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ABSTRACT: This work presents a variant of an electrostatic
embedding scheme that allows the embedding of arbitrary machine
learned potentials trained on molecular systems in vacuo. The
scheme is based on physically motivated models of electronic
density and polarizability, resulting in a generic model without
relying on an exhaustive training set. The scheme only requires in
vacuo single point QM calculations to provide training densities
and molecular dipolar polarizabilities. As an example, the scheme is
applied to create an embedding model for the QM7 data set using
Gaussian Process Regression with only 445 reference atomic
environments. The model was tested on the SARS-CoV-2 protease
complex with PF-00835231, resulting in a predicted embedding
energy RMSE of 2 kcal/mol, compared to explicit DFT/MM
calculations.

1. INTRODUCTION
In the recent years, advances in Machine Learning1−4 and
representations of molecular systems5 brought an explosion of
Machine Learned (ML) potentials (or force fields), covering a
broad range of systems and problems. In principle, ML
potentials can provide energies and forces at arbitrarily high
precision, while being orders of magnitude cheaper than DFT
and ab initio calculations. However, the computational cost of
ML potentials is much larger than the cost of molecular
mechanics (MM) force fields.6 That makes their application to
long scale MD simulations of systems consisting of ≈105 or
more atoms problematic. On the other hand, one often faces
problems where a higher precision force field is required for just
a small region or subsystem, while for the rest of the system, the
precision of the classical force fields is satisfactory. For example,
simulations of enzymatic catalysis rely on hybrid “QM/MM”
calculations, with the active site of the enzyme (usually ≈100
atoms) being described by some QM method, while the rest of
the system is treated at the MM level.7,8 This allows explicitly
treating the electronic rearrangements at the desiredQM level of
theory while including the entire enzyme with the bulk water in
the simulation system, keeping it realistic.
In state-of-the-art QM/MM methods, the interaction

between QM and MM regions is usually treated by means of
electrostatic embedding. The MM part is represented by a mesh
of MM point charges surrounding the QM part, while the
dispersion and repulsion interactions are treated at the MM
level. The MM point charges are taken into account explicitly in
the QM calculation, resulting in a polarized wave function or
electronic density. The polarized density in turn interacts with

the point charges, resulting in the total QM/MM energy
expression.
The performance of QM/MM schemes is limited by the cost

of the QM method used. Therefore, one could still obtain huge
savings of computer time by employing a much cheaper ML
model instead. However, the vast majority of ML potentials is
trained to reproduce the energies of molecular systems as a
whole, without considering the response to external electric
fields. This makes it impossible to combine ML with MM in an
electrostatic embedding scheme, unless the architecture of the
ML model is modified to include the MM environment.
Very recently, several approaches have been proposed to

tackle this problem. In the DPRc model by Zeng et al.9 a Δ-
learning10 approach is proposed to correct QM/MM potentials
to a higher level of theory. This is done by introducing a
correction to the interaction energies that smoothly vanishes for
MM atoms farther from the QM region. The environment is
provided to the NN as positions and atom types of MM atoms.
Themethodwas recently applied to estimate free energy barriers
and kinetic isotope effects in RNA cleavage reactions.11

An example of a more general approach aimed at predicting a
range of response properties is FieldSchNet, proposed by
Gastegger et al.12 In FieldSchNet, the description of the
environment (such as the electric field caused by the MM point
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charges on each QM atom) is incorporated as an additional
input in the NN architecture together with a physically
motivated transformation (such as a dipole-field interaction
tensor) added as an additional layer. The same philosophy but
with a different network architecture was employed by Pan et
al.,13 with the MM environment being represented by the
generated electrostatic potential and field on QM atoms.
A step beyond reproducing a QM/MM potential is the

BuRNN approach by Lier at el.,14 which also aims at reducing
the artifacts at the QM/MM boundary. These are particularly
pronounced when the interface is crossed by a covalent bond. In
BuRNN, a buffer region is introduced where the interactions
withQM andMM subsystems are treated at QM andMM levels,
respectively.
In all aforementioned cases, the response to the MM

environment is taken into account during the development of
the ML potential. This contrasts the QM methods that “just
work” with electrostatic embedding. Moreover, practical
implementation of some of the mentioned schemes would
imply substantial changes to the state-of-the-art QM/MM MD
schemes, requiring, for example, extra information about the
embedding (such as MM atom types9,11) or by introducing
additional partitionings of the total system.14 The purpose of
this study is to develop a modified electrostatic embedding
scheme that would allow taking an existing ML force field
(trained to reproduce energies in vacuo) and combining it with
an arbitrary MM environment, resulting in an “ML/MM”
potential.12 Moreover, such a scheme should only require the
same representation of the MM subsystem that is currently
available to QM engines in state-of-the-art QM/MM codes, that
is the positions and charges of the MM atoms. This would allow
construction of the full ML/MM potential by just replacing a
QM engine by the embedding scheme and an in vacuo energy
function, requiring minimal changes to well tested codes.
The feasibility of such a scheme follows from the fact that

