Skip to main content
. 2023 Mar 29;24:62. doi: 10.1186/s13059-023-02904-1

Table 1.

Overview of scRNA-seq simulators compared in this study. Methods are ordered alphabetically and annotated according to their (in)ability to accommodate multiple batches and/or clusters, support for parallelization (parameter estimation and data simulation, respectively), software availability, and publication year. ‘Type(s)’ column specifies which type of simulations can be produced (n: “singular” references: single batch or cluster; b: multiple batches; k: multiple clusters). ‘Cell #’ refers to whether the number of cells can be varied. Symbols: = yes, ✘ = no, () = yes, but based on user input parameters, i.e., no support for parameter estimation, *requires random splitting of cells into two groups, †/‡= internal/prior resampling from empirical parameter distribution, = no separate estimation step)

Batches Clusters Type(s) Cell # Parallelization Availability Year Model
BASiCS [37]    b R/Bioc 2015 NB
ESCO [38] n,b,k R/GitHub 2020 Gamma-Poisson
hierarchicell [39] n,b ✘✘ R/GitHub 2021 NB
muscat [40] n,b,k () ✘✘ R/Bioc 2020 NB
POWSC [41] n,k () ✘✘ R/Bioc 2020 zero-inflated, log-normal Poisson mixture
powsimR [42] () n* () R/GitHub 2017 NB
scDD [43] n* R/Bioc 2016 Bayesian NB mixture model
scDesign [44] () n R/GitHub 2019 Gamma-Normal mixture model
scDesign2 [45] n,k R/GitHub 2020 (zero-inflated) Poisson or NB + Gaussian copula for gene-gene correlations
SCRIP [46] n,b,k ✘✘ R/GitHub 2020 (Beta-)Gamma-Poisson
SPARSim [47] n,b () ✘✘ R/GitLab 2020 Gamma-multivariate hypergeometric
splatter [15] (Splat model) () () n ✘✘ R/Bioc 2017 Gamma-Poisson
SPsimSeq [16] n,b R/Bioc 2020 log-linear model-based density estimation + Gaussian copula for gene-gene correlations
SymSim [48] n,b ✘✘ R/GitHub 2019 kinetic model using MCMC
ZINB-WaVE [49] n,b,k ✘✘ R/Bioc 2018 zero-inflated NB
zingeR [50] n ()†‡ ✘✘ R/GitHub 2017 zero-inflated NB