ML) algorithms for analysis of heterogeneous data yielding sophis-
ticated prediction models like multitask Gaussian process model, 
Autoscore, recurrent neural network, and Federated Learning for 
dynamic risk prediction (8–12).

However, the application of these modern approaches to mor-
tality prediction in older adults with MODS has had limited success. 
Studies to date have been marred by small patient cohorts (330–9 800 
patients), single-center model training and validation, and the use of 
logistic regression (LR) models and univariate statistical methods 
that do not account for collinearity and complex interactions among 
predictors (13). Moreover, many ICU prediction models overempha-
size acute physiologic and laboratory variables while ignoring preva-
lent geriatric syndromes—such as multimorbidity—that limit older 
adults’ ability to withstand acute stressors (14,15). In the present 
study, we aimed to develop prediction models to assist clinicians in 
the early prognostication of older patients who were admitted to 
the ICU with MODS. Because there is heterogeneity in health status 
among adults aged over 65 years old (16), we developed and val-
idated separate models for young-old (65–80  years) and old-old 
(≥80 years) patients using a large multicenter data set. We further 
analyzed the models to identify important predictors of mortality in 
each subgroup.

Method

We performed a multicenter retrospective cohort study using 4 
open-access clinical databases including the Medical Information 
Mart for Intensive Care Database v1.4 (MIMIC-III) and MIMIC-IV 

v1.0 collected from the Beth Israel Deaconess Medical Center in 
Boston from 2001 to 2012 and 2014 to 2019, respectively (17,18); 
the eICU Collaborative Research Database v1.2 (eICU-CRD) col-
lected from 208 hospitals in United States from 2014 to 2015 (19); 
and the AmsterdamUMCdb v1.0.2 collected from the Amsterdam 
University Medical Centers, The Netherlands from 2003 to 2016 
(20). A  detailed description of these databases is provided in 
Supplementary Material.

Study Population
We included all ICU patients ≥65 years old with MODS (21), de-
fined as failure of 2 or more organs systems according to the SOFA 
score (22). We excluded patients with unknown outcomes, who 
stayed in the ICU for less than 24 hours, or who incurred repeat 
ICU admissions within the same hospital admission. We also ex-
cluded patients without any measurements of heart rate, respiratory 
rate, mean arterial pressure, Glasgow Coma Scale (GCS), tempera-
ture, and oxygen saturation in the first 24 hours of ICU admission. 
Data extracted from the MIMIC-III and eICU-CRD databases were 
combined into a single cohort for model development, whereas 
data from the AmsterdamUMCdb and MIMIC-IV were kept as 
separate cohorts for external and temporal validation, respectively. 
The young-old (65–80 years old) and old-old (≥80 years old) were 
studied separately (23). The inclusion criteria of all study cohorts 
was displayed in Figure 1.

Data Collection and Feature Construction
Five types of information were collected for model development: pa-
tient characteristics of age, gender, body mass index (BMI), Charlson 
Comorbidity Index (CCI), and Code Status (CS); vital signs such 
as GCS, heart rate, respiratory rate, and mean arterial pressure; la-
boratory results including glucose, creatinine, white blood cell, bili-
rubin level, etc.; urine output; clinical treatments received including 
mechanical ventilation (MV), continuous renal replacement therapy, 
and vasopressors. Only data measured during the first day of admis-
sion in the ICU was used. Representative statistical features were 
calculated based on the type of variable. Missing values were im-
puted using the median value of each feature except for FiO2 (with 
the imputation of 21%). Additionally, we included a missing value 
indicator if a variable had missing values in 30% or more of pa-
tients. A total of 79 features were constructed. Additional informa-
tion can be found including the proportions of missing raw data in 
Supplementary Tables 1 and 2.

Statistical Analysis
Continuous variables were reported as medians with interquartile 
ranges. The t test or Wilcoxon Rank Sum Test was used when ap-
propriate to compare between surviving and nonsurviving elderly 
adults with MODS. Categorical variables were reported by the total 
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number and percentage. Two-sided p-values of less than .05 were 
considered statistically significant.