intermolecular interactions, in general, have relatively simple
functional dependence on nature and geometry of the
interacting species as was shown, for example in the IPML
model by Bereau et al.15 The QM/MM interaction energy can
be seen as a special case of intermolecular interaction, where
some of the species are reduced to nonpolarizable point
electronic density. In this case, the total interaction energy
between the QM and MM subsystems reduces to the
electrostatic interaction and polarizability components, which,
as shown in Bereau et al. and also in this work, can be described
using simple, physically motivated models with only a few free
parameters.
The paper is outlined as follows. First, we show how standard

electrostatic embedding can be reformulated to explicitly
depend on the in vacuo energy of the QM part, thus allowing
substitution of the corresponding term with an ML energy
function. Then, a physically motivated model for the QM/MM
interaction term is proposed, and the necessary atomic
properties as well as free model parameters are introduced.
The scheme is then used to create a generic embedding scheme
applicable to ground-state geometries of neutral compounds
containing H, C, N, O, and S elements by training it on the QM7
data set. Finally, the scheme is tested by predicting QM/MM
interaction energies in the SARS-CoV-2 main protease complex
with the PF-00835231 inhibitor. The paper is concluded by
discussing advantages, limitations, and possible future improve-
ments of the proposed embedding scheme.

2. THEORY AND METHOD
2.1. Decoupled Embedding.We start with the total energy

of a QM/MM system treated within an electostatic embedding
scheme, which can be written as the sum of four terms7
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where the first term is the energy of the QM subsystem polarized
by the MM point charges, the second term is the interaction
energy between the polarized QM subsystem and the point
charges, the third term is the VdW interaction energy between
QM and MM parts, and the fourth term is the MM energy. The
last two terms are treated at the MM level of theory and
therefore are trivial to calculate. For conciseness, RMM denotes
dependence on both the positions of MM atoms r and their
point charges q. Due to the dependence of theQM term onRMM,
it cannot be replaced by an ML model trained on in vacuo
energies, thus making the standard electrostatic embedding
unsuitable. To overcome this issue, we split the QM term into
two components:
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Now, the first term is the SCF energy of the QM subsystem in
the absence of MM part and therefore can be replaced by some
ML model trained on energies in vacuo. The second term
contains the polarization energy cost required to distort the
electronic density in response to the external potential.
Now we can rewrite the total energy expression as
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On the r.h.s. of eq 3, we have “decoupled” the energy of the QM
system in vacuo and the “embedding” term that includes all the
effects of the MM environment and has to be predicted in the
modified embedding scheme. The next section discusses how
this term can be obtained from a simple physically motivated
model.
2.2. The Embedding Term. The electrostatic QM/MM

term in (4) is the interaction energy between the polarized QM
part and the MM point charges, which can be obtained from the
electrostatic potential corresponding to the polarized density

= [ ] ·E V qR R R R r( , ) , ( )QM MM
el

QM MM
i

pol
QM MM i i/

(5)

where ri and qi are positions and charges of the MM point
charges, respectively. Here and below V[X](r) denotes a
potential defined by some arguments X and estimated at point
r. Vpol is the electrostatic potential of the polarized QM part
which can be further decomposed

[ ] = [ ] + [ ]V V VR R r R r R R r, ( ) ( ) , ( )pol
QM MM i

static
QM i

ind
QM MM i (6)

where Vstatic is the electrostatic potential of the nonpolarized
QMpart, andVind is the “induced potential” due to the change in
the charge distribution of the QM subsystem caused by the
presence of the MM environment. Combining (4), (5), and (6),
the embedding term can be written as
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To calculate the first term on the r.h.s. of (7), one only requires
Vstatic, which is the electrostatic potential of the QM part in
vacuo. Modeling Vstatic is a well-known problem that arises, for
example, when developing partial charge schemes for classical
force fields. Therefore, in principle, any existing approach that
aims to represent the electostatic potentials can be employed to
calculate this term. For the purpose of this work, we use a Vstatic
model based on a simple approximation of the in vacuo
electronic density that is described in section 2.3.
The second part on the r.h.s. in (7) corresponds to the

response of the QM part to the presence of the MM point
charges. To calculate it, one must both obtain the changes in the
electrostatic potential due to polarization of the QM part (Vind),
as well as quantify the corresponding polarization energy cost
Epol. Both terms can be obtained from the Thole model16 which
relies on damped atomic polarizabilities and is described in
section 2.5.
2.3. Static Density Model. In principle, any approach to

construct the electrostatic potential could be employed to
calculate the static term in (7). The particular choice would
depend on the desired properties of the resulting model, such as
its generality and computational cost. Here we construct the
approximation of the electronic density based on minimal basis
iterative stockholder17 (MBIS) partitioning because of the
consistency of MBIS charges, simplicity of the resulting
expression for electostatic potential, and the fact that an analytic
expression is provided for atomic volumes, which are required
for the induction model (section 2.5). In MBIS, the total
molecular electronic density ρMBIS is approximated as a sum of
atomic contributions ρiMBIS:

