
Relevance of microvascular flow assessments in critically ill 
neonates and children: A systematic review

Laura A. Maitoza1, Eitan Neeman1, Melissa Funaro2, Richard W. Pierce1

1.Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 
06520, USA

2.Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, PO Box 208064, New 
Haven, CT 06520, USA

Abstract

Objective: Resolution of impaired microvascular flow may lag the normalization of 

macrocirculatory parameters. The significance of microcirculatory dysfunction in critically ill 

children and neonates is unknown, but microcirculatory variables can be measured using doppler 

or videomicroscopy imaging techniques. We outline the current understanding of the role of the 

microcirculation in critical illness, review methods for its assessment and perform a systematic 

review of how it has been monitored in critically ill neonates and children.

Design: Systematic review (PROSPERO CRD42019117993)

Setting: N/A

Subjects: N/A

Interventions: None

Methods: We systematically searched MEDLINE, EMBASE, PubMed and Web of Science. We 

included studies of critically ill patients 0 to 18 years old investigating microcirculatory blood 

flow. Two reviewers analyzed abstracts and articles. Results were qualitatively analyzed due to 

study heterogeneity.

Results: A total of 2559 abstracts met search criteria, of which 94 underwent full text review. 

Of those, 36 met inclusion criteria. Seven studies investigated microcirculatory changes in 

critically ill children. Twenty studies investigated the microcirculatory changes in neonates with 

variable diagnoses compared to a diverse set of clinical end points. Nine studies assessed the 

effects of age, sex and birth weight on microvascular flow in neonates. Across all studies, 
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microcirculatory dysfunction was associated with poor outcomes and may not correlate with 

observed macrovascular function.

Conclusions: Assessment of microvascular flow in critically ill children and neonates is 

possible, though significant challenges remain. In many such patients, microvascular blood flow 

is disrupted despite medical management targeting normalized macrovascular parameters. Future 

studies are needed to define normal pediatric microvascular flow parameters and to assess the 

impact of patient and treatment factors on its function.
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Introduction

The microcirculation is a critically important and potentially underappreciated component of 

the cardiovascular system. This dynamic vascular segment resides between the arterioles 

and venules and is comprised of pre-capillary arterioles, capillaries and post-capillary 

venules(1,2). These vessels are less than 100 μm in diameter, smaller than a human hair. The 

microcirculation consists of endothelial cells and associated supporting cells. Pre-capillary 

arterioles are surrounded by smooth muscle cells (SMCs), which act to regulate blood flow 

to tissue. Capillaries and post-capillary venules are supported by pericytes and less frequent 

SMCs(3, 4). Capillaries, the smallest of these vessels range between 3 and 6 μm in diameter, 

are the most numerous and dynamic part of the microcirculation(5, 6). These tiny vessels are 

responsible for the delivery of nutrients and signaling molecules, removal of waste products, 

flux of intravascular fluid and heat exchange at the level of individual cells(7, 8). These 

processes require intimate contact, and consequently a single capillary may be responsible 

for supporting a layer of only two or three parenchymal cells(9, 10).

All blood flow is dictated by pressure gradients. In the microcirculation more specifically, 

the difference between pre-capillary hydrostatic pressure (Pcap) and post-capillary venular 

pressure (mean systemic filling pressure, Pmsf) drives flow. Under normal conditions, Pcap 

is dictated by precapillary SMC sphincter tone, subject to tissue specific autoregulation 

which is, in part, regulated by capillary pericytes(11). Regulation of Pmsf is dictated by 

venous volume and compliance of the larger venules and veins(12). Normal microcirculatory 

flow is characterized by homogenous red blood cell (RBC) density and velocity throughout 

the length of the capillary, with pre-capillary oxygen tension (PO2) of 90 mmHg and 

post-capillary PO2 of 45 mmHg. The transit time for a RBC in capillaries is highly variable 

across different organs(13).

In times of physiologic stress, the microcirculation adapts to meet increased tissue 

metabolism by three mechanisms. First, oxygen extraction is increased throughout the length 

of the capillary. This adaptation is passive and results in decreased central venous oxygen 

saturation. Second, greater cardiac output augments microvascular flow decreasing RBC 

transit time and boosting the total number of RBCs crossing the capillary per unit time. 

