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Abstract 

Background: With the emergence of hundreds of single-cell RNA-sequencing 
(scRNA-seq) datasets, the number of computational tools to analyze aspects 
of the generated data has grown rapidly. As a result, there is a recurring need to dem-
onstrate whether newly developed methods are truly performant—on their own 
as well as in comparison to existing tools. Benchmark studies aim to consolidate 
the space of available methods for a given task and often use simulated data that pro-
vide a ground truth for evaluations, thus demanding a high quality standard results 
credible and transferable to real data.

Results: Here, we evaluated methods for synthetic scRNA-seq data generation 
in their ability to mimic experimental data. Besides comparing gene- and cell-level 
quality control summaries in both one- and two-dimensional settings, we further 
quantified these at the batch- and cluster-level. Secondly, we investigate the effect 
of simulators on clustering and batch correction method comparisons, and, thirdly, 
which and to what extent quality control summaries can capture reference-simulation 
similarity.

Conclusions: Our results suggest that most simulators are unable to accommodate 
complex designs without introducing artificial effects, they yield over-optimistic perfor-
mance of integration and potentially unreliable ranking of clustering methods, and it 
is generally unknown which summaries are important to ensure effective simulation-
based method comparisons.

Keywords: Benchmarking, Simulation, Single-cell RNA-seq

Background
Single-cell RNA-sequencing (scRNA-seq) has become an established tool for studying 
the transcriptome at individual cell resolution. Since the first scRNA-seq study’s publica-
tion in 2009 [1], there has been a rapid increase in the number of scRNA-seq datasets, 
number of cells and samples per dataset [2], and a corresponding growth in the number 
of computational methods to analyze such data, with over one thousand tools catalogued 
to date [3, 4]. With the development of new methods comes the need to demonstrate 
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their performance, and to consolidate the space of available methods through compre-
hensive and neutral benchmark studies [5–7].

In this context, simulations have become an indispensable tool, for example, to inves-
tigate how methods respond to varying parameter inputs and quantify their scalability 
in terms of computational cost, as well as ensuring that a method is performant across 
a range of scenarios and in comparison to other available tools. The attractiveness of 
simulation studies is largely due to being able to specify a ground truth, which is often 
challenging or infeasible to establish in experimental data [8]. For example, evaluation 
of methods to group cells into biologically meaningful subpopulations (clusters) relies 
on “true” labels to be compared against. While these may be attainable (e.g., through 
cell-sorting) or derived (e.g., manual annotation by an expert), simulations enable testing 
methods across a wide range of scenarios where the number of clusters, between-cluster 
(dis)similarity, and effects of other covariates can be deeply explored. As a result, simu-
lations have been applied to benchmark methods across a wide range of tasks, includ-
ing differential expression analysis [9–11], trajectory inference [12], and data integration 
[13, 14].

By definition, simulations generate synthetic data. On the one hand, conclusions drawn 
from simulation studies are frequently criticized, because simulations cannot completely 
mimic (real) experimental data. On the other hand, it is often too expensive, or even 
impossible, to generate experimental data that is suitable for formal performance com-
parison. Nonetheless, setting a high-quality standard for simulations is all the more 
important to ensure results based on them are transferable to corresponding experimen-
tal datasets.

Typically, new simulation methods come with minimal (non-neutral) benchmarks that 
focus on one-dimensional evaluations, i.e., how similarly a set of summaries is distrib-
uted between a reference and simulated dataset (e.g., Zappia et al. [15]). In some cases, 
two-dimensional relationships (e.g., gene expression mean-variance) are explored (e.g., 
Assefa et  al. [16]). However, the faithfulness of the full complexity of the simulated 
scRNA-seq data, including batch effects and clusters, is rarely evaluated. To date, there 
has been only one neutral evaluation of how well scRNA-seq data simulators recapitu-
late key characteristics of the counts, sample- and subpopulation-effects present in real 
data [17]; in particular, they proposed a novel kernel density metric to evaluate similar-
ity of real and simulated data summaries. However, to what extent simulators affect the 
results of method comparisons is not considered.

Methods for simulating scRNA-seq data may be categorized according to various fac-
tors. Most importantly, there is a dichotomy between methods that generate synthetic 
data de novo and those that rely on a reference dataset. The former depend on user-
defined parameter inputs to generate counts, and introduce artificial effects between, 
e.g., different groups of cells or samples. Conversely, reference-based methods estimate 
parameters to mimic the gene expression profiles observed in the reference dataset. 
However, many methods employ a hybrid framework where, e.g., baseline parameters 
are estimated from a “singular” reference (i.e., a homogeneous group of cells), and addi-
tional layers of complexity (e.g., batch effects, multiple clusters, and/or experimental 
conditions) are added post hoc. Both strategies have their advantages and disadvan-
tages: de novo simulators offer high flexibility in varying the strength and specificity of 
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different effects, but might not generate realistic data; in contrast, reference-based meth-
ods are limited to the complexity of the input data and consequently less flexible, but 
are by default more realistic. Taken together, there is a trade-off between how applicable 
methods are in benchmarking single-cell analysis tools across a wide range of scenarios 
versus whether simulation study results are directly transferable to real data.

