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Abstract 

N7-methylguanosine (m7G) modification signature has recently emerged as a crucial regulator of tumor progres-
sion and treatment in cancer. However, there is limited information available on the genomic profile of lower-grade 
gliomas (LGGs) related to m7G methylation modification genes’ function in tumorigenesis and progression. In this 
study, we employed bioinformatics methods to characterize m7G modifications in individuals with LGG from The 
Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). We used gene set enrichment analysis 
(GSEA), single sample GSEA (ssGSEA), CIBERSORT algorithm, ESTIMATE algorithm, and TIDE to evaluate the associa-
tion between m7G modification patterns, tumor microenvironment (TME) cell infiltration properties, and immune 
infiltration markers. The m7G scoring scheme using principal component analysis (PCA) was employed to investigate 
the m7G modification patterns quantitatively. We examined the m7G modification hub genes’ expression levels 
in normal samples, refractory epilepsy samples, and LGG samples using immunohistochemistry, western-blotting, 
and qRT-PCR. Our findings revealed that individuals with LGG could be categorized into two groups based on m7G 
scores (high and low) according to the properties of m7G. Moreover, we observed that high m7G score was associ-
ated with significant clinical benefit and prolonged survival duration in the anti-PD-1 cohort, while low m7G score 
was associated with improved prognostic outcomes and increased likelihood of complete or partial response 
in the anti-PD-L1 cohort. Different m7G subtypes also showed varying Tumor Mutational Burden (TMB) and immune 
profiles and might have distinct responses to immunotherapy. Furthermore, we identified five potential genetic mark-
ers that were highly correlated with the m7G score signature index. These findings provide insight into the features 
and classification associated with m7G methylation modifications and may aid in improving the clinical outcome 
of LGG.
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Introduction
Lower-grade glioma (LGG) is a prevalent brain tumor 
classified as a 2/3 grade tumor that primarily occurs in 
the cerebral cortex by the World Health Organization 
(WHO) [1]. Although considerable progress has been 
made in the molecular analysis and study of LGG, the 
treatment and survival strategies for this disease have 
remained stagnant over the past few decades, mainly 
due to its high mortality, inevitable recurrence, and sig-
nificant heterogeneity [2]. In the United States, LGG 
accounts for approximately 43.2% of CNS gliomas, with 
an annual incidence of 6500–8000 new cases [3, 4]. 
Unlike glioblastoma (GBM, WHO grade IV, with a 5-year 
survival rate of 5%), LGG has an average survival time 
of more than 7 years but is comparatively more invasive 
[5, 6]. Radiation therapy has been a common treatment 
option for low-grade gliomas (LGGs) for many years, 
with proven efficacy in improving patient survival rates. 
However, the optimal timing, dose, and fractionation 
of radiotherapy for LGGs remain controversial. In the 
updated 2021 WHO CNS tumor classification, molecu-
lar data, namely IDH mutations in chromosomes 1p and 
19q and whole arm coding deletions, now replaces the 
classical histology-based LGG classification. Using these 
molecular markers, mutations in the isocitrate dehydro-
genase (IDH) 1 and IDH2 genes have been identified to 
classify LGG into prognostic subtypes with distinct clini-
cal, biological, and radiological characteristics [7–10].

LGG develops through early mutations in IDH, which 
leads to the accumulation of 2-hydroxyglutaric acid and 
DNA hypermethylated phenotypes [11–13] and then 
acquires one among the two sets of co-existing genetic 
alterations: mutations in the TP53 and EGFR, or 1p/19q 
code deletions, and TERT, ATRX, CIC, TTN, and 
FUBP1 mutations [14]. Previous studies have identified 
a small subset of more aggressive LGGs, and these glio-
mas are associated with lower overall DNA methylation 
and pure CDKN2A/B deletions and alterations that 
sometimes occur at recurrence. These include temo-
zolomide-induced hypermutation phenotypes, altera-
tions in the Myc pathway, driver oncogenes, and tumor 
suppressors [15–17]. At present, LGG treatment var-
ies by molecular subtype, stage, and location/resection 
and may involve clinical observation, chemotherapy 
(procatrazine/CCNU/vincristine or PCV and temozo-
lomide), and radiotherapy [18]. According to clinical 
observations, ODG tumors respond well to chemo-
therapy and radiotherapy and have the best prognosis. 