Lastly, most tissues have excess capillaries to augment perfusion during times of greater 

need. The relative perfusion of specific capillary networks is controlled by autonomic 
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nervous system activity (neurogenic), small molecule autocrine signaling (metabolic) and 

pressure dependent autoregulation (myogenic) of the pre-capillary SMCs and pericytes(3). 

Microvascular pericytes in particular, are essential to regulating capillary diameter(14), 

barrier function(15), basement membrane properties(16) and endothelial sprouting(17), all 

essential functions to maintain adequate flow to support parenchymal cells. Increased 

capillary recruitment reduces the distance between perfused capillaries and lessens the 

distance for O2 to diffuse. These compensatory mechanisms vary by organ. For example, the 

heart and diaphragm have no recruitable capillaries, whereas this is the predominate adaptive 

method in skeletal muscle(18).

In times of pathophysiologic stress, such as shock, microvascular flow may be disrupted 

with a number of deleterious consequences. Although confirmatory evidence is limited, 

there are several proposed mechanisms by which the microcirculation may become 

altered(19). Since the microvasculature is responsible for oxygen and nutrient delivery, 

perturbations in capillary flow result in organ hypoperfusion. In late stages of shock, 

cellular hypoxia is evidenced by increased markers of perfusion inadequacy, such as 

increasing serum lactate or organ-specific enzymes. Blockage of capillaries results in an 

inappropriately heterogeneous microvascular flow (Figure 1, #1), with flow diverted through 

pathologically dilated capillaries, leading to microvascular shunt(20, 21). Hemodilution, 

which may result from volume resuscitation, reduces the number of RBCs in each capillary 

decreasing oxygen content (Figure 1, #2). In the setting of venous congestion, such as 

occurs in cardiogenic shock, Pmsf rises and impairs flow and oxygen delivery (Figure 

1, #3). Finally, tissue edema, in the setting of capillary leak, expands the distance that 

oxygen must diffuse to reach cells, producing cellular dysoxia and dysfunction (Figure 

1, #4). Tissue-specific capillaries have different responses to the above pathophysiologic 

processes. This heterogeneity of function makes it impossible to extrapolate findings from a 

single capillary to the system as a whole and thus undermines our understanding of global 

microvascular function(22).

Monitoring of microvascular function is challenging since the common macrovascular 

variables followed (e.g. blood pressure (BP), heart rate (HR), central venous pressure 

(CVP) and cardiac index) may have limited relevance. Hemodynamic coherence is a 

term that describes the extent to which normal macrovascular function correlates with 

appropriate microvascular function(23). Multiple studies in adults have demonstrated 

that hemodynamic coherence may be lost in critically ill humans(23, 24). Furthermore, 

persistent microvascular dysfunction has been associated with organ dysfunction and 

death in adults(25). Nonetheless, goal directed resuscitation of children in shock typically 

targets macrovascular hemodynamic goals, assuming that hemodynamic coherence is intact. 

Yet, specific treatment strategies, such as fluid resuscitation or vasopressor therapy, may 

improve macrovascular variables (such as CVP) to the detriment of microvascular flow (by 

decreasing Pcap-Pmsf)(26).

Microcirculatory function can be directly assessed in several ways. Videomicroscopy 

permits the observation of the number of RBCs and their velocity through individual 

capillaries (Table 1). These devices utilize dark-field microscopy where polarized light 

at 550 nm is preferentially scattered by the hemoglobin in RBCs. The scattered light is 
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captured for analysis and produces short video clips of illuminated capillary networks on 

dark backgrounds. Recent advances in optics have resulted in more precise instruments, 

from orthogonal polarized spectral (OPS), side-stream dark field (SDF), and incident dark 

field (IDF) imaging. These devices, notably IDF, are state of the art for current research. 

Other technologies include laser doppler flowmetry (LDF) which measures the relative 

velocity of RBC flow through sections of tissue from the doppler shift of laser focused light 

(700 to 1000 nM). Finally, intravital microscopy and capillaroscopy utilize light microscopy 

to visualize flow velocity through capillary loops, although in humans, this technology is 

usually limited to the nailbed.