Model Development
We used the eXtreme Gradient Boosting (XGBoost) algorithm for the 
mortality prediction model. The XGBoost algorithm has previously 
been used in other health care applications with high performance, 
which is an optimized distributed tree gradient boosting method by 
converting weak learners to strong learners with iteratively refit-
ting (24). Three other ML algorithms including logistic regression 
(LR), random forests  (RF), and naive Bayesian  (NB) were used as 
baseline models for comparison. We developed 2 early prediction 
models for young-old and old-old patients. For each patient sub-
group, we used the combined cohort of patients from the MIMIC-III 
and eICU-CRD databases for model development (25). These pa-
tients were randomly sampled into an 80% training set for model 
training and 20% validation set for internal validation. The cohorts 
from the AmsterdamUMCdb and MIMIC-IV databases were used as 
separate external validation sets. Training and validation sets are ter-
minology used in ML to denote the data used to develop the model 
and data used to evaluate the performance of the model, respectively. 
Internal and external validation refer to the evaluation of model per-
formance within the same population in which a model was devel-
oped and within an external population, respectively. As data from 
the MIMIC-IV database were collected in a time period after the 
MIMIC-III and eICU-CRD databases, we define the external valid-
ation performed on this database as “temporal” validation, with the 
aim of estimating model performance when applied to data encoun-
tered in subsequent years. Hyperparameter tuning was performed 
using Bayesian optimization.

Model Evaluation
We performed internal and external validation, comparing against 
the baseline models and conventional clinical scoring systems 
including SOFA, Simplified Acute Physiology Score (SAPS), and 
Acute Physiology Score III (APSIII). Seven evaluation metrics were 
calculated along with their 95% confidence intervals (95% CI), 
including the area under the curve of the receiver operating char-
acteristic curve (AUROC), sensitivity, specificity, accuracy, F1 score, 

precision (positive predictive value), and area under the precision-
recall curve (AUPRC).

Model Interpretation
SHapley Additive exPlanations (SHAP) is a game theoretic approach 
to explain the predicted outcomes in ML models; it has been proven 
helpful for clinicians to understand the importance of model pre-
dictors, for example, for anesthesiologists to identify the cause of 
hypoxemia during surgery (26). The SHAP method uses the Shapley 
value to evaluate a feature’s effect on model predictions and to 
measure its relative importance ranking (27). We used SHAP to iden-
tify important features that contributed to mortality predictions in 
our developed models.

Software Usage
The data extraction was accomplished with PostgreSQL Version 9.6. 
All calculations and analyses were performed utilizing Python soft-
ware, version 3.7.1.

Results

Patient Characteristics
The combined MIMIC-III and eICU-CRD cohort included 45 232 
older patients (5  863 nonsurvivors, 13.0%) with MODS. The 
AmsterdamUMCdb cohort included 1  905 older patients (293 
nonsurvivors, 15.4%), and the MIMIC-IV included 8 690 (1 089 
nonsurvivors, 12.5%). Detailed inclusion and exclusion criteria for 
each data set were provided in Supplementary Figures 1–4. Table 1 
summarized the characteristics of 3 cohorts. The AmsterdamUMCdb 
cohort had the oldest median age, more severe disease as indicated 
by higher clinical severity scores, longest ICU median hospital stay, 
and highest proportion on MV. The specific type of ICU and length 
of hospital stay and ethnicity data were not available in this cohort. 
The combined MIMIC-III and eICU-CRD cohort and MIMIC-IV 
cohort were multiethnic with a higher proportion of White patients 
in the former. The combined MIMIC-III and eICU-CRD cohort had 
a higher proportion of patients admitted to the medical ICU. Old-old 
patients had on average lower BMI, proportion of patients on MV, 

Figure 1.  An overview of inclusion criteria with all study cohorts.
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higher clinical scores (APSIII and SAPS), and higher mortality com-
pared with the young-old across all cohorts.