=r r( ) ( )MBIS

i
i
MBIS

(8)

Here and below the summation goes over the atoms in the QM
subsystem. Each atomic contribution consists of two charge
densities: the core charge with Nicore electrons localized at the
nucleus representing the sum of the nuclear charge and that of
the core electrons and the valence charge with Nival electrons
representing the outer electronic shell and approximated by a
Slater function with width s centered at the nucleus
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where Ri is the position of the nucleus i. This charge distribution
results in the following expression for the electrostatic
potential18
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where r = |r − Ri|, and qicore and qival are the charges of core and
valence charge distributions, respectively (q = −N).
2.4. Charge Equilibration. An advantage of the charge

density model described in section 2.3 is that it provides a
reasonable description of Vstatic without the need to include
higher order atomic multipoles (dipoles, quadrupoles, etc.).
However, the quality of the resulting Vstatic does strongly depend
on the atomic charges, which are known to have nonlocal
character: a strongly electronegative chemical group multiple
bonds away may notably impact the charge on a given atom.4,19

To handle this issue, we employ the charge equilibration scheme
(QEq)19,20 to predict the total atomic charges (q = qcore + qval)
based on atomic electronegativities. In QEq, the atomic charges
are treated as Gaussian charge distributions
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which are obtained by minimizing the following expression
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where the first term corresponds to the interaction between the
charges and corresponding atomic chemical potentials or
electronegativities (χ), the second term is the energy cost of
creating the partial charges, and the third term is the electrostatic
interaction energies for each charge pair. Ji is the chemical
hardness and is calculated as self-energy of a normal charge
distribution21
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and Eijint is the interaction energy between two normal densities
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with R being the distance between the nuclei. Differentiating
(13) w.r.t. q and adding a constraint on the total charge of the
molecule give the following set of linear equations for the
charges

where λ is a Lagrange multiplier that constrains the sum of
charges to qtot.
Apart from electronegativities, QEq requires the widths σ of

Gaussian charge densities to be provided. Here we assume σ to
be proportional to the Slater valence shell width from MBIS
partitioning (eq 9)

= ·a si QEq i (17)

where aQEq is the universal scaling factor, independent of the
nature of the atom, and a free parameter in the model. Finally,
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since core electronic shells are not sensitive to long-range effects,
qcore can be modeled independently of QEq Then, the valence
charge can be obtained from the QEq charges as qval = q − qcore,
therefore including all the long-range contributions due to QEq.
2.5. Induction Model. To model the second term in (7),

which corresponds to the response of the QM subsystem to the
MM environment, we use the atomic polarizabilities model with
Thole damping.16 Each atom is treated as a polarizable center
with isotropic polarizability αi where the values of the atomic
dipoles induced by the external field are obtained by minimizing
the total energy of the system:

= + | |
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E aE T ( )
1
2
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i
i
T

i
i j

i
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i

i i
1 2

(18)

The first term on the r.h.s. of (18) is the interaction energy
between the induced dipoles μi and the external fields Ei formed
by the MM point charges on each atom. The second term is the
interaction between the induced dipoles themselves. This term
is damped modifying the dipole−dipole interaction tensor T
using the cubic exponential Thole damping16
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where r is the interatomic vector, =u r /( )ij ij i j
1/6 is the

reduced interatomic distance scaled by atomic polarizabilities,
and aThole is the universal damping factor. The third term in (18)
is the energy cost required to create the induced dipoles and is
used as an estimate of Epol in eq 7.
Differentiating (18) w.r.t. μ gives a system of 3N linear

equations for μ components

where E are electric field vectors generated at nuclei by MM
point charges, and α−1 = α−1I is a 3 × 3 diagonal matrix of α−1.
The induced electrostatic potential Vind now can be computed

as the total potential generated by the induced atomic dipoles:

=
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A commonly used approximation to obtain atomic polar-
izabilities α is to assume them to be proportional to the atomic
volume:22

= · = ·
i
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Here kZ is the polarizability/volume ratio of free atoms
(different for each chemical element) treated as free parameters.
To obtain the atomic volumes, we again take advantage of MBIS
partitioning employed in the static density model (section 2.3)

and calculate the volume as the third radial moment of the
atomic Slater density:

= =| |v N
s

e r d N sr
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SinceNval and s already have to be predicted for the static part of
the embedding model, no extra properties have to be learned.