In contrast, IDH wild-type tumors, even without high-
grade histology, are linked to a poor prognosis, while 
IDH mutant astrocytomas are linked to a varying but 
moderate response [19]. In most cases, LGGs develop 
into higher-grade tumors, and approximately 50–75% 
of individuals with LGG frequently develop deteriora-
tion, pathological progression, or die. It is, therefore, 
crucial to find out the mechanisms of regulation of 
LGG initiation and progression thoroughly for bio-
marker identification and therapeutic targeting [20].

LGG has a wide range of genetic and phenotypic 
heterogeneity and is known for epigenetic alterations 
[21]. Processes like histone modifications, DNA meth-
ylation, chromatin remodeling, and non-coding RNAs 
have been the focus of attention in conventional epige-
netic research [22]. Lately, various reversible chemical 
alterations in RNA have been suggested as a new epi-
genetic modality of the regulation [23]. A modification 
mediated by methyltransferase is N7-methylguanosine 
(m7G), where a CH3 is attached at the 7th N terminal 
of mRNA guanine (G). m7G modification is among the 
most prevailing modifications of the base during post-
transcriptional modification and is primarily present 
at the 5’ cap of rRNA, tRNA, mRNA, and lncRNA and 
is essential for the maintenance of metabolism of RNA 
processing, stabilization, export from the nucleus and 
translation of proteins, including the development of 
tissues, formation of stem cells and their differentia-
tion, thus controlling the heat shock response and the 
control of biological clock [24]. Research in recent 
years has highlighted that m7G modifications regu-
late carcinogenesis and progression, such as METTL1/
WDR4-mediated aberrant translation of tRNA 
n7-methylguanosine modifications that promote head 
and neck squamous cell carcinoma-related advance-
ment [25]. Moreover, Orellana et  al. [26] revealed 
that these mRNAs are stabilized by an increase in the 
m7G modification level of a subset of tRNAs by the 
METTL1/WDR4 complex. It also improves the effi-
ciency of their translation, prevents them from get-
ting decayed, reduces ribosomal arrest, is correlated 
with low survival in cancer, and directly translates [27]. 
However, m7G methylation modifications’ specific role 
in LGG is unclear.

Moreover, the tumor immune microenvironment 
is remarkably involved in the invasion of the tumor. 
During the growth of the tumor, it interacts with its 
microenvironment through cell signaling by means of 
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infiltrating immune cells or molecular mechanisms. 
LGG can activate many types of immune cells, such 
as tumor-infiltrating macrophages, which secrete 
cytokines in large quantities along with growth fac-
tors and interleukins, resulting in an appropriate tumor 
microenvironment (TME) that promotes the develop-
ment and proliferation of glioma cells [28]. Through 
blocking signaling pathways, including programmed 
cell death protein 1/PD ligand 1(PD-1/PD-L1), which 
inhibits the function and response of infiltrating 
immune cells, tumor cells cause immune escape. Addi-
tionally, the surplus amount of sugar and amino acids 
are utilized in tumor cells’ metabolic reconstruction, 
depriving the T cells of their nutritional needs, inacti-
vating them, and suppressing immune response [29]. 
Furthermore, one of the main mechanisms for the 
development of immunosuppressive TME is immuno-
suppressive cell recruitment and expansion in TME, 
including T regulatory lymphocytes, tumor-associated 
macrophages, and myeloid-derived suppressor cells 
(MDSCs) [30]. Similarly, combinations of anticancer 
and multitargeted immunotherapeutic agents can pre-
vent adaptive resistance and remarkably enhance the 
prognosis of tumors and survival [31]. Therefore, accu-
rate diagnosis and effective treatment of glioma depend 
on a thorough understanding of key molecules and 
processes.

In the current research, we assessed the expression 
profile of m7G regulators in gliomas. Bioinformatics 
analysis was carried out on a large scale by retrieving 
gene expression data from commonly used databases. 
Afterward, the expression of critical genes in m7G 
regulators in specimens of the tumor and healthy brain 
tissue was validated by means of western-blotting, real-
time quantitative polymerase chain reaction (qPCR), 
as well as immunohistochemistry (IHC). Moreover, we 
systematically and comprehensively assessed the m7G 
score prognostic value in glioma treatment. Consider-
able differences (variations) in m7G score expression 
among glioma patients of different ages and genders 
were observed, and a major m7G score expression ten-
dency in various types of mutations was discovered. 
Furthermore, we assessed the relationship of the m7G 
score with immune infiltration level. It was noted that 
m7G Score expression was significantly upregulated in 
infiltration with TME cells. Moreover, by qPCR, west-
ern-blotting, and IHC, we detected that the m7G Score 
hub gene was expressed at different levels in normal 
brain tissue, refractory epilepsy tissue, and lower-grade 
gliomas. According to these data, it is concluded that 
the m7G score is a potential prognosis biomarker, and 
it can possibly be a clinical therapeutic target for indi-
viduals suffering from glioma.