We compared the characteristics of survivors and nonsurvivors 
in the combined MIMIC-III and eICU-CRD cohort (Supplementary 
Table 3). Nonsurvivors were significantly older in age, had higher 
severity scores, lower BMI upon ICU admission, and longer duration 
of ICU stay. Among young-old patients in AmsterdamUMCdb co-
hort (Supplementary Table 4), body weight, use of continuous renal 
replacement therapy (CRRT), higher severity scores, and longer ICU 
stay was associated with mortality. Old-old patients had similar risk 
factors for mortality with the exception of weight, and addition 
of MV. In the MIMIC-IV cohort (Supplementary Table 5), among 
young-old patients, age, and BMI were not significantly associated 
with mortality. In old-old patients, male gender and BMI were not 
significantly associated with mortality.

Model Evaluation
We present the internal and external evaluation of the final model 
stratified by the 2 age groups (Table 2). The model performed well in 
both internal validation (young-old: AUROC 0.866 [95% CI 0.849–
0.881]; old-old: AUROC 0.821 [95% CI 0.801–0.841]), external 
validation of (young-old: AUROC 0.856 [95% CI 0.82–0.888]; 
old-old AUROC 0.853 [95% CI 0.813–0.891]), and temporal val-
idation (young-old: AUROC 0.845 [95% CI 0.828–0.862]; old-old: 
AUROC 0.776 [95% CI 0.752–0.798]). Model performance was 
lower in the old-old compared with the young-old.

We then compared our model’s performance against 3 baseline 
ML models and conventional clinical scores in 3 cohorts (Table 3). 
Consistently, our model had better performance compared with the 
baseline ML models and conventional clinical scores (Supplementary 
Table 6). We assessed model calibration visually using a calibration 
plot (Supplementary Figure 5), showing reasonable calibration re-
sults. We performed a sensitivity analysis to determine whether the 
use of a smaller subset of features chosen by feature importance 
ranking had an impact on model performance (Supplementary Table 
7). Model performance decreased with the inclusion of fewer fea-
tures but still outperformed conventional clinical scores. We assessed 
for racial bias comparing model performance between the whole 
population, White, Black and Hispanic subgroups with acceptable 
difference found between the subgroups (Supplementary Figure 6).

Interpretability
To improve the clinical utility of the model, we used the SHAP 
method to determine which features contributed to a prediction of 
mortality by the model and compared them between the 2 age groups 
(Supplementary Table 8). Figure 2A and B displays the top 20 risk 
factors in the 2 age groups. Features with greater overall importance 
appear higher (y axis). The SHAP value (x axis) indicates the impact 
of a feature in the model. A positive SHAP value indicates that a 
feature contributes to a prediction of mortality. For continuous fea-
tures, a color gradient between red and blue represents a decreasing 
value of the feature from high to low. If a feature is binary (eg, yes 
or no), red indicates yes and blue indicates no. Risk factors including 
GCS (gcs_mean), Charlson Comorbidity Index (CCI, charlson), MV 
(vent_flag), respiratory rate (rr_mean), heart rate (hr_mean), shock 
index (si_mean), lowest temperature (t_min), and total urine output 
(uo_24hour) during the initial 24 hours of ICU stay were ranked as 
the 10 most important factors for all older patients. The top 4 fea-
tures were common between the 2 groups being GCS, MV, CCI, and 
mean respiratory rate. Ta

b
le

 2
. 

S
u

m
m

ar
y 

o
f 

O
u

r 
M

o
d

el
’s

 V
al

id
at

io
n

 P
er

fo
rm

an
ce

 f
o

r 
M

o
rt

al
it

y 
Pr

ed
ic

ti
o

n
 in

 M
u

lt
ic

en
te

r 
D

at
ab

as
es

In
de

xe
s 

(9
5%

 C
I)

 

In
te

rn
al

 V
al

id
at

io
n

E
xt

er
na

l V
al

id
at

io
n 

in
 E

U
R

T
em

po
ra

l V
al

id
at

io
n 

in
 U

ni
te

d 
St

at
es

Y
ou

ng
-O

ld
 

O
ld

-O
ld

 
Y

ou
ng

-O
ld

 
O

ld
-O

ld
 

Y
ou

ng
-O

ld
 

O
ld

-O
ld

 

A
U

R
O

C
0.