Here, we evaluated 16 scRNA-seq simulation methods in their ability to replicate 
important aspects of a real reference dataset. We considered various global, gene- and 
cell-level summaries, and compared them between reference and simulated data, in both 
one- and two-dimensional settings. In addition to global distributions (i.e., across all 
cells), we made batch- and cluster-level comparisons to capture structural differences in 
the summaries.

Our results suggest that there is a noticeable shortage of simulators that can accom-
modate complex situations and that popular simulators do not adequately mimic real 
datasets. In particular, some current methods are able to simulate multiple groups of 
cells (e.g., batches and/or clusters), but do so in an ad hoc manner, e.g., by introduc-
ing arbitrary differences based on parameter inputs. Few methods attempt to estimate 
and mimic group effects from reference datasets, but this comes at a loss of supplying a 
ground truth.

Results
Benchmark design

We evaluated simulators based on 12 published datasets (Additional file  1: Table  S1), 
from which we generated a variety of subsets that serve as references for simulation 
(Additional file  1: Table  S2). We labeled references as one of three types according to 
their complexity: type n are “singular” references that contain cells from a single batch 
and cluster; type b contain cells from multiple batches; and type k contain cells from 
multiple clusters (Additional file 1: Fig. S1-3). Here, batches can be either biological or 
technical replicates; clusters refer to cell subpopulations or types as annotated in the 
original data; and groups can be either batches, clusters, or experimental conditions. In 
total, we used 10, 8, and 8 references of type n, b, and k, respectively.

To objectively cover the space of currently available simulators, we browsed the 
scRNA-seq tools database [3, 4], which, at the time of writing, catalogued over 1000 
tools for analyzing scRNA-seq data, 65 of which hold a “simulation” tag. We included 
all methods that (i) could be installed and run after at most minor manual adjustment(s) 
and (ii) were reference-based, i.e., supported parameter estimation from a real dataset. 
We selected a total of 16 methods, 9/6 of which could accommodate batches/clusters 
(Table 1). A brief summary of each method’s model framework, capabilities and limita-
tions, and the parameter settings used in this study is given under Methods.

Because different simulators can generate different levels of complexity (two groups, 
multiple clusters or batches, both or neither), we tagged each method according to their 
capabilities (type n, b and/or k). Each method was only run on corresponding reference 
datasets. A more detailed overview of the computational pipeline for this study is given 
in Fig. 1 (see also Additional file 1: Sec. 6). Notably, there are various methods aimed 
at simulating continuous scenarios (e.g., a trajectory or time-course [18–20]). Here, we 
limited comparisons to methods that generate a single group or multiple groups of cells, 
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since current continuous simulators are fully or in part de novo, making it challenging to 
validate the faithfulness of the data they generate (see Discussion).

In order to investigate how widely and for what purpose different simulators are 
applied, we browsed the literature for benchmark studies that compare tools for a spe-
cific scRNA-seq analysis task. Depending on the task, such comparisons often rely on 
simulation studies where a ground truth is known (by design), or a combination of simu-
lated and real data, where an experimental ground truth exists. For each benchmark, we 
summarized the task of interest and, if any, which simulator(s) are used. Across all con-
sidered benchmarks, these amounted to only five, namely muscat (1 [21]), scDesign (1 

Table 1 Overview of scRNA-seq simulators compared in this study. Methods are ordered 
alphabetically and annotated according to their (in)ability to accommodate multiple batches and/
or clusters, support for parallelization (parameter estimation and data simulation, respectively), 
software availability, and publication year. ‘Type(s)’ column specifies which type of simulations can 
be produced (n: “singular” references: single batch or cluster; b: multiple batches; k: multiple clusters). 
‘Cell #’ refers to whether the number of cells can be varied. Symbols: � = yes, ✘ = no, ( � ) = yes, but 
based on user input parameters, i.e., no support for parameter estimation, *requires random splitting 
of cells into two groups, †/‡= internal/prior resampling from empirical parameter distribution, ◦ = 
no separate estimation step)

Batches Clusters Type(s) Cell # Parallelization Availability Year Model

BASiCS [37] �  ✘ b ✘ �✘ R/ Bioc 2015 NB

ESCO [38] � � n,b,k � �� R/ GitHub 2020 Gamma-Poisson

hierarchicell 
[39]