3. IMPLEMENTATION
As a practical example, below we will build an embedding model
for ground state neutral compounds containing H, C, N, O, and
S elements. As discussed above, the scheme relies heavily on
physically motivated models and therefore can be expected to
require little training data and be able to make predictions
outside the training domain, since the functional capacity
required to describe the embedding energies is already to a large
extent encoded inMBIS, QEq, and Tholemodels. To emphasize
that, we build a Gaussian Process Regression (GPR)3,23 model
of atomic properties required by the scheme using only a handful
of reference atomic environments. We also intentionally
consider only environments with a short distance cutoff, to
show the ability of QEq and Thole models to handle long-range
effects without explicitly learning them. Finally, despite training
the model exclusively on in vacuo QM data for small molecules,
we apply it to a large QM system with an explicit MM
environment to show that the model performs well beyond its
training domain.
3.1. Data Set and Reference QM Calculations. Training

data was generated based on the QM7 data set,24,25 consisting of
7165 molecules with up to 7 heavy atoms (C, N, O, and S, in
addition to H). For each molecule, the density and molecular
dipolar polarizability were obtained at the B3LYP/cc-PVTZ
level of theory without reoptimizing the structures. All
calculations were performed with ORCA 5.0.3.26 4 (congeneric)
molecules with highly distorted geometries were excluded from
the data set (see SI, section S1 for details). 80% of the full data
set (5729 molecules) were randomly chosen as a training set,
while the remaining 20% (1432 molecules) were used as a test
set.
The atomic environments were represented using SOAP3,27

feature vectors calculated with the librascal package (https://
lab-cosmo.github.io/librascal/). The distance cutoff was set to
rcut = 3 Å, and angular and radial channels were limited to lmax = 4
and rmax = 4, respectively. The ζ = 2 polynomial SOAP kernel3

was used, and the representative (basis) set of 445 atoms was
chosen from the training set using the Informative Vector
Machine23,28 with a variance threshold of 0.05 (see SI, section S2
for details). The learning was performed on a single NVIDIA
V100 (Volta) GPU using the JAX package (http://jax.
readthedocs.io/).
3.2. Model Fitting. All the properties and parameters

required by the embedding scheme and the learning approach
are listed in Table 1.
The core charges are highly consistent across QM7 within

each element, so the average values can be used directly, without
building a prediction model. This limits the number of
parameters needed to predict qcore to only 5 (1 for each
element). The valence widths are obtained by applying a
modified sparse GPR (see SI, section S3 for details) to the
training set with 445 fitted valence width values corresponding
to the representative atoms.
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The atomic electronegativities required by the QEqmodel are
not available directly fromMBIS partitioning and therefore have
to be fitted (together with aQEq) by minimizing theMean Square
Deviation (MSD) between the training set charges predicted by
QEq (given specific values of χ) and the corresponding MBIS
charges. Loss function minimization was performed using the
Adam optimizer.29 Note that only 445 electronegativities of the
reference basis atoms are learned, while the values for the
training set used to predict q are then obtained with regular
GPR.
Once all the parameters for the static component of the model

are obtained, the atomic volumes can be predicted by eq 23, and
the 6 parameters required by the induction model (5 kZ and
aThole) can be fitted by minimizing the MSD between the
molecular dipolar polarizability components obtained from the
Thole model (see SI, section S4 for details) and the
corresponding DFT values. The Jupyter notebook with the
training protocol is available in the GitHub repository (https://
github.com/emedio/embedding), and the training workflow is
provided in the SI (section S11).
3.3. Training Results. The quality of fit is estimated by

comparing the predicted values of s, q, and αmol (molecular
dipolar polarizability) to the reference DFT data (Figure 1).
Although only 445 kernels were used for GPR, the prediction is
reasonably good for all the properties learned, indicating that the
dependence of the learned properties on the atomic environ-
ments is smooth and therefore can be captured with only a few
observations. Also, as shown in Table 2, the errors for training
and test sets are remarkably consistent. This indicates that the

model is likely underfit and the errors might be lowered by
increasing the number of free parameters in the model, e.g. by
expanding the representative set of atoms. However, here the
functional capacity of the model was limited on purpose, to
emphasize the predictive power of the physically motivated
energy expression used.
For charges (q) and valence widths (s), the relative prediction

errors are largest for hydrogen atoms (see SI, section S8). This
can be explained by the fact that for more “crowded” chemical
groups such as branched aliphatic chains, the partitioning of the
density to the atomic contributions is not as well-defined as in
case of e.g. the oxygen atom of a ketone group. This can be
interpreted as the noise in the reference q and s values, which is
actually undesirable to learn. This conclusion is supported by
two observations. First, the consistency between training and
test set errors mentioned above indicates that the model does
not suffer any overfitting, so no possible noise in the training
data was learned. Second, prediction of molecular dipolar
polarizability components does not get improved when exact
MBIS values of q and s are used to obtain atomic volumes, even
though the volumes predicted by the model differ from the
MBIS ones (see SI, section S5). That indicates that the
information lost in q and s models is irrelevant to molecular
polarizabilities and therefore is physically meaningless.
Remarkably, despite the simplicity of the model, the predicted

components of dipolar polarizability tensors are in very good
agreement with the QM data, with an RMSE of 3a03 for the test
set. This error is comparable to typical DFT polarizability errors
relative to CCSD(T).30 As shown in the next section, this
precision makes the “static” component of the embedding,
independent of the MM part, the largest contribution to the
prediction error.
3.4. Test Case: The SARS-CoV-2 Mpro Complex with