86
6 

(0
.8

49
–0

.8
81

)
0.

82
1 

(0
.8

01
–0

.8
41

)
0.

85
6 

(0
.8

2–
0.

88
8)

0.
85

3 
(0

.8
13

–0
.8

91
)

0.
84

5 
(0

.8
28

–0
.8

62
)

0.
77

6 
(0

.7
52

–0
.7

98
)

Se
ns

it
iv

it
y

0.
81

6 
(0

.7
81

–0
.8

48
)

0.
80

7 
(0

.7
68

–0
.8

43
)

0.
84

7 
(0

.7
86

–0
.9

06
)

0.
81

5 
(0

.7
38

–0
.8

85
)

0.
82

1 
(0

.7
86

–0
.8

56
)

0.
73

8 
(0

.6
95

–0
.7

8)
Sp

ec
ifi

ci
ty

0.
74

2 
(0

.7
27

–0
.7

54
)

0.
68

2 
(0

.6
63

–0
.7

)
0.

71
8 

(0
.6

88
–0

.7
49

)
0.

76
2 

(0
.7

16
–0

.8
03

)
0.

70
2 

(0
.6

86
–0

.7
15

)
0.

67
5 

(0
.6

55
–0

.6
95

)
A

cc
ur

ac
y

0.
74

8 
(0

.7
36

–0
.7

61
)

0.
70

1 
(0

.6
84

–0
.7

18
)

0.
73

3 
(0

.7
06

–0
.7

61
)

0.
77

1 
(0

.7
33

–0
.8

07
)

0.
71

3 
(0

.7
–0

.7
26

)
0.

68
5 

(0
.6

67
–0

.7
03

)
F1

 s
co

re
0.

42
5 

(0
.3

97
–0

.4
52

)
0.

45
6 

(0
.4

24
–0

.4
86

)
0.

44
4 

(0
.3

84
–0

.5
)

0.
60

4 
(0

.5
33

–0
.6

64
)

0.
37

5 
(0

.3
48

–0
.4

01
)

0.
43

1 
(0

.3
99

–0
.4

62
)

Pr
ec

is
io

n
0.

28
7 

(0
.2

63
–0

.3
1)

0.
31

7 
(0

.2
9–

0.
34

5)
0.

30
1 

(0
.2

52
–0

.3
49

)
0.

48
 (

0.
40

7–
0.

55
2)

0.
24

3 
(0

.2
23

–0
.2

64
)

0.
30

4 
(0

.2
75

–0
.3

32
)

A
U

PR
C

0.
52

1 
(0

.4
73

–0
.5

69
)

0.
47

8 
(0

.4
31

–0
.5

29
)

0.
49

8 
(0

.4
15

–0
.5

97
)

0.
59

5 
(0

.5
02

–0
.6

93
)

0.
41

6 
(0

.3
73

–0
.4

65
)

0.
41

2 
(0

.3
65

–0
.4

59
)

N
ot

es
: A

U
R

O
C

 =
 a

re
a 

un
de

r 
th

e 
re

ce
iv

er
 o

pe
ra

ti
ng

 c
ha

ra
ct

er
is

ti
c 

cu
rv

e;
 A

U
PR

C
 =

 a
re

a 
un

de
r 

th
e 

pr
ec

is
io

n-
re

ca
ll 

cu
rv

e;
 P

re
ci

si
on

 =
 p

os
it

iv
e 

pr
ed

ic
ti

ve
 v

al
ue

.