� ✘ n,b � ✘✘ R/ GitHub 2021 NB

muscat [40] � � n,b,k (�)† ✘✘ R/ Bioc 2020 NB

POWSC [41] ✘ � n,k (�)† ✘✘ R/ Bioc 2020 zero-inflated, log-
normal Poisson 
mixture

powsimR [42] ✘ (�) n* (�)† �� R/ GitHub 2017 NB

scDD [43] ✘ ✘ n* � �� R/ Bioc 2016 Bayesian NB 
mixture model

scDesign [44] ✘ (�) n � ◦� R/ GitHub 2019 Gamma-Normal 
mixture model

scDesign2 [45] ✘ � n,k � �✘ R/ GitHub 2020 (zero-inflated) 
Poisson or NB + 
Gaussian copula 
for gene-gene 
correlations

SCRIP [46] � � n,b,k � ✘✘ R/ GitHub 2020 (Beta-)Gamma-
Poisson

SPARSim [47] � ✘ n,b (�)‡ ✘✘ R/ GitLab 2020 Gamma-multivar-
iate hypergeo-
metric

splatter [15] 
(Splat model)

(�) (�) n � ✘✘ R/ Bioc 2017 Gamma-Poisson

SPsimSeq [16] � ✘ n,b � ◦✘ R/ Bioc 2020 log-linear model-
based density 
estimation + 
Gaussian copula 
for gene-gene 
correlations

SymSim [48] � ✘ n,b � ✘✘ R/ GitHub 2019 kinetic model 
using MCMC

ZINB-WaVE [49] � � n,b,k ✘ ✘✘ R/ Bioc 2018 zero-inflated NB

zingeR [50] ✘ ✘ n (�)†‡ ✘✘ R/ GitHub 2017 zero-inflated NB

https://bioconductor.org/packages/release/bioc/html/BASiCS.html
https://github.com/JINJINT/ESCO
https://github.com/kdzimm/hierarchicell
https://bioconductor.org/packages/release/bioc/html/muscat.html
https://bioconductor.org/packages/release/bioc/html/POWSC.html
https://github.com/bvieth/powsimR
https://bioconductor.org/packages/release/bioc/html/scDD.html
https://github.com/Vivianstats/scDesign
https://github.com/JSB-UCLA/scDesign2
https://github.com/FeiQin92/SCRIP
https://gitlab.com/sysbiobig/sparsim
https://bioconductor.org/packages/release/bioc/html/splatter.html
https://bioconductor.org/packages/release/bioc/html/SPsimSeq.html
https://github.com/YosefLab/SymSim
https://bioconductor.org/packages/release/bioc/html/zinbwave.html
https://github.com/statOmics/zingeR
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[22]), powsimR (2 [10, 23]), scDD (3 [9, 11, 24]), and splatter (13 [12–14, 25–34]). Bench-
mark tasks included batch effects [13, 14], clustering [28, 31, 35], doublet detection [22], 
differential expression [9–11, 30], dimensionality reduction [29, 32], imputation [25, 34], 
isoform quantification [36], marker selection [24, 27], normalization [26], pipelines [21, 
23], cell type assignment [33], and trajectory inference [12]. Yet, this listing of bench-
marks and their use cases is not exhaustive; the frequency with which simulators are 
applied in benchmarks need not speak for or against their performance (e.g., long-lived 
and user-friendly methods might be favored), and because some simulators have not 
been applied to a given task does not mean they cannot be.

In order to summarize how well each simulator recapitulates key characteristics of 
the reference scRNA-seq dataset, we computed a range of gene- and cell-level summa-
ries for both reference and simulated datasets. These include average and variance of 
log-transformed counts per million (CPM), coefficient of variation, gene detection fre-
quency, gene-to-gene correlation, log-transformed library size (total counts), cell detec-
tion frequency, cell-to-cell correlation, local density factor, cell-to-cell distance, and 
k-nearest neighbor (KNN) occurrences (see Additional file 1: Sec. 2).

Since some summaries (e.g., detection frequency) can vary between batches (e.g., 
sequencing depths may vary between protocols) and clusters (e.g., different cell types 
may differ in their overall expression), we computed them globally, i.e., across all cells, 
as well as for each batch and cluster. Thus, for a given dataset with B batches and K clus-
ters, we obtain 1, 1+ B , and 1+ K  results per summary for type n, b, and k, respectively. 
Three additional summaries were computed across all cells – namely, the percent vari-
ance explained (PVE) at the gene-level (i.e., expression variance accounted for by batch/
cluster for type b/k); and the silhouette width [51] and cell-specific mixing score (CMS) 
[52] at the cell-level (considering as group labels the batch/cluster for type b/k)—that 
aim to capture global batch or cluster effects on gene expression variability and cell-to-
cell similarity, respectively.