Methods and materials
Data source and preprocessing of lower‑grade glioma
The study utilized RNA-Seq data from the TCGA data-
base, which contained 491 LGG samples with WHO 
classification II-III, and 103 normal cortical samples 
from the GTEx project, which served as normal sample 
controls. To ensure the accuracy of subsequent mod-
eling, 481 samples with duplicate sequencing, unclear 
WHO classification, non-primary LGG, overall sur-
vival time less than 1  day, and no survival status were 
excluded. Furthermore, external validation was con-
ducted using samples with complete survival informa-
tion from the CGGA-693 project (332 patients) and 
the CGGA325 project (162 patients). As the CGGA 
and TCGA data were generated using RNA sequenc-
ing on the Illumina platform, the data underwent 
background correction, normalization, and expression 
calculation with the combat function in the sva pack-
age. The data were log(x + 1) normalized and trans-
formed to TPM to remove batch effects. The study also 
obtained data related to somatic mutations and CNV 
from the TCGA-LGG cohort, which included 505 sam-
ples. The Meta cohort was created by integrating data 
from the TCGA-LGG, CGGA-693, and CGGA-325 
cohorts. M7G-linked genes were retrieved from exist-
ing literature [24], and the sets of related gene GOMF_
M7G_5_PPPN_DI PH O SPH ATA SE_AC TI V IT Y, 
GOMF_RNA_CAP_BINDING, and GOMF_RNA_7_
METHYLGUANOSINE_CAP_BINDING were also 
obtained.

Unsupervised clustering of m7G modification pattern
Unsupervised consistent clustering analysis was car-
ried out on the basis of the m7G regulators or m7G 
patterns regulating gene expression levels. To ascer-
tain if each isoform was relatively independent of the 
other isoforms, principal component analysis (PCA) 
was utilized. The R software “conensusClusterPlus” was 
utilized to find out the number of clusters, and for veri-
fication of the stability of subtypes, 1000 replicates with 
pltem equal to 0.8 were carried out.

Identification of the m7G methylation regulator risk score 
in lower‑grade glioma
Initially, we performed a prognostic analysis of DEGs 
extracted from different m7G clusters, and we screened 
genes at P < 0.05 for every overlapping DEG using Cox 
regression methods. The principal components 1 and 
2 were both chosen as feature scores, m7G score = ∑ 
(PC1i + PC2i).
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Biological enrichment analysis for distinct m7G 
modification patterns
We used GSVA to determine differences in terms of bio-
logical pathways across subtypes. For the annotation of 
genes’ biological activities, molecular mechanisms, and 
cellular components, Gene Ontology (GO) was utilized. 
We used the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) to annotate gene pathways. The limma pack-
age was utilized to observe the differentially expressed 
genes across the isoforms (p < 0.05), and after identifying 
DEGs, GO and KEGG analysis was performed employ-
ing the clusterProfiler package. Furthermore, c2.cp.kegg.
v7.0.symbols.gmt was utilized as the reference gene set 
with screening threshold set at FDR < 0.05. Activation of 
classical cancer pathways was calculated using 11 repre-
sentative basal pathways from the h.all.v7.4.symbols gene 
set.

Analysis of drug sensitivity
IC50 was measured employing the R package “prophetic,” 
and chemotherapeutic medications were retrieved from 
the genome of the Drug Sensitivity in Cancer (GDSC).

Evaluating TME and immune cells infiltration 
in lower‑grade glioma
For immune cell analysis, to evaluate immune cell abun-
dance across different samples, we employed various 
algorithms such as TIMER, CIBERSORT, QUANTISEQ, 
MCP-counter, XCELL, and EPIC simultaneously. Fur-
thermore, the ESTIMATE algorithm was utilized to 
measure the immune score and mesenchymal score to 
find out the microenvironmental status.

Developing protein–protein interaction (PPI) network 
and identification of hub genes
To elucidate the molecular mechanisms of LGG further, 
a DEG interaction network was developed employing the 
STRING database (https://​string-​db.​org/). The relation-
ships among DEGs were subsequently assessed using 
Cytoscape v3.8.2 software. The Cytoscape plug-in appli-
cation Molecular Complex Detection (“MCODE”) was 
also utilized to re-analyze clusters in the network follow-
ing the given criteria: degree cutoff = 2, node score cut-
off = 0.2, k-core = 2, and maximum depth = 100. The top 
5 central genes were filtered as m7G-related hub genes 
using the Cytoscape plug-in “cytoHubba.”