722� Journals of Gerontology: MEDICAL SCIENCES, 2023, Vol. 78, No. 4

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac107#supplementary-data


We found differences between young-old and old-old patients. 
Among kidney biomarkers, maximum blood urea nitrogen (BUN) 
was more important in young-old patients, whereas maximum cre-
atinine was more important in old-old patients. Among liver bio-
markers, maximum alkaline phosphatase was more important in 
young-old patients, while maximum AST was more important in 
old-old patients. Figure 2C and D shows the contribution of dif-
ferent features to an outcome of mortality in example patients from 
each age group and outcome. In the young-old group, a nonsurvivor 
had a high CCI (6 points), low urine output in the first 24 hours 
(150 mL), high BUN (54 mg/dL), and need for MV. A patient who 
survived had a normal GCS, was not mechanically ventilated, had 
good urine output (2 030 mL), and had low CCI (1 point). In the old-
old group, a nonsurvivor required MV, required norepinephrine at a 
maximum rate of 0.20 mcg/kg/min, and had a high shock index of 
1.1. The survivor did not require MV, had normal GCS (15 points), 
had low CCI (0 point), had mean respiratory rate (12.84 bpm), had 
low shock index (0.56), had normal peak creatinine (1.02 mg/dL), 
had normal heart rate (69.5 bpm), and had normal SpO2 (98.9%).

Discussion

We leveraged large and international data sets to develop and exter-
nally validate predictive models for mortality tailored for older ICU 
patients with MODS. Incorporating a broad range of variables span-
ning physiologic and geriatric domains, our models consistently out-
performed existing clinical risk scores for ICU patients. Moreover, 
our SHAP analysis revealed that cognitive status (GCS), pre-existing 
comorbidity (CCI), and CS—variables important in older patients—
are just as if not more important than more traditionally used 
physiologic parameters in ICU clinical risk scores.

In the last decade, the median age of patients admitted to ICUs 
has been over 65 years (28). Most studies analyzing potential risk 
factors associated with ICU mortality have been derived from data 
sets comprising of younger adults, and these factors are extrapo-
lated and incorporated into outcome prediction models for older pa-
tients (29). Our analyses revealed differential key prognostic factors 
for young-old and old-old patients upon admission to the ICU. As 
expected, physiologic variables remain prognostic in older adults. 
These variables included abnormal vital signs (temperature, heart 
rate, respiratory rate), low urine output, and markers of renal failure 
(BUN, creatinine). Specifically for older adults, mental status (GCS), 
comorbidity (CCI), and advance directives (code status, CS) emerged 
as top predictors of mortality alongside these physiologic variables. 
GCS, also included in SOFA and APACHE scores (30,31), stood as 
the most important predictor in young-old patients and second most 
important predictor in old-old patients. Impaired GCS can range 
from hypoactive and hyperactive delirium, coma, and medically in-
duced sedation, all of which are prevalent and are a poor prognostic 
sign in ICU care (32,33). Older patients are more susceptible to de-
lirium, yet this syndrome is often missed with harmful consequences. 
Our findings echo the call for system-wide interventions to prevent 
and manage delirium in the ICU (34).

Additionally, CCI emerged as one of the top 5 predictors in both 
young-old and old-old patients with MODS. Chronic conditions 
accumulate with age across multiple organ systems (35,36). This 
multimorbidity rests on a background of age-related depletion of 
physiologic reserves, contributing to states of frailty. In combination, 
multimorbidity and frailty predispose older patients to the devel-
opment of MODS, with markedly increased risks of morbidity and 
mortality (14,15,37). Second, the presence of advanced or terminal Ta
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chronic conditions probably affects subsequent treatment decisions 
in older patients in the ICU. Patients and their families are less likely 
to pursue aggressive and prolonged resuscitation in the ICU in the 
presence of advanced stage heart failure or cancer, compared with 
patients with minimal comorbidity and a better baseline prognosis. 
Patient and family preferences, partially reflected by CS on admis-
sion, also drive the clinical decision making that in turn drives the 
intent and extent of interventions delivered in the ICU. We rec-
ommend for GCS to be prioritized and comorbidity burden to be 

integrated into clinical tools for older patients admitted to the ICU 
with MODS.