To evaluate simulator performance, we compared summaries between reference and 
simulated data in one- and two-dimensional settings by computing the Kolmogorov-
Smirnov (KS) distance [53] and Wasserstein metric for each summary (Additional file 1: 

Fig. 1 Schematic of the computational workflow used to benchmark scRNA-seq simulators. (1) Methods are 
grouped according to which level of complexity they can accommodate: type n (“singular”), b (batches), k 
(clusters). (2) Raw datasets are retrieved reproducibly from a public source, filtered, and subsetted into various 
datasets that serve as reference for (3) parameter estimation and simulation. (4) Various gene-, cell-level, 
and global summaries are computed from reference and simulated data, and (5) compared in a one- and 
two-dimensional setting using two statistics each. (6) Integration and clustering methods are applied 
to type b and k references and simulations, respectively, and relative performances compared between 
reference-simulation and simulation-simulation pairs
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Fig. S5-7), and the KS distance and earth mover’s distance (EMD) for each relevant pair 
of summaries (Additional file 1: Fig. S8-10). In general, these metrics quantify how dis-
similar a pair of (univariate or bivariate) distributions are (see Additional file 1: Sec. 4). 
Test statistics were generally consistent between KS test and Wasserstein metric, as well 
as KS test and EMD (Additional file 1: Fig. S4). Thus for brevity, method performances 
are hereafter reported as one- and two-dimensional KS statistics.

Simulators vary in their ability to mimic scRNA‑seq data characteristics

Across all simulation types, cell-level quality control summaries were generally poorly 
recapitulated (Fig. 2a), with the largest deviation in cell-to-cell correlation. The silhou-
ette width, CMS, and PVE gave among the highest KS distances for most methods, 
indicating that while group-level (i.e., within a batch or cluster) summaries might be 
preserved well during simulation, the global data structure (e.g., inter-group relations) 
is not. Despite its popularity, splatter ranked in the middle for the majority of sum-
maries. scDD ranked poorly for most summaries, preceded by hierarchicell and ESCO. 
Considering all summaries, ZINB-WaVE, scDesign2, and muscat were among the best 

Fig. 2 Kolmogorov-Smirnov (KS) test statistics comparing reference and simulated data across methods and 
summaries. Included are datasets and methods of all types; statistics are from global comparisons for type 
n, and otherwise averaged across cluster-/batch-level results. a Data are colored by method and stratified 
by summary. For each summary (panel), methods (x-axis) are ordered according to their average. b Data 
are colored by summary and stratified by method. For each method (panel), metrics (x-axis) are ordered 
according to their average from best (small) to worst (large KS statistic). Panels (methods) are ordered by 
increasing average across all summaries
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performing simulators, yielding low KS test statistics across a large number of metrics 
and datasets (Fig. 2b).

Finally, we ranked simulators according to their overall performance. In order to 
weight datasets equally and independently of the number of subsets drawn from them, 
we first averaged statistics across subsets, then datasets. Secondly, because simulators 
ranked similarly in both one- and two-dimensional comparisons, and performances 
were often linked for certain metrics, we limited rankings to one-dimensional evalua-
tions only, and averaged across all gene- and cell-level metrics. This resulted in three 
independent rankings, one for each set of methods that can accommodate a given simu-
lation type (Fig. 3). Notably, subpopulations (batches/clusters) may vary in size and com-
plexity. Thus, for types other than n, we averaged across group-level results (instead of 
using global test results).

For type n, ZINB-WaVE, scDesign2, muscat, and SPsimSeq performed similarly well, 
with POWSC, ESCO, hierarchicell, and scDD ranking last across various summaries. 
ZINB-WaVE and muscat were also the most performant among type b and k simulators, 
joined by SPARSim and scDesign2, respectively. LDF, cell-to-cell distance and correla-
tion (across all types), and global summaries (PVE and silhouette width for type b and k) 
were poorly recapitulated.

To measure the scalability of methods, we repeatedly timed estimation and simulation 
steps across varying numbers of genes and cells (see Methods). Runtimes varied across 

Fig. 3 Average performance in one- (upper row) and two-dimensional evaluations (bottom row) for (a, d) 
type n, (b, e) type b, and (c, f) type k simulations. For each type, methods (x-axis) are ordered according to 
their average performance across summaries in one-dimensional comparisons. Except for type n, batch- and 
cluster-level results are averaged across batches and clusters, respectively. Boxes highlight gene-level (red), 
cell-level (blue), and global summaries (green)



Page 8 of 19Crowell et al. Genome Biology  (2023) 24:62

several orders of magnitude (Additional file 1: Fig. 11). Some methods did not offer sepa-
rate estimation and data generation steps, while others can generate multiple simula-
tions from one-time parameter estimates. Specifically, the estimation step of scDesign2, 
ZINB-WaVE, and zingeR was relatively slow, but data simulation was not. In contrast, 
scDD and SymSim took longer for simulation than estimation. Overall, BASiCS was by 
far the slowest. SPsimSeq, SPARSim, SCRIP, and SymSim were approximately tenfold 
faster. The remaining methods (ESCO, hierarchicell, muscat, POWSC, and splatter) were 
the fastest. Memory usage (Additional file 1: Fig. S12 and Additional file 1: Fig. S13) was 
similar across methods but exceptionally high for SPSimSeq. While some methods pro-
vide arguments for parallelization (see Table 1), all methods were run on a single core for 
comparability.