Molecular docking
Virtual screening of m7G-related Hub gene molecular 
docking was done using AutoDock Vina 1.1.2 to pre-
dict the most likely best ligand. Constituent structures 
were obtained at Pubchem. Molecular optimization was 
performed using SYBYL-X software with the following 

optimization parameters set: The energy gradient was 
restricted to 0.005  kcal/(mol-A), the Tripos force field 
was employed, the Gasteiger-Hückel charge was chosen, 
the maximum iteration factor was adjusted to 10,000, and 
all other parameters were set at their default settings. We 
downloaded the target structure at RCSB (https://​www1.​
rcsb.​org/). Through the Surflex-Dock module of SYBYL-
X, the crystalline water of the protein was removed, and 
the terminal residues were processed. Furthermore, the 
ligands were extracted, hydrogenated, and energy-opti-
mized to produce a binding pocket followed by molecu-
lar docking.

Extraction of RNA and qRT‑PCR
Between January 2022 and June 2022, ten lower-grade 
glioma tissues and ten healthy brain tissues were 
obtained from 20 individuals who went through sur-
gical dissection and pathological confirmation at the 
First Affiliated Hospital of Xinjiang Medical University. 
Approval for this research was granted by the Medical 
Research Ethics Committee of the same hospital. Total 
RNA was extracted by RNA reagent (Servicebio), and the 
concentration of total RNA was measured utilizing Nan-
oDrop2000 (Thermo Fisher Scientific, United States). A 
two-step reaction process, reverse transcription (RT) 
and polymerase chain reaction (PCR) were carried out to 
determine levels of mRNA. In addition, cDNA synthesis 
was carried out utilizing the Servicebio RT First Strand 
cDNA Synthesis Kit (Wuhan servicebio Technology 
CO., LTD, China). Expression levels of GAPDH, EIF4E, 
EIF4E3, EIF4E2, NCBP1, and NCBP2 were determined 
by qRT-PCR with the aid of SYBR Green qPCR Master 
Mix (High ROX) (Servicebio, Wuhan, China) to detect 
them. The results were expressed as GAPDH. Design-
ing and synthesis of PCR primer sequences were done by 
Servicebio (Wuhan) Co: GAPDH-F:5′- GGA​AGC​TTG​
TCA​TCA​ATG​GAA​ATC​-3′,GAPDH-R:5′- TGA​TGA​
CCC​TTT​TGG​CTC​CC -3′, EIF4E -F: 5′- CGG​AAT​CTA​
ATC​AGG​AGG​TTGCT -3′, EIF4E -R: 5′- CTC​ATC​TTC​
CCA​CAT​AGG​CTCAA -3′, EIF4E3 -F: 5′- GTG​GCG​
TAT​GGA​AGA​TGA​AAGTC -3′, EIF4E3 -R: 5′- TCC​
CGA​ACA​CTG​ACA​CTA​ACTCC -3′, NCBP1 -F: 5- GAC​
CTT​ATC​TTG​CCT​TTG​ACAGC -3′, NCBP1 -R: 5- CCT​
TCC​AGT​GGG​ACT​TAA​TGATG -3′. NCBP2 -F: 5′- 
GCT​TTA​AGG​AGG​GCA​GGC​AATA -3′, NCBP2 -R: 
5′- CAT​AGC​CTC​CTC​TCC​CAG​CATC -3′, EIF4E2-F: 
5′- TGT​GGA​GCA​GTT​CTG​GAG​GTT-3′, EIF4E2-R: 
5′- CGA​ATA​ATC​CAC​TTG​CCA​CCA -3′. The relative 
expression levels of EIF4E, EIF4E3, EIF4E2, NCBP1, and 
NCBP2 were quantified by the 2(−ΔΔCT) formula.

The amplification reaction was as follows: pre-dena-
turation at 95 °C for 10 min, subsequent denaturation at 
95 °C for 40 cycles of 15 secs, and extension at 60 °C for 

https://string-db.org/
https://www1.rcsb.org/
https://www1.rcsb.org/
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30 secs. We also recorded fluorescence signals from 65 to 
95 °C at an interval of 0.3 °C.