A strength of our analysis is its use of large and globally rep-
resentative data from older adults admitted to the ICU. We util-
ized a large, multinational sample containing a broad range of 
variables. By doing so, we averted the problem of sample size 
that is commonly encountered in prediction modeling. A  recent 
review of 129 studies focusing on mortality of older patients 
in ICU showed that multicenter analyses from a single country 

Figure 2.  The model’s interpretation. (A) and (B) The importance ranking of the top 20 risk factors with stability and interpretation using the optimal model 
of young-old and old-old patients. The higher the SHAP value a feature is given, the higher the risk of death for the patient. The red part in feature value 
represents a higher value (C) and (D). The interpretation of model prediction results with the 2 samples of nonsurvivor and survivor in 2 age groups, respectively. 
Charlson = Charlson Comorbidity Index; vent = mechanical ventilation; rr = respiratory rate; si = shock index; hr = heart rate; t = temperature; uo = urine output; 
ast = aspartate aminotransferase; max = the maximum value on the first day of ICU admission; min = the minimum value on the first day of ICU admission; 
mean = the average value on the first day of ICU admission; flag = the indicator vector representing measurements.
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accounted for nearly a third of studies, whereas multinational 
analysis accounted only for a select few (8%) (29). To our know-
ledge, our sample size of 55 827 older patients in 198 hospitals 
across 2 countries is the most comprehensive to date for building 
and evaluating predictive models for older patients with MODS 
admitted to the ICU. We evaluated model performance within 
different countries (United States vs Amsterdam), different races 
(Caucasian vs Black and Hispanic), and over time (from 2014 to 
2019). The results of these evaluations demonstrate model ro-
bustness across geography and across time.

We also conducted probability calibration curves and evaluated 
model performance using a subset of the features. We adopted an en-
semble ML model, XGBoost, to represent the nonlinear and complex 
correlations between risk factors and outcome. In comparison, pre-
vious studies have mainly used regression models to characterize 
complex physiological states, which assumes monotonic relation-
ships between independent variables (38). These assumptions may 
not always hold true for all clinical variables and limit the ability to 
obtain more accurate weighting of risk factors (7,26). With our ap-
proach, our model is superior to the linear regression model across 
all validations while providing interpretability, with modal discrim-
ination (AUROC) of 0.82 and greater for internal and external valid-
ations across the 198 hospitals in different countries, compared with 
the lower AUROC of 0.71–0.88 in LR models of previous works and 
our baseline LR models (39).

Taken together, our models would aid in the provision of more 
calibrated prognostication of older patients admitted to the ICU 
with MODS. Examples of learning health systems that include ML 
to improve decision making are steadily rising (40–42), and our 
model integrates a broad array of important physiologic and health 
parameters that can be rapidly synthesized and presented to ICU 
clinicians. Frail, multimorbid older patients presenting with MODS 
are complex; integrating a broad array of variables would allow 
busy ICU clinicians to focus more on decision making and commu-
nication with patients and families (43).

Our study has a number of limitations. First, the disparity in the 
contribution of CCI and CS to our model’s performance and SHAP 
analyses may be explained by the model’s ceiling effect. Second, our 
model demonstrated relatively poor precision, which has been seen 
in other disease prediction models as well (44,45). Accordingly, our 
model’s utility is to aid clinical decision making and not to replace the 
clinician (46). Third, we did not include admission diagnosis and sub-
sequent ICU treatments, which can be incorporated in future versions 
of our model. Fourth, the results of temporal validation are somewhat 
biased, due to the not entirely consistent population distribution with 
the development set. Fifth, we recommend that the models need to be 
calibrated using local data before using. Finally, models would be fur-
ther improved by including a validated measure of frailty (47).

In conclusion, this study developed and validated predictive 
models for mortality in older patients admitted to the ICU with 
MODS using ML methods in a large and international multicenter 
data set. Our models outperformed several risk scores tradition-
ally used in the ICU setting and demonstrated that cognitive status, 
comorbidity, and code status emerge as powerful predictors when 
combined with physiologic and laboratory data routinely collected 
in the ICU. Our models represent a proof of concept of how ML 
using broad-ranging data could potentially streamline data synthesis 
for busy ICU clinicians and optimize decision making for complex 
older adults admitted with MODS. Future work would include re-
fining our model and calibrating for drift, as well as pilot implemen-
tation in clinical settings.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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