Since the ultimate aim of resuscitation is to restore adequate cellular oxygen delivery, 

monitoring the microcirculation may provide the most pertinent measures (Table 2)(24). 

However, microcirculatory function is difficult to assess in critically ill children. A major 

challenge is clinical feasibility. OPS requires an external light source and is prone to 

blurring, blockage or difficulty positioning the device. SDF performs better but still requires 

manual intervention and scoring systems. Both of these methods are sensitive to motion 

artifacts. Some of the devices are quite bulky, and all require training and expertise to 

obtain and interpret measurements. Newer devices are smaller and more intuitive with the 

promise of automated data analysis that may be more amenable to pediatric studies. A 

more significant concern is the sampling location. Monitoring oral microcirculation may 

not provide information on perfusion of central, more essential organs(33). Obstructed 

or heterogeneous flow may be present in one organ and not in another. Another major 

impediment is the lack of normal pediatric values, complicating interpretation of image 

analysis in children and infants. Indirect assessments, such as near infrared spectroscopy 

(NIRS) or arterio-venous PCO2 differences, can provide insight into the global function of 

the microvasculature relative to metabolism.

A better understanding of microcirculatory responses may result in more effective treatments 

for common conditions such as shock. The extent to which microvascular flow and 

hemodynamic coherence are disrupted by critical illness in children is much less well 

defined than in adults. The purpose of this review it to gain a deeper understanding of this 

issue. Therefore, we performed a systematic review to assess the current state of research 

into microvascular dysfunction in critically ill children and neonates.

Methods

Search Strategy.

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(34). 

Our study protocol is registered in the PROSPERO database of systematic reviews, 

CRD42019117993 (Supplementary Table 1). We began our search with the Yale MeSH 

Analyzer(35), using key articles to refine the search strategy for the concepts critical illness, 

microcirculation, and children (Supplementary Table 2). In each database, we performed 

search queries and used an iterative process to translate and refine the searches. All searches 

were limited to the English language. Searches in Embase and MEDLINE were limited 

using the human filter. Additional articles were identified by examining other systematic 

reviews, reference lists, bibliographies, and pre-identified websites such as NIH reporter, 
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conference abstracts (Web of Science), and publicly available internet searches (Google 

Scholar).

On December 6, 2018, the authors searched PubMed (conception through December 06, 

2018), MEDLINE (Ovid MEDLINE ALL 1946 to December 06, 2018), Embase (Ovid 

Embase 1974 to 2018 December 07), and Web of Science (conception through December 

06, 2018). On March 14, 2019, a second search was completed in Ovid MEDLINE ALL, 

Ovid Embase, PubMed, and Web of Science Core Collection. The search repeated the 

controlled vocabulary terms and free text terms. Manuscripts identified from these searches 

were de-duplicated in EndNote X8 (Clarivate Analytics) and uploaded to Covidence(36).

Study selection.

Two independent reviewers (LM, EN) completed title, abstract, and full text screens (Figure 

2). The senior author (RP) mediated consensus meetings to resolve discrepancies. Studies 

were screened for meeting the inclusion criteria: (1) Observational case report, cohort, case 

control, or clinical trial studies; (2) Studies involving critically ill pediatric patients; and 

(3) Studies assessing microcirculatory flow. Since a continuum of disease states exist under 

the definition of critical illness, there is not one single condition that satisfies our query. 

Our search strategy (Supplemental Table 2) includes many terms associated with critical 

illness. For including or excluding studies in ambiguous cases, we relied on the primary 

authors definition or assessment of the study participants’ “critically ill status.” Studies 

investigating animal or human cellular models as well as those that did not specifically 

assess microcirculatory flow were excluded.

Assessment of the evidence and data abstraction.

All collected studies were reviewed using the QUIPS tool to assess risk of bias in prognostic 

factors studies from the Cochrane Review Group(37). A quantitative meta-analysis was not 

performed for several reasons. Relative estimates of effect could not be calculated for case 

series and studies that lacked control groups. Methodological heterogeneity, such as the 

type of assessment, the timing of assessment relative to disease onset, and the wide range 

of patient and treatment factors further prohibited quantification of results. Therefore, all 

studies were qualitatively analyzed.