Batch simulators yield over‑optimistic but faithful integration method performance

Ideally, benchmark results (i.e., the ranking of computational tools for a given task) 
should be the same for experimental and simulated data. In order to investigate how 
method comparison results are affected by simulation, we used the 8 type b references 
to compare 6 scRNA-seq batch correction methods. To evaluate method performances, 
we computed (i) cell-specific mixing scores (CMS) and (ii) difference in local density 
factors ( �LDF) before and after integration [52]. In order to make metrics comparable 
across datasets, we zero-centered CMS (denoted CMS*), and zero-centered and range-
one scaled �LDF (denoted �LDF*). Finally, we computed a batch correction score BCS 
= |CMS*| + |�LDF*|, where small values indicates ideal mixing (CMS* of 0 on average) 
while retaining the data’s internal structure ( �LDF* centered at 0), and large values indi-
cates batch-specific bias (high CMS* density at ±1 ) and changes in overall structure ( �
LDF* non-symmetric).
�LDF* were largely consistent between references and simulations (Additional file 1: 

Fig. S14), whereas CMS* were much less correlated for most methods (Additional file 1: 
Fig. S15). BCSs were overall similar for simulated compared to reference data and well 
correlated between most reference-simulation and simulation-simulation pairs (Addi-
tional file 1: Fig. S16). Simulations from SPsimSeq, ZINB-WaVE, SPARsim, and SCRIP 
gave results most similar to real data, followed by BASiCS, and lastly muscat and Sym-
Sim (see also Additional file 1: Fig. S17-24).

Cluster simulators affect the performance of clustering methods

Secondly, we used the 8 type k references to evaluate 9 scRNA-seq clustering methods 
that were previously compared in Duó et  al. [31]. To evaluate method performances, 
we computed cluster-level F1 scores, after using the Hungarian algorithm [54] to match 
cluster assignments to “true” labels.

Across all methods and datasets, F1 scores were consistently higher for simulated 
compared to real data (Fig. 4a-b). In addition, for similarly performant simulators, clus-
tering method rankings were more dependent on the underlying reference dataset than 
the specific simulator used (Fig.  4c). And, some simulators (e.g., SCRIP) gave almost 
identical F1 scores and rankings for multiple references. Overall, method rankings 
(according to F1 scores) were lowly correlated between simulated and reference data, as 
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well as between simulations (Fig. 4d), with scDesign2 and POWSC giving the most, and 
muscat and SCRIP giving the least similar ranking, respectively.

Taken together, these results suggest that simulations do not achieve the same level of 
complexity in terms of intra- and inter-subpopulation effects (i.e., batches and clusters). 
Consequently, methods to correct of such effects (integration) or group together similar 
cells (clustering) perform over-optimistically in simulated data compared to more com-
plex and noisy experimental data and are almost indistinguishable in their performance 
for ‘simple’ datasets.

Meta‑analysis of summaries

Inevitably, summaries used to assess whether simulated data mimics real data may be 
redundant, and we expect that some summaries are more important than others. To 
quantify the relationship between summaries, we correlated all comparable summaries, 
i.e., gene- and cell-level summaries, respectively, excluding those that include sampling, 
i.e., correlations and cell-to-cell distances (Fig. 5a). Gene detection frequency and aver-
age expression were highly similar ( r ∼ 1 ) and correlated well with expression variance 
( r > 0.5 ). At the cell level, detection frequencies and library sizes were most similar.

Next, we correlated the KS test statistics obtained from comparing reference-simu-
lation pairs of summaries across all datasets (Fig.  5b). Summaries grouped together 
according to their type (global, gene- or cell-level), indicating that simulators recapitu-
lated each type of summary to a similar degree, and that one summary per type could be 
sufficient to distinguish between method performances.

To investigate the overall similarity of summaries, we performed multi-dimensional 
scaling (MDS) on KS statistics across methods and datasets (Fig. 5c and Additional file 1: 
Fig. S25). In line with the observed correlation structure, summaries grouped together 
by type, with gene-level summaries being most similar to one another.

Fig. 4 Comparison of clustering results across (experimental) reference and (synthetic) simulated data. 
a Boxplot of F1 scores across all type k references, simulation and clustering methods. b Boxplot of difference 
( � ) in F1 scores obtained from reference and simulated data. c Heatmap of clustering method (columns) 
rankings across datasets (rows), stratified by simulator (panels). d Heatmap of Spearman’s rank correlation ( ρ ) 
between F1 scores across datasets and clustering methods
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Next, we performed principal component analysis (PCA) on test statistics of summa-
ries across methods and datasets (Fig. 5d and Additional file 1: Fig. S26-28), thus rep-
resenting each method-dataset as a linear combination of statistics for each summary. 
For all types, the largest fraction of variance (PC1: >40%) was attributable to differences 
in overall method performance, followed by (PC2: >15%) differences in summary type-
specific performance (global, gene-, cell-level).