PF-00835231. The trained model was tested by calculating the
embedding energies corresponding to the noncovalent complex
formed by the PF-00835231 inhibitor and SARS-CoV-2 main

Table 1. Model Parameters

property
number of
parameters learning approach

core charge (qcore) 5 (1 per
element)

average MBIS values over training set

valence width (s) 445 (1 per
basis atom)

sparse GPR to MBIS values

electronegativity
(χ)

445 (1 per
basis atom)

least squares of predicted MBIS charges

width scaling
factor (aQEq)

1

polarizability/
volume ratio (kZ)

5 (1 per
element)

least squares of predicted molecular
dipolar polarizability components

Thole damping
factor (aThole)

1

Figure 1. Predictions and RMSE for the test set (1432 molecules). a) valence width (s), obtained by sparse GPR fitting of reference values (s) toMBIS
valence widths; b) atomic charges (q), obtained by least-squares fitting of reference electronegativities (χ) and aQEq to MBIS values; c) molecular
dipolar polarizability components, obtained by least-squares fitting of aThole and kZ to DFT values.

Table 2. Model Prediction Errors for Reference DFT
Properties

training set test set

valence width, s (a0) 0.003 0.003
charge, q (e) 0.02 0.02
polarizability, αmol (a03) 2.98 2.96
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protease, previously studied by our group (see Ramos et al.31 for
details). This system serves as a good test case for an embedding
model: the ligand has relatively rich chemistry, including polar,
nonpolar, aromatic groups, and heterocycles. The MM environ-
ment includes charged, polar, and neutral groups, and the ligand
is partially exposed to the bulk solvent (Figure 2). 100 evenly

spaced snapshots from a 1 μs long MD trajectory were taken,
and single point energies with and without the MM point
charges (up to 12 Å from the closest QM atom) were obtained at
the B3LYP/cc-PVTZ level of theory (same that was used to
generate the training data set). The difference between the
energies with (EQM(RQM, RMM)) and without (EQM(RQM)) MM
point charges is the quantity that the embedding model aims to
predict:

* =E E ER R R R R( , ) ( , ) ( )QM MM QM MM QM QM MM QM
vac

QM/

(24)

To separately assess the quality of the static and induced
components of the embedding energy, the interaction between
the nonpolarized (in vacuo) QM system and the MM point
charges was obtained by calculating the value of the electrostatic
potential of the QM part at positions of MM atoms and
evaluating the first term on the r.h.s. of (7) (except for
semiempirical methods, see SI, section S6). Finally, to analyze
the performance of MBIS density and QEq models, embedding
energies were obtained by 1) replacing predicted charges by
their MBIS values averaged over all 100 snapshots, 2) replacing
predicted electronegativities by their averaged values derived
from MBIS charges (see SI, section S7), and 3) using exact
MBIS charges for each snapshot.
The prediction RMSE for the proposed “ML/MM”

embedding model as well as for DFT calculations with smaller
basis sets and for semiempirical methods is shown in Table 3.
The large absolute RMSE values for different DFTmethods (see
SI, section S9) are most likely due to charge spillover, which is
supported by significant systematic interaction energy differ-
ences between B3LYP/cc-PVTZ and B3LYP/cc-PVDZ. There-
fore, the analysis was performed by removing the error of the
mean, which would not affect MD simulations with a given
method. Despite the model being trained only on in vacuo QM
calculations for small molecules, it was able to predict
embedding energies of a large ligand with an explicit MM
environment with an RMSE of 2 kcal/mol. The error is large
compared to cheaper DFT calculations but significantly lower
than that of tested semiempirical methods. Moreover, the
prediction error is dominated by the static component (RMSE =

1.9 kcal/mol), with the induced component having a
significantly lower RMSE of 0.6 kcal/mol. The error of the
proposed model is also lower than the one obtained when a
different force field (OPLS-AA) is used to provide the MM
charges, indicating that the classical force field becomes the error
bottleneck once the quality of theQMHamiltonian goes beyond
the semiempirical methods.
Replacing charges or electronegativities with their exact or