Western blot analysis and antibodies
RIPA buffer (Servicebio, Wuhan) was employed for total 
cellular protein lysis. Following ultrasonic cracking, 
the quantification of lysates was done by a BCA Protein 
Assay kit (Servicebio, Wuhan). 10% SDS‐PAGE gel was 
utilized for the separation of total protein, which was 
transferred to a PVDF membrane (Servicebio, Wuhan). 
Following the incubation of antibodies, a chemilumi-
nescence system (CLINX, Shanghai) was utilized for the 
detection of signals. The primary antibodies (all with 
the same dilution ratio of 1:1000 provided by Protein-
Tech Group, Wuhan, China) we utilized were anti‐rab-
bit NCBP1(catalog no. 10349-1-AP), NCBP2(catalog 
no. 11950-1-AP), EIF4E(catalog no. 11149-1-AP), 
EIF4E3(catalog no. 17282-1-AP), EIF4E2(catalog no. 
12227-1-AP), and anti‐mouse GAPDH(dilution ratio of 
1:2000, Servicebio, catalog no. GB15002). The anti‐rabbit 
and anti‐mouse (both with a dilution ratio of 1:5000, cat-
alog nos. GB23303 and GB25301, respectively, Wuhan, 
China) secondary antibodies were purchased from Ser-
vicebio. GAPDH was employed as an internal control.

Immunohistochemistry and hematoxylin–eosin staining
The m7G scores hub genes were validated experimentally 
by immunohistochemistry (IHC) staining. Ten samples 
of LGG tissues and ten intractable epilepsy tissue sam-
ples were retrieved from individuals at the First Affili-
ated Hospital of Xinjiang Medical University. Prior to the 
retrieval of tissue samples, none of the individuals under-
went anti-cancer therapy. An informed consent form was 
signed by each patient, and the hospital’s ethics commit-
tee granted its approval.

Immunohistochemistry (IHC) staining was per-
formed after tissues were fixed and paraffinized. Slides 
were sliced to a 5  μm width, dewaxed, and rehydrated. 
H2O2(3%) was used for 10 min to block endogenous per-
oxidase after incubation for 1 h at room temperature with 
a 3% blocking solution of bovine serum albumin(BSA). To 
inhibit endogenous peroxidases, hydrogen peroxide was 
administered to the cells for 10  min. The relevant pro-
tein antibodies were used to incubate the sections at 4 °C 
overnight. The antibodies used were as follows: NCBP1 
(Cat. No. 10349-1-AP, 1:1000), NCBP2 (Cat. No. 11950-
1-AP, 1:1000), EIF4E (Cat. No. 11149-1-AP, 1:1000), 
EIF4E3 (Cat. No. 17282-1-AP, 1:1000) and EIF4E2 (Cat. 
No. 12227-1-AP, 1:1000) antibodies were acquired from 
Proteintech (Wuhan, China); Subsequently, the incuba-
tion of the sections was done with a biotinylated goat 
anti-rabbit secondary antibody for a half-hour at 37  °C 
(Cat. No. GB23383, 1:200, Servicebio, Wuhan, China). A 

freshly synthesized 3,3′-diaminobenzidine(DAB) reagent 
was used for color development(Boster, Wuhan, China). 
Each tissue segment underwent independent IHC stain-
ing by two pathologists.

Statistical analysis
Correlation coefficients between immune cells and m7G 
regulator expression were computed by Spearman corre-
lation analysis. The Kruskal–Wallis test was employed for 
variations between the three groups, and the x2 test was 
utilized for associations between categorical covariates. 
As per the correlation between the m7G score and the 
prognosis of affected individuals, the optimal cutoff value 
for the individual data set subgroup was determined 
with the aid of the survminerR package. Individuals were 
classified into high and low m7Gscore subgroups on the 
basis of this value. The log-rank statistic was employed to 
reduce the batch effect of the calculation. The Kaplan–
Meier method was employed for plotting OS, and for 
identifying statistical variations, a log-rank test was 
employed. (restricted to 10 years of follow-up). Univari-
ate Cox regression was utilized to calculate risk ratios for 
m7G modifiers and genes linked to the m7G phenotype. 
Independent survival factors were identified by conduct-
ing multivariate Cox regression, and the Maftools and its 
“oncoplot” function were utilized to visualize mutational 
variations. In addition, by employing Gene Expression 
Profile Interaction Analysis (GEPIA) (http://​gepia.​can-
cer-​pku.​cn/), further differential expression analysis was 
carried out on LGG samples from TCGA (N = 518) and 
healthy samples (N = 207) from matched TCGA normal 
and genotype-tissue expression (GTEx) data. The value 
of p < 0.05 was considered statistically significant.