Results

A total of 4178 citations were retrieved, pooled and de-duplicated to 2559. Of these, 94 

articles met requirements for full text review, after which 36 studies were included in the 

investigation for evaluation of microcirculatory flow: 7 assessing critically ill children and 

29 involving neonates.

Overall, the quality of the evidence for using microvascular assessment to predict outcomes 

is low. Of the 27 studies included, 8 rated as low, 18 as medium and 1 as high quality 

(Supplemental Table 3). One limitation of feasibility and generalizability was study design, 

as only a single randomized controlled trial involving 12 total neonates was identified(55). 

All other studies were observational trials or case reports. Studies assessed had low numbers 

of subjects, and most lacked control groups. Only 20 of the 36 studies included control 
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patients, and 28 of the 36 studies involved 40 or less subjects. In all cases, primary data 

could not be completely reviewed. High subject dropout rate, lack of standardized of normal 

values, timing and method of assessment, parameters measured and comparators further 

downgraded the quality of the available evidence.

We identified 7 studies of microcirculation in critically ill children (Table 3). Of these, 

three investigated microcirculatory flow in sepsis and found decreased MFI and reduced 

functional capillary density (FCD) and proportion of perfused vessels (PPV), using OPS 

or SDF with sublingual or buccal mucosa sampling(38–40, 43). These variables correlated 

with increased inflammatory markers and improved over time with the patient condition. 

Two studies investigated the effects of cardiopulmonary bypass (CPB) on microcirculatory 

flow. CPB appeared to minimally alter baseline microvascular parameters during the 

procedure(42), but did negatively affect induced hyperemic response, while measuring 

microvascular vasodilation with cutaneous vascular conductance, intraoperatively(44). A 

single study investigated children after cardiac arrest and demonstrated decreased flow and 

perfused vessel density (PVD), which improved as patient condition recovered(41). Finally, 

a study using SDF sublingual sampling and investigating all-comers to the PICU found 

decreased MFI, PPV and PVD that correlated with low BP and mixed venous saturation and 

improved after macrocirculatory normalization(32).

We identified, 29 studies involving neonates, with 20 studies relating microcirculatory flow 

to critical illness (Table 4) and 9 studies relating microcirculatory flow to gender or post-

natal age (Supplementary Table 4). The 20 studies investigating microcirculatory changes 

in neonates included 300 unique patients of which 94 were full term, 82 were preterm and 

124 had no gestational age reported. Included studies related flow to a variety of etiologies 

of critical illness, including acute respiratory distress syndrome (ARDS), sepsis and hypoxic 

ischemic encephalopathy (HIE, 4 studies each), cardiopulmonary bypass (3 studies) and 

congenital diaphragmatic hernia, anemia, hypotension and patent ductus arteriosus (a single 

study each).

Neonates with sepsis demonstrated a decreased hyperemia response(45, 46), skin flow(57) 

and functional vessel density(49). Reactive hyperemia response refers to skin perfusion 

time, measuring velocity of red blood cells with laser doppler, pre and post-arterial 

occlusion. Vessels in neonates with sepsis took longer to establish perfusion in the 

venules post-occlusive stimulus as opposed to healthy newborns. Similarly, neonates with 

ARDS demonstrated decreased functional vessel density (FVD)(48, 51, 63) as evidenced 

by OPS and SDF imaging on skin or mucosal surfaces. Reduced flow and vessel 

density parameters were detected in neonates with congenital heart disease(50) and those 

undergoing CPB(58, 61), although the cerebral circulation was not affected allowing oxygen 

delivery to the brain to be preserved(64). Neonates undergoing therapeutic hypothermia for 

HIE demonstrated decreased flow parameters that improved with rewarming(53, 56, 60). 