average values reveals the following properties of the model.
Replacing the charges predicted using QEq based on electro-
negativities learned from the QM7 data set by their average
values (for each atom) from MBIS partitioning of the exact in
vacuoDFT density leads to amodel with the same precision. The
role of QEq is to take into account both the long-range effects of
charge redistribution and conformational dependence of the
atomic charges. The error comes from the nature of the model -
it is only trained on small molecules and uses very few reference
environments. On the other hand, using average q values
completely ignores the conformational dependence but in a
sense provides “exact” treatment of long-range electronegativity
effects. Both approximations result in roughly the same RMSE of
the resulting models. The ⟨χMBIS⟩ model goes one step further
and does approximately account for conformational dependence
of the charges (through QEq) but not for electronegativities
(since average values are used). This brings the RMSE of Estatic
down to 1.6 kcal/mol. Directly using the charges from MBIS
partitioning provides “exact” treatment of both long-range
effects and conformational dependence and reduces the error
further down to 1.4 kcal/mol. In this case, the values of s and qcore
are still not taken fromMBIS but provided by the model trained
in section 3.3, supposedly introducing some error to the model.
However, it turns out that using the exact values for all atomic
properties (qcore, qval, and s) directly fromMBIS partitioning does
not improve the prediction. That supports the assumption that

Figure 2. 3D structure and schematic representation of the SARS-CoV-
2 Mpro active site with PF-00835231.

Table 3. Embedding Energy Prediction RMSE (kcal/mol)
and Execution Times (s) for the SARS-CoV-2 Mpro Complex
with PF-00835231a

method EFull EStatic EInduced t

B3LYP/cc-pVTZ+OPLS-AA 3.800 3.018 1.486 6802
PBE0/cc-pVTZ 0.214 0.217 0.022 6884
B3LYP/cc-pVDZ 0.639 0.504 0.307 2261
BLYP/6-31G* 0.655 0.539 0.326 429
ML/MM qMBIS 1.484 1.394 0.560
ML/MM MBIS 1.490 1.398 0.549
ML/MM ⟨χMBIS⟩ 1.760 1.644 0.561
ML/MM ⟨qMBIS⟩ 2.046 1.926 0.561
ML/MM 2.046 1.941 0.567 0.05
GFN2-xTB 4.342 0.7
AM1 10.330 0.9
PM3 10.663 0.9
aThe systematic error was removed by subtracting the mean in all
cases (see text). B3LYP/cc-pVTZ+OPLS-AA - energies calculated
with B3LYP/cc-pVTZ but using charges from the OPLS-AA force
field instead of ffSB14; ML/MM - prediction based on the model
trained in section 3.3; ML/MM MBIS - ML/MM with qcore, qval, and s
taken directly from MBIS partitioning; ML/MM qMBIS - predicted
charges replaced by their exact MBIS values; ML/MM ⟨χMBIS⟩ -
electronegativities replaced by their average MBIS values (see SI,
section S7); ML/MM ⟨qMBIS⟩ - charges replaced by their average
MBIS values. The execution times are single SCF time in the case of
DFT and semiempirical methods and time to calculate the embedding
energy in the case of ML/MM (using a single CPU core).
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any information lost by learning valence widths (see SI, section
S10) is hindered by the noise in the reference data due the fact
that the partitioning is often not well-defined (section 3.3).
Ignoring this noise compensates the error introduced by the
limited functional capacity of the model, resulting in overall the
same prediction quality as for the “exact” MBIS density.
Another important conclusion is that using the exact MBIS

density and, therefore, the “exact” atomic volumes does not
provide any significant improvement to the induction
component of the ML/MM model. This is partly explained by
the fact that the volumes are calculated based on the valence
charges, which include valence shell electrons of the atom, but
not the core electrons or nuclei. That makes any charge
variability much less pronounced in relative terms, resulting in
less variability of the volumes and, therefore, the atomic
polarizabilities. For example, the standard deviation of carbon
atom charges in the system studied here is 0.34e, while the
average qval is −4.35e, resulting in relative volume s.d. of only
≈8%. On the other hand, atomic volumes also depend on the
valence widths s (eq 23). As discussed above, s values provided
by the model, while inevitably suffering from some learning
error, might be free from the partitioning noise. This apparently
results in overall the same “physical precision” of the s values
compared to those provided by MBIS, explaining the same
quality of the induction energy predictions.

4. DISCUSSION
The results presented above show that a relatively simple model
based on the proposed embedding scheme is able to provide
embedding energies for a realistic QM/MM system with
satisfactory precision, clearly beyond that of semiempirical
methods, at a fraction of the computational cost. Even though
the model is still inferior even to cheap DFT methods (such as
BLYP/6-31G*), the result is surprisingly good for multiple
reasons. First, the model was only trained on in vacuo
calculations of small molecules (up to 7 heavy atoms) and
then applied far beyond its training domain to a QM system
consisting of 66 atoms (34 heavy ones) and with explicit MM
point charges. Second, the model is generic and is expected to
work for the chemical space covered by the QM7 data set, while
requiring <1000 free parameters. Third, the induction
component of the model, which is the one that explicitly
depends on the configuration and charges of the MM
environment, is predicted with high accuracy, within 0.6 kcal/
mol of reference DFT values. These features of the model are
due to the heavy reliance of the embedding scheme on physically
motivated models, rather than on large training sets and ML
models with high functional capacity that could accommodate
the information content of rich training data. Therefore, this
work is another example of how physics-based models with
correct asymptotic behavior can dramatically reduce the amount
of data and free parameters required to achieve satisfactory
predictive power of a model.15,32 The Slater valence shells of
MBIS partitioning approximately represent the typical decay of
the electronic density and thus result in ameaningful description
of the electrostatic potential, despite its simplicity. The QEq
model captures the impact of all the chemical groups, even
distant ones, on how the charge is distributed over the molecule.
Finally, the Thole model and volume-based approximation of
atomic polarizabilities relate the electronic structure to the
response of the molecule to inhomogeneous external electric
fields. These models capture a great share of functional capacity
needed to reproduce the QM/MM interaction energies, leaving