Results
Landscape of m7G regulators in LGG
In this study, 23 m7G-related genes were retrieved 
from the TCGA cohort, and their locations on chro-
mosomes are illustrated in Fig.  1A. Initially, the copy 
number variation was summarized, and the incidence 
of somatic mutations in genes linked to m7G in LGG. 
Only 5 of the total 505 samples were mutated with a 
frequency of 0.99%, with EIF4G3 exhibiting the high-
est mutation frequency (Fig.  1B), and further analy-
sis revealed that EIF4G3 and EIF4E, IFIT5, AGO2, 
LARP1, NCBP1, NSUN2, NUDT11, and WRD4 
(Fig.  1C). CNV alteration frequency showed that 
CNV alterations were prevalent in m7G-related genes, 
AGO2 was concentrated in copy number expansion, 
while the frequency of CNV deletion was common 
in EIF4E2 (Fig.  1D). Upon combining specimens of 
LGG from the TCGA database and healthy cortical 
samples from the GTEx database, it was found that 

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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LGG samples could be distinguished entirely from 
the healthy ones as per the expression of genes related 
to m7G (Fig.  1E). To confirm if the above-mentioned 
mutants affect the expression of genes related to m7G- 
in individuals with LGG, we obtained the mRNA 

expression of m7G-related genes in healthy and LGG 
samples, and all the genes linked to m7G were remark-
ably differentially expressed across samples (Fig.  1F, 
G). NUDT4, EIF4E3, EIF4E, NUDT3, EIF4E2, and 
SNUPN showed higher expression in normal tissues 

Fig. 1  Landscape of m7G regulators in LGG. A The 23 chromosomal regions where m7G regulator CNV alterations were found in TCGA-LGG cohorts. 
B The frequency of m7G regulator mutations and their categorization. C Using Pearson correlation analysis, a correlation plot drawn between 
the top 9 m7G regulator mutation frequencies. p < 0.05 was considered significant. D The m7G regulators’ CNV variation frequency in the TCGA-LGG 
cohort. E The m7G regulators-transcriptome profiles of healthy and malignant tissue were analyzed using principal component analysis, which 
revealed a remarkable difference between the various samples. F The m7G regulators’ expression varied between healthy and malignant tissues, 
as shown by a heatmap. G The 23 m7G regulators’ expression in LGG tissue from the TCGA-LGG cohort versus healthy tissues from Genotype-Tissue 
Expression samples. The Kruskal–Wallis test was used to compare the difference. * p < 0.05; ** p < 0.01; *** p < 0.001
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compared to LGG samples. The above analysis showed 
that m7G-related genes were highly heterogeneous 
between samples of healthy and LGG tissues, indi-
cating that imbalanced expression of genes related to 
m7G is crucially involved in the onset and progression 
of LGG.

Modification patterns mediated by m7G‑regulators 
in lower‑grade glioma
Three datasets with complete prognostic information 
(TCGA-LGG, CGGA-693, CGGA-325) were included in 
a Meta cohort of 975 LGG patients. In the Kaplan–Meier 
survival analysis and log-rank test, the value of progno-
sis in 20 m7G-associated genes for LGG patients was 
revealed, distinguished by the best cut-off value in each 
group (Additional file  1: Fig S1). m7G-associated gene 
network specifically described the combined gene inter-
actions and their prognostic value for patients having 
these genes (Fig. 2A). It was discovered that the majority 
of the m7G-related genes showed significant correlations 
and had a better prognostic indication. The aforemen-
tioned outcomes indicate that crosstalk between m7G-
related genes might be crucially involved in forming 
different m7G methylation modification patterns. The 
consensusClusterPlus software was employed to catego-
rize subjects on the basis of the expression of prognostic 
genes linked to m7G, and when the K value = 2, the CDF 
downward slope was minimal (Fig.  2B), and two differ-
ent modification patterns were finally identified; pattern 
A with 604 cases and pattern B with 371 cases. These 
patterns were defined as m7G clusters. PCA analysis 
revealed that the two patterns have a relatively discrete 
nature (Fig. 2C). Predictive analysis revealed a significant 
survival advantage in the m7 Gcluster-A modification 
pattern (Fig.  2D). To explore the physiological activities 
between these different m7G modification patterns, we 
carried out a GSVA enrichment analysis. As illustrated 
in Fig.  2E, compared with m7Gcluster-B, m7Gcluster-
A presented a significant survival advantage with inosi-
tol phosphate metabolism, phosphatidylinositol, glioma, 
neurotrophin, ErbB, mTOR, insulin, Wnt signaling path-
ways as well as other enrichment pathways. The above 

results may provide evidence to support the prognostic 
advantage of m7G cluster-A.