Taken together, our analyses suggest that several summaries convey similar informa-
tion, with gene-level summaries being particularly redundant, and global summaries the 
least redundant. Accordingly, simulator performance may be sufficiently quantifiable 
by a combination of one gene-level, few cell-level, and various global summaries. How-
ever, the number (and nature) of summaries to comprehensively cover the inherent data 
structure is dependent on its complexity (e.g., global summaries are void for type n, but 
all the more relevant for type b and k), and there may exist other informative summaries 
not considered here.

Discussion
In this study, we compared scRNA-seq data simulators in their ability to generate 
synthetic data that can recapitulate key characteristics of real reference datasets. 
We considered a range of gene- and cell-level summaries, as well as ones specific to 
capturing local and global group-effects (i.e., intra- and inter-variability of batches 
and clusters). By comparing the distribution of summaries as well as pairs thereof 

Fig. 5 Comparison of quality control summaries and KS statistics across datasets and methods. Spearman 
rank correlations (r) of a gene- and cell-level summaries across reference datasets, and b KS statistics across 
methods and datasets. c Multi-dimensional scaling (MDS) plot and d principal component (PC) analysis of KS 
statistics across all and type b/k methods, respectively, averaged across datasets
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between reference and simulated data, we evaluated how well simulations capture the 
structure exhibited by a given reference dataset. We ranked simulators by averaging 
their performance across summaries and simulations, thus evaluating each method 
across a multifaceted range of criteria (covering gene-, cell- and group-specific sum-
maries) and datasets (from various tissues and technologies). Our results confirm 
some aspects of those in the study from Cao et al. [17] (our study includes 16 simula-
tors, theirs covered 12, with an overlap of 10); for example, ZINB-WaVE stands out 
as performant in nearly all reference-simulation comparisons. However, we addition-
ally investigated whether the choice of simulator affects method comparison results, 
included additional quality control summaries that capture group (batch/cluster) 
structure, and stratified simulators according to type (singular, batch, cluster).

Overall, simulations have proven paramount for the development of computational 
tools for the analysis of single-cell data. However, they are often implemented for a 
specific task, e.g., evaluating clustering, batch correction, or DE analysis methods; an 
“all-rounder” simulator is currently lacking, and most methods are limited to simple 
designs. The arguably most sobering observation of this study is that, without intro-
ducing arbitrary effects that depend on user inputs (e.g., the frequency of DE genes 
and magnitude of changes in their expression), the vast majority of methods can sim-
ulate only one group of cells (i.e., one batch, one cluster). As a result, most current 
simulators are rather limited in their applicability.

Both neutral benchmark studies as well as non-neutral comparisons performed 
alongside newly presented methods rely on a ground truth for evaluation. Thus, future 
work should be focused on the development of flexible, faithful simulation frame-
works to fill this gap, especially in scenarios where an experimental ground truth is 
challenging or infeasible to establish. For example, which genes and cell subpopula-
tions are affected by batch effects cannot be controlled, independent of whether con-
trol samples might be used to quantify these effects. Similarly, intra- and inter-cluster 
effects are unclear, even if cluster annotations might be obtained through cell-sorting 
or manual annotation by an expert. And, effects on gene expression remain unknown, 
despite controlled perturbation or time-series studies through which discrete labels 
might be given. Taken together, although some level of ground truth may be experi-
mentally attainable, simulations remain indispensable owing to (i) their feasibility 
and (ii) the information they provide (e.g., which genes and cell subpopulations are 
affected).

The most truthful model for real data is real data. Artificial data alterations (e.g., 
applying fold changes to a specified subset of gene expression means in certain sub-
sets of cells) are unlikely to mimic biological differences. Even if founded on a thor-
ough investigation of realistic changes, non-reference based simulations are difficult 
to evaluate, and conclusions drawn from de novo simulations in terms of method 
evaluations should be treated with caution.

While tools to evaluate the quality of simulated data exist, they are seldomly taken 
advantage of. For example, scater [55] offers a range of gene- and cell-level quality con-
trol summaries; countsimQC [56] can generate a comprehensive report comparing an 
input set of count matrices (e.g., real against synthetic data), and many dataset sum-
maries are easy to compute and compare manually. Having such reference-simulation 
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comparisons available every time that a simulator is proposed or used, as well as in 
every (non-neutral) benchmark would add credibility to the results.