Additionally, decreased vessel density was associated with a rise in systemic inflammatory 

markers(59). Among a general population of critically ill neonates, FVD improved after 

blood transfusion(47). However, neither flow nor vessel density was improved upon 

initiation of veno-arterial ECMO(52). Neonates who are hypotensive immediately after 

birth have altered vessel density that does not respond to resuscitation but improves within 

Maitoza et al. Page 6

Pediatr Crit Care Med. Author manuscript; available in PMC 2023 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12 hours(54). Finally, neonates with congenital diaphragmatic hernia had altered flow and 

vessel density that did not respond to inotrope therapy(55).

The 9 studies relating microcirculatory flow to gender or post-natal age are not discussed 

because they did not separate cohorts based on diagnosis or disease severity, rendering 

analysis on those parameters impossible(65–73).

Discussion

The vascular system is responsible for the delivery of O2 and nutrients to cells, a task so 

critical it has been dubbed “the organ of the intensivist”(74). Despite this significance, our 

review has revealed a paucity of studies on microcirculatory blood flow in critically ill 

children, with only 502 patients assessed across 27 studies. The settings of these studies 

and disease severity of their participants, demonstrate that assessment of microcirculatory 

function in critically ill children and neonates may be difficult but is possible. Analysis 

of the collected literature is challenging due to great variability in the patient populations, 

diagnoses, treatment factors and assessment timepoints. Despite these limitations, several 

important conclusions may be drawn on the nature and implications of microcirculatory 

changes in severely ill children and neonates.

The prevalence of microcirculatory dysfunction in children remains unknown. In adults, 

more than 15% of intensive care patients will have dysfunctional microcirculatory flow, 

and that its presence correlates with mortality(75, 76). Based on the studies we reviewed, 

microcirculatory irregularities appear to be more prevalent among critically ill pediatric 

patients despite a broad range of ages and conditions. Gonzalez and colleagues conducted 

the most comprehensive study of microvascular dysfunction in general PICUs(43). However, 

definitive conclusions from this study are difficult to draw due to low enrollment of only 

18 eligible children, including the exclusion of multiple critically ill as well as generally 

well patients. The exact prevalence of microvascular dysfunction and its consequences is not 

known because studies lacked control groups, as well as the lack of pediatric normative data 

for microcirculatory variables and low PICU mortality rates(77). More worrisome, multiple 

studies demonstrated that microcirculatory dysfunction correlated with biochemical markers 

of tissue perfusion inadequacy, such as lactate and interleukins, but not with macrovascular 

parameters, implying loss of hemodynamic coherence(41, 43, 78). Across similar disease 

states, several studies of demonstrate more significant microcirculatory dysfunction in 

children and neonates compared to adults(38, 43), suggesting this may be a more significant 

problem in younger patients.

The effects of common therapies on microcirculatory dysfunction are more clear. Six 

studies in children and neonates demonstrated that interventions to normalize macrovascular 

parameters did not correct microvascular flow in the setting of inotropic therapy(38, 57), 

therapeutic hypothermia(41, 53) and ECMO(52). These findings are especially concerning 

since patients are considered for such therapies due to inadequate DO2, yet their application 

may not correct the underlying microvascular defects. Such differences are likely explained 

by variations in the device used and timing and location of assessments. In instances 

of rapid clinical decline, it is difficult to tease out the effects of multiple simultaneous 
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interventions. Many of the studies in neonates used LDF instead of videomicroscopy, 

making direct comparisons between patient populations impossible, as in the comparison of 

inotrope use and blood transfusion with sampling via LDF versus SDF (47,49). The variable 

parameters assessed and outcome measures render more general conclusions untenable. 

These results are especially significant given the finding of the recent ANDROMEDA-

SHOCK trial showing improved mortality in peripheral perfusion rather than lactate 

directed resuscitation in adults with septic shock(79). The collected literature indicate that 

microvascular dysfunction is common and likely underappreciated in the NICU and PICU 

and may have significant clinical consequences and treatment implications.