TME cell infiltration in various m7G modification patterns
The analysis of TME surprisingly highlighted that m7G 
cluster-B was abundant in immune cell infiltrates, includ-
ing macrophages, eosinophils, natural killer cells, mast 
cells, MDSC, and dendritic cells (Fig.  3A). Subsequent 
analysis showed significantly enhanced hallmark path-
way activity in m7Gcluster-B, such as activation of 
HYPOXIA, EMT, and other pathways (Fig. 3B). Although 
there was partial overlap, PCA analysis likewise showed 
a potential distinction between the two m7G modifica-
tion patterns based on cancer activity pathway scores 
(Fig.  3C). In addition, in a separate TCGA cohort, we 
likewise found significant upregulation of most of the 
m7G genes in the m7G cluster-A and a significantly dif-
ferent distribution of clinical traits (Fig. 3D).

Exploration of m7G modification pattern regulatory genes 
and related molecular isoforms
To assess the possible biological functions of each m7G 
modification pattern in further detail, the limma pack-
age was employed to identify 70 differentially expressed 
genes (DEGs) related to the m7G phenotype. The cluster-
Profiler package was utilized to carry out the GO enrich-
ment analysis on the DEGs, which, surprisingly, showed 
an association with the postsynaptic membrane poten-
tial regulation, membrane potential regulation, synapse 
organization, neuron to neuron synapse, synaptic mem-
brane, ligand-gated anion channel activity, and other 
related biological processes were enriched (Fig.  3E). To 
confirm this regulatory mechanism in a thorough man-
ner, we carried out an unsupervised clustering analysis 
according to the collected prognosis-related m7G modi-
fication pattern-related genes to classify subjects into 
various genetic subtypes. Similar to the grouping of m7G 
modification patterns, the unsupervised clustering algo-
rithm highlighted three different genetic subtypes, called 
gene clusters-A, B, and C (Fig. 4A). 311 of the 975 LGG 
patients clustered in genotype A, 448 in genotype B, and 
216 in genotype C, but with a poorer prognosis (Fig. 4B). 
The prognosis was poor (Fig.  4B). Major variations in 

Fig. 2  Identification of m7G methylation modification profiles. A The m7G regulators interactions in LGG. The diameter of the circle indicated 
the significance level of the P values obtained from the Log-rank test, which were, successively, p < 1e-04, p < 0.001, p < 0.01, p < 0.05, and p < 1. 
Risk factors are denoted in purple, whereas favorable factors for overall survival are denoted in green. The connecting lines show relationships 
of m7G regulators as determined by Spearman correlation analysis. Pink represents a positive correlation and blue represents a negative correlation. 
B (i) The consensus matrix for k = 2 produced using consensus clustering is shown by the heatmap. (ii) Relative change in consensus CDF area 
under the curve for k = 2 to 9. C Two m7G modification subtypes’ transcriptome profiles underwent principal component analysis, revealing 
a significant variation in modification patterns. D Kaplan–Meier curves with Log-rank p values < 0.05 demonstrated a significant variation in survival 
between the two m7G modification patterns. These analyses were based on the TCGA-LGG, CGGA-325, and CGGA-693 cohort, which included 604 
patients in m7Gcluster-A and 371 cases in m7Gcluster-B. E GSVA of biological pathways between two distinct subgroups

(See figure on next page.)
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the m7G regulators’ expression were observed in the 
aforementioned genetic subtypes, which is similar to the 
expected outcomes of m7G methylation modification 
patterns, along with significant upregulation of m7G-
related genes in their subtype A (Fig. 4C, D).