In addition to evaluating the faithfulness of simulated data, we investigated whether 
and to what extent benchmark results are affected by the simulator used. Our results 
suggest that method performances for integration and clustering of scRNA-seq data 
deviate from those obtained from real data; in addition, simulators that better mimic 
reference datasets do not necessarily yield more similar method comparison results. For 
example, muscat was among the highest ranked simulators in our study, but integration 
and clustering method ranking obtained from muscat simulations were rather inconsist-
ent with those from real data. On the other hand, SPsimSeq ranked mediocre in terms 
of mimicking real datasets, but gave the most faithful integration method ranking. In the 
context of clustering, there was a consistent over-optimistic performance of methods, 
independent of the simulator used.

This discrepancy between the faithfulness of simulated data and benchmark results 
brings to question which set of summaries is sufficient to capture relevant data structure. 
Here, simulators were ranked by their average performance across summaries. How-
ever, many of these may be redundant (see below) or differ in their suitability to capture 
group-related structures (e.g., batch-/cluster-effects). Thus, simulators that are perfor-
mant “overall” are not guaranteed to be suitable for evaluating methods for a specific 
task (e.g., integration/clustering), where global structure should take priority over gene-/
cell-specific summaries. An open question that needs to be answered is what summaries 
are important for a given task.

Besides the capabilities each method has to offer and its performance, i.e., how realistic 
its simulations are, there are other criteria we did not explore thoroughly. For example, 
splatter offers a well-documented, easy-to-use framework that is both flexible and inter-
pretable. While other methods might outperform splatter, they return parameters that 
are less applicable to benchmarking computational tools. For example, artificially intro-
ducing DE genes provides a binary ground truth (e.g., whether a gene is DE), whereas 
estimating and mimicking cluster effects might not (i.e., the user defines which genes are 
DE based on gene-wise parameters returned by the simulator).

Here, we have focused on methods that generate a single group or multiple groups of 
cells; in particular, we distinguished between “singular” (type n), multi-batch (type b), 
and multi-cluster (type k) datasets. However, there are various methods that are aimed 
at simulating data where gene expression profiles evolve along a discrete or continuous 
trajectory or time-course (e.g., dyngen [18], PROSSTT [19], SERGIO [20]). These have 
been applied in, for example, benchmarking methods for trajectory inference [12].

The combination of scRNA-seq with CRISPR/Cas9 genome editing has enabled the 
joint readout of gene expression and cell lineage barcodes [57]. Salvador-Martínez et al. 
[58] have proposed a simulator for lineage barcode data that, however, does not generate 
gene expression data. A recent method, TedSim [59], is capable of outputting combined 
readouts and can be used to study tools for either or both data types, including more 
genuine investigation of trajectory inference methods.

Most of these methods employ fairly sophisticated and well-designed models for data 
generation, but require a complex set of inputs that is specific to each method and dif-
ficult to justify. Meanwhile, very few trajectory simulators support the estimation of 
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simulation parameters from a reference dataset, making it challenging to evaluate them 
and opening the question of how faithful performance assessments based on them are. 
Overall, validating the faithfulness of synthetically generated trajectories in single-cell 
data remains challenging.

Conclusions
Taken together, while a set of performant methods to generate synthetic scRNA-seq data 
exist, current methods are (i) limited in the level of complexity they are able to accom-
modate; (ii) often reliant—in full or in part—on inputs by the user to introduce (artificial) 
expression differences; and (iii) more or less suitable to evaluate other tools, depend-
ing on the data characteristics they can capture faithfully. Secondly, simulation-based 
benchmark studies are affected by the simulator used, and more performant simulators 
do not necessarily yield more reliable readouts of, e.g., integration and clustering meth-
ods. And thirdly, the chosen quality control summaries and their prioritization have an 
impact on the assessment of simulations and, consequently, the conclusions drawn from 
them. Thus, identifying the nature, number, and significance of summaries to faithfully 
capture scRNA-seq data structure warrants future work in order to improve method 
evaluations.

Methods
Reference datasets

Each reference dataset was retrieved from a publicly available source, including pub-
lic GitHub repositories, Bioconductor’s ExperimentHub [60], and databases such as 
the Gene Expression Omnibus (GEO). Raw data were formatted into objects of class 
SingleCellExperiment [61, 62] and, with few exceptions, left as is otherwise. Data-
sets cover various organisms, tissue types, technologies, and levels of complexity (i.e., 
number of genes and cells, clusters, and/or batches and/or experimental conditions). 
A summary of each dataset’s characteristics and source is given in Additional file  1: 
Table S1.

References underwent minimal filtering in order to remove groups (clusters, batches) 
with an insufficient number of cells, as well as genes and cells of low quality (e.g., low 
detection rate, few counts overall). Secondly, we drew various subsets from each refer-
ence to retain a reduced number of observations (genes and cells), as well as a known 
number of batches, clusters, or neither (see Additional file 1: Table S2 and Additional 
file 1: Sec. 6.1).