Few studies provide some insight into the effects of various therapies on the 

microcirculation. In neonates with respiratory distress syndrome, the application of 

inhaled nitric oxide improved perfused vessel density(51). Well known for its pulmonary 

vasodilatory effects, nitric oxide has multiple extra-pulmonary actions(80). In the only 

randomized control trial identified, permissive hypercapnia, a therapeutic approach 

commonly used in neonatal RDS, was shown to decrease vessel density(63). Similarly, 

neonates with congenital diaphragmatic hernia, treated with dopamine to correct HR and 

BP, continued to have reduced flow and vessel density(55). These findings have important 

clinical relevance since inotropic infusions commonly applied to treat shock may, in some 

instances, compromise end organ tissue perfusion. Defining how the microcirculation 

changes respond to common therapies and the ultimate impact on tissue perfusion and 

outcomes is an urgent research priority.

There are limitations to this investigation. As we have noted, there are multiple methods to 

assess the microcirculation that are not directly comparable. Standardization of techniques 

and measurements, as well an agreement on age-specific normal values, are essential to 

advancing our understanding of microvascular function. Without standard normal ranges for 

specific ages, body sizes and genders, the work done to assess the microcirculatory flow 

at the capillary level is not generalizable to the neonatal and pediatric ICU settings. More 

trials with greater subject numbers are needed to validate a method, timing and location 

of assessment. The limited number of studies, low quality of evidence and diagnostic 

and methodologic heterogeneity precluded a quantitative meta-analysis. Our review may 

further be limited by the potential impact of publication bias, as studies not finding a 

correlation between critical illness and disruption of microvascular flow are less likely to 

be published. Although we attempted to identify all relevant studies, it is possible that 

qualifying studies were inadvertently omitted from this systematic review. Despite these 

challenges, we felt it was important to try to understand the range of clinical settings in 

which microvascular monitoring is feasible and potentially informative. In fact, technology 

has sufficiently advanced to allow clinical researchers to begin to explore how patient and 

treatment factors alter the microcirculation of our patients. Multiple ongoing studies aim to 

address some of these concerns.

Conclusion

Adequate microvascular blood flow is essential for the maintenance of cells and organ 

function. Homeostasis relies on hemodynamic coherence, where microcirculatory flow is 
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mirrored by macrovascular parameters. Despite logistic challenges, microvascular flow may 

be measured with laser Doppler flowmetry or videomicroscopy. In critically ill children, 

microvascular blood flow may be disrupted, and hemodynamic coherence may be lost. The 

timing, severity and clinical consequences of these changes are not well defined. More 

research is required to better understand how microvascular variables can be monitored in 

critically ill children, define age appropriate normal values, assess responses to common 

interventions and ultimately, define its impact on PICU morbidity and mortality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Microcirculatory blood flow and its pathologic alterations. Normal microvascular blood 

flow is determined by pre-capillary smooth muscle cell tone. Physiologic flow, illustrated 

by the block arrows, provides oxygen tension sufficient for cellular homeostasis along the 

entire capillary, as shown in the top 2 capillaries. Pathophysiologic microvascular flow, 

resulting in inadequate cellular oxygen delivery, may occur through 4 proposed mechanisms. 

(1) Capillaries may be blocked by platelet microthrombi, leukocyte plugs, non-deformable 

RBC or pre-capillary SMC dysfunction. Obstruction produces blockage to flow, resulting 

in cellular hypoxia distal to the obstruction and increased flow heterogeneity, as blood flow 

will be redirected to open capillaries, creating tissue-level shunting. (2) Hemodilution as 

seen after cardiopulmonary bypass or massive volume resuscitation, may result in cellular 

hypoxia despite appropriate flow. (3) Increased venous pressures, from rising CVP, or post-

capillary tamponade from increased tissue hydrostatic pressure. This produces and increase 

in mean systemic filling pressure (Pmsf) with little change in the capillary hydrostatic 

pressure (Pcap) thereby decreasing driving pressure for capillary flow (Pcap- Pmsf). This 

results in rapid decrease is O2 tension and cellular hypoxia. (4) Tissue edema, from capillary 

leak or massive volume resuscitation, increases the distance for O2 to diffuse resulting 
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in cellular hypoxia despite adequate flow. Multiple problems may be present in a single 

capillary network and their effects may overlap, exacerbating organ dysfunction.
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Figure 2: 
Study flow diagram and selection of eligible articles.
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