only a handful of free parameters to be explicitly fitted to the
reference data. This is also emphasized by the fact that rather
“miopic” feature vectors (rcut = 3 Å) were sufficient to provide
satisfactory results. It seems that the immediate chemical
environment is enough to determine the atomic properties,
while the impact of atoms beyond a 3 Å cutoff is well described
by QEq and Thole models.
The obtained results are promising and suggest that the

proposed embedding scheme might be a step forward toward a
truly generic approach for the embedding of arbitrary machine
learned potentials. However, the example model presented here
and a single test case are not enough to draw any general
conclusions. So far, the scheme has only been applied to train an
embedding model for neutral molecules in their ground state
geometries. It is yet to be shown, whether the same embedding
scheme is adequate for charged species. Especially concerning is
the treatment of anions due to higher polarizability and possible
stability issues of reference in vacuo calculations needed to
obtain density and polarizability data. On the other hand, since
the scheme only requires reference QM data obtained from in
vacuo simulations, one could train a model using large and
diffuse basis sets without the risk of charge spill-out in the
resulting ML/MM simulations, a known issue with negatively
charged species.33 Regarding geometries, applicability to
transition states is essential to describe chemical reactivity -
the most common use case for QM/MM calculations. Changes
in topology also would challenge the QEqmodel, if one wants to
maintain an integer charge for each specie in the QM region
both in reactant and product states. Finally, the model for now is
only applicable to a handful of chemical elements. It is not clear
whether more challenging systems, such as metals, would be
adequately described with the simple embedding scheme
proposed here. For instance, in its current state, no hyper-
polarizability treatment is included in the scheme - induction is
only described with point dipoles, and atomic α only depend on
in vacuo density. In systems with metallic behavior, there is
considerable charge flow in response to external fields,34 which
means that calculation of atomic charges should be modified to
account for this effect. Interestingly, once this is done, the
coupling between QEq and the Thole model (α depend on
volumes, which are determined by valence charges) would also
result in response of dipolar polarizability to the external field. It
is to be seen, whether this coupling helps to describe more
complex response behaviors.
Given these caveats and assuming that the observed

performance of the model is representative of other systems
covered by QM7 chemical space, the trained model is already
capable of improving the embedding in, for example, non-
covalent binding free energy calculations of small molecules to
biomolecular targets. Such calculations require extensive
sampling of conformational space and therefore are performed
at the MM level of theory. On the other hand, binding energies
are mostly determined by the noncovalent interactions between
the ligand and the host. Therefore, improved treatment of these
interactions is desirable. The model trained here can be used
together with some generic ML potential for small molecules
(such as ANI-135) to significantly improve the description of
ligand-host interactions.
On the practical side, the only inputs required by the model

(and the proposed embedding scheme in general) are the
positions and element types of the QM atoms and the positions
and charges of the MM atoms - exactly the information that is
provided to theQMengine inQM/MMcalculations. Therefore,
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theML/MMembedding can be incorporated into existing QM/
MM codes by “mimicking” the QM engine, without any
substantial change to the code. That also allows the reuse of
existing treatment of covalent bonds crossing the QM/MM
boundary. In regular QM/MM, the link atoms are provided by
theQM/MMcode and treated by the QM engine as regular QM
atoms. The same way, the ML/MM engine would only see
additional atoms in the ML part and treat them as such, while all
the technicalities would be taken care of by the QM/MM code.
Performance-wise, the proposed embedding model takes 50