Simulation methods

With few exceptions, methods were run using default parameters and, if available, fol-
lowing recommendations given by the authors in the corresponding software documen-
tation. All packages were available from a public GitHub repository, through CRAN, or 
Bioconductor [63]. A brief overview of each method’s model framework and support for 
parallelization is given in Table 1. For the explicit arguments used for parameter estima-
tion and data simulation, we refer to the method wrappers available at https:// github. 
com/ Helen aLC/ simul ation- compa rison [64] (snapshot on Zenodo [65]).

https://github.com/HelenaLC/simulation-comparison
https://github.com/HelenaLC/simulation-comparison
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Quality control summaries

We computed a set of five summaries at the gene-level: average and variance of logCPM, 
coefficient of variation, detection frequency (i.e., proportion of cells with non-zero 
count), and gene-to-gene correlation of logCPM. Here, logCPM correspond to log1p-
transformed counts per million computed with scater’s calculateCPM function [55]. We 
also computed six summaries at the cell-level: library size (i.e., total counts), detection 
frequency (i.e., fraction of detected genes), cell-to-cell correlation (of logCPM), cell-to-
cell distance (Euclidean, in PCA space), the number of times a cell occurs as a k-nearest 
neighbor (KNN), and local density factors [52] (LDF) that represent a relative measure 
of a cell’s local density compared to those in its neighborhood (in PCA space), and aim 
to quantify group (batch/cluster for type b/k) structure. For PC-based summaries, we 
ran scran’s [66] modelGeneVar (on logCPM) and getTopHVGs to select the n = 500 most 
highly variable features, and scater’s calculatePCA to compute their first ncomponents = 
50 PCs. For datasets other than type n, each summary was computed for each of three 
cell groupings: globally (i.e., across all cells), at the batch-, and at the cluster-level. Three 
additional summaries—the percent variance explained (PVE) [67] at the gene-, and the 
cell-specific mixing score (CMS) [52], and silhouette width [51] at the cell-level—were 
computed globally. Here, the PVE corresponds to the fraction of expression variance 
accounted for by a cell’s group assignment (batch/cluster for type b/k). Summaries are 
described in more detail in Additional file 1: Table S3.

Evaluation statistics

For each reference-simulation pair of summaries, we computed the Kolmogorov-
Smirnov (KS) test statistic using the ks.test function of the stats R package, and the Was-
serstein metric using the wasserstein_metric function of the waddR R package [68]. In 
addition, we computed the two-dimensional KS statistic [69] (using MASS’ kde2d func-
tion [70]) and earth mover’s distance (EMD) [71] (using emdist’s emd2d function [72]) 
between relevant pairs of summaries, i.e., between unique combinations of gene- and 
cell-level summaries, respectively, excluding global summaries (PVE, CMS, and silhou-
ette width) as well as gene-to-gene and cell-to-cell correlations. One- and two-dimen-
sional evaluations are detailed under Additional file 1: Sec. 4.

Runtime evaluation

To quantify simulator runtimes, we selected one reference per type and drew five ran-
dom subsets of 400–4000 genes (fixing the number of cells) and 100–2600 cells (fixing 
the number of genes). For each method and subset (eight in total), we separately meas-
ured the time required for parameter estimation and data simulation. For each step, we 
set a time limit of 106 s after which computations were interrupted.

Integration evaluation

Integration methods were implemented as in Chazarra-Gil et  al. [73] (see Additional 
file 1: Sec. 5.1), including ComBat [74], Harmony [75], fastMNN and mnnCorrect [76], 
limma [77], and Seurat [78]. To evaluate method performances, cell-specific mixing 
scores (CMS) and the difference in local density factors ( �LDF) were computed using 
the cms and ldfDiff function, respectively, of the CellMixS package [52]. To make metrics 
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more interpretable and comparable across datasets, we (i) subtracted 0.5 to center CMS 
at 0 (denoted CMS*) and (ii) centered (at 0) and scaled (to range 1) �LDF (denoted �
LDF*). Overall integration scores correspond to the unweighted average of CMS* and 
�LDF*. Thus, for all three metrics, a value of 0 indicates “good” mixing for a given cell. 
When aggregating results (e.g., for heatmap visualizations), metrics were first averaged 
across cells within each batch and, secondly, across batches.

Clustering evaluation

Clustering methods were implemented as in Duó et al. [31] (see Additional file 1: Sec. 
5.2), including CIDR [79], hierarchical clustering (HC), and k-means (KM) [80] on PCA, 
pcaReduce [81], SC3 [82], Seurat [78], TSCAN [83], and KM on t-SNE [84]. If applica-
ble, the number of clusters was set to match the number of true (annotated respective 
simulated) clusters. To evaluate the performance of each method, we matched true and 
predicted cluster labels using the Hungarian algorithm [54] and computed cluster-level 
precision, recall, and F1 score (the harmonic mean of precision and recall).
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