ms on a single CPU core for a single energy estimate of a 66-
atom inhibitor, being 4 orders of magnitude faster than the
cheapest DFT method tested (BLYP/6-31G*) and at least 1
order of magnitude faster than semiempirical approaches. This
efficiency is achieved due to reliance on physically motivated
expressions, which results in a small number of free parameters
and therefore simple model architecture. For instance, the
model presented here uses only 445 reference atoms making the
GPR predictions very cheap. If a deep learning model was used
instead of GPR, one might expect very simple network
architectures (with few neurons and layers) to be sufficient,
also making the model highly efficient. Moreover, most of this
computational cost is related to the calculation of the SOAP
feature vectors and GPR predictions of valence widths and
electronegativities. These tasks are trivially parallelizable and
would get dramatic speed-up if performed on GPU, bringing the
cost of the energy estimate close to that of theMMpart (≈1ms).
Furthermore, when used alongside with an ML potential, in
principle the same features could be used to predict both in
vacuo and embedding energies, making the overhead of an
embedding model negligible. It has to be noted that the QM
subsystem chosen here is relatively small (66 atoms). For larger
systems, the Tholemodel, which relies on solving a system of 3N
linear equations, will likely become a bottleneck. However, the
same problem arises in polarizable force fields, and iterative
solutions exist to bring the computational cost down.36,37

The analysis performed by replacing the predictions of the
ML/MM model by exact values of charges/electronegativities
from MBIS partitioning of DFT densities (section 3.4) reveals
the potential of the scheme for system-specific model training.
For instance, using a single average value of electronegativity is
analogous to using only a single basis atom for the
corresponding GPR model. By including more system-specific
observations, the prediction error could be brought down even
more, potentially down to the value obtained with “exact” MBIS
charges. The aim of the embedding scheme is to be coupled with
some in vacuoMLpotential. It is reasonable to assume that when
such a potential is available, the reference QM data on the
system of interest is abundant - the energy models generally
require much more training data than what seems to be needed
for the embedding. This data could be reused to train the
embedding model, thus requiring no extra computational cost.
The only condition is that the electronic density is stored and the
dipolar polarizabilities are calculated upon training data set
generation. However, the latter might not be needed, since the
reference dipolar polarizabilities were only used to fit the free
parameters of the Thole model (aThole and kZ). The values of
these parameters obtained here are expected to be applicable to
system-specific models as well, thus avoiding the need to
calculate QM polarizabilities and retraining the induction
model.
The decomposition of the predicted embedding energies into

static and induced components (section 3.4) shows that the

primary source of error (at least for the model presented here) is
the static component, which relies on the prediction of the in
vacuo electrostatic potential of the QM part. While some
improvement can be achieved by using a system-specific model,
one has to extend the scheme and go beyond the MBIS density
approximation to achieve significant reduction of the prediction
error. One way to do so is to introduce atomic multipoles
(dipoles, cuadrupoles etc.), as was done, for example in IPML.15

In the current setup, this could be done efficiently reusing the
spherical expansion coefficients used for the SOAP features to
calculate the λ-SOAP ones38 which allow the learning of
rotationally equivariant properties. Apart from that, the
embedding scheme is, in principle, agnostic of how the
electrostatic potential is predicted. So, if a better model is
available, it could be straightforwardly employed instead of the
one based on the MBIS density to obtain better predictions.
Especially promising are the ML models that aim to directly
predict the electronic density.39−41 In this case, not only the
static component can be obtained but also the atomic volumes
could be derived directly from the predicted density, completely
bypassing the MBIS partitioning.

5. CONCLUSIONS
In this work, we introduced an alternative electrostatic
embedding scheme that allows the embedding of arbitrary ML
potentials in an MM environment. The embedding energy is
calculated by separately predicting the static component,
representing the interaction between the nonpolarized charge
distribution of the system and the MM point charges, and the
induction component, which incorporates the response of the
system to the presence of MM environment. The proposed
scheme relies on charge equilibration and MBIS partitioning to
describe the electronic density and on the Thole model to treat
the induction term. These models encode a large part of the
functional capacity of the embedding energy, allowing training
of models with relatively few free parameters. Moreover, the
scheme only requires in vacuo reference QM data (densities and
dipolar polarizabilities) for training.
The proposed scheme was used to train an embedding model

based on DFT reference calculations of molecules in the QM7
data set. This resulted in a generic model, suitable to predict
embedding energies of arbitrary neutral molecules consisting of
H, C, N, O, and S elements in their ground state geometries. The
model was tested by predicting QM/MM embedding energies
of the noncovalent complex formed by the SARS-CoV-2 main
protease with the PF-00835231 inhibitor. The predictions for
embedding energies were more precise than those obtained
from semiempirical Hamiltonians, while being ≈15 times faster.
The presented results indicate that the proposed scheme,

combined with a suitable ML potential, could be employed to
provide “ML/MM” energies with satisfactory precision. It also
seems that with employing the embedding scheme to train a
system-specific model, a considerable increase in precision can
be expected. The architecture of the embedding scheme also
allows taking advantage of other ML methods that aim at
predicting electrostatic potential or electronic density, allowing
reconciliation of the embedding model with the employed ML
potential, resulting in lower computer costs and higher
precision. We hope that this work will inspire interest in the
development of ML embedding schemes and will enable the
QM/MM community (for example, groups working on
enzymatic catalysis) to take advantage of the rapidly growing
toolbox of cheap and precise ML force fields.
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