Identification of m7G‑regulators genes’ phenotypes 
and m7G scores
The above analysis is based only on the population 
of patients and cannot predict the pattern of m7G 
methylation modifications with accuracy in each 

Fig. 2  (See legend on previous page.)
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Fig. 3  Distinct immune microenvironments in m7G modification patterns and each pattern’s biological features. A 23 immune cells’ differential 
expression between two m7G modification patterns. B Differential expression of two m7G modification patterns’ Hallmark pathway features. 
*** p < 0.001, ** p < 0.01, * p < 0.05. C PCA scatter plot for the methylation modification pattern of the m7G gene. D Heat map of the distribution 
of clinicopathological characteristics between two m7G modification patterns. E GO enrichment analysis was utilized to functionally annotate 
the genes associated with m7G on the bar chart



Page 10 of 22Maimaiti et al. European Journal of Medical Research  (2023) 28:144

Fig. 4  m7G scores and phenotypic identification of genes linked to m7G. A (i) The consensus matrix for k = 3 generated by means of consensus 
clustering is shown by the heatmap (ii) Relative change in consensus CDF area under the curve for k = 2 to 9. B Various gene cluster-related 
survival curves (p < 0.001, Log-rank test). C The differential expression of genes linked to m7G among several gene clusters. *** p < 0.001, ** 
p < 0.01, * p < 0.05. To examine the statistical variations across the three gene clusters, the one-way ANOVA test was applied. D Heat map 
of genetic modification patterns. E Sankey diagrams illustrating several genotypes. F Differential expression of Hallmark pathway characteristics 
between high-m7G score and low-m7G score. *  *  * p < 0.001. G Relationship between immune cells and m7G scores, with red denoting a positive 
correlation and blue denoting an inverse correlation. H m7G score’s differential expression within the m7G cluster (p < 0.001). I m7G score’s 
difference analysis in the gene cluster (Kruskal–Wallis test)
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individual. Taking the individual heterogeneity of m7G 
modifications into consideration, in accordance with 
these phenotype-related genes, we established a PCA 
algorithm-based score to systematically quantify the pat-
tern of m7G modifications in LGG patients, which we 
called the m7G score. We divided the cut-off value of 
the derived m7G score into two groups, high and low, 
for all LGG patients (cut-off = 1.530208). Mulberry plots 
showed the association between the subtypes (Fig.  4E). 
The ssGSEA algorithm analysis highlighted that the hall-
mark pathway activity was considerably enhanced in 
high-score patients (Fig.  4F), while analysis of the asso-
ciated pathway activity highlighted that high scores were 
considerably linked to increased activation of the path-
way (Fig. 4G). Kruskal–Wallis test showed that m7G clus-
ters were significantly different from each other, with the 
highest score in m7G cluster-B (Fig. 4H); similarly, m7G 
scores were significantly different between gene clusters, 
with the highest score in gene cluster-C (Fig. 4I). There-
fore, the above outcomes strongly suggest that the m7G 
Score can better assess individual patients’ m7G modifi-
cation patterns.

Prognostic value of m7G scores in individual LGG patients
We further determined the significance of the m7G 
score in predicting the prognosis of affected individu-
als. Subjects with lowered m7G scores showed signifi-
cant survival benefits (Fig. 5A), and the more advanced 
the patients, the higher the m7G score (Fig. 5B, C). In 
addition, we found that the m7G score also had a good 
survival differentiation value in different clinical sub-
groups, such as different age subgroups (Additional 
file 2: Fig S2A) and gender subgroups (Additional file 2: 
Fig S2B). In addition, in the classical oncogenic muta-
tion status (TP53, EGFR), the m7G score also had a 
better prognostic indication value (Additional file  2: 
Fig S2C). TMB has an essential role in guiding immu-
notherapy-based schemes in LGG patients, and given 
the clinical importance of TMB, we tried to explore the 
intrinsic correlation between TMB and m7G score. It 
was found that the lower TMB score in the Low m7G 
Score group (Fig. 5D) and the Low-TMB grouping rep-
resented a better prognostic outcome (Fig.  5E), and 
when the Low m7G score was combined with Low-
TMB indicated a better prognostic outcome (Fig.  5F). 
Furthermore, in both TCGA (Additional file 4: Fig S4A) 
and CGGA cohorts (Additional file  4: Fig S4B), m7G 
Score was considered to be an independent risk factor, 
and the risk distribution status plots demonstrated the 
distribution of patients, m7G Score scores, and change 
in survival status in both groups (Additional file  4: 
Fig S4C), and a decrease in OS with increasing m7G 
Score (Additional file  4: Fig S4D). We then analyzed 

the difference in somatic mutation distribution in the 
low and high m7G score in the TCGA-LGG cohort by 
means of the maftools package, where IDH1 was the 
most widely mutated gene in the two groups, while the 
TTN mutation rate was 36% in the high m7G Score 
group (Fig. 5G) compared to 89% in the low m7G Score 
group (Fig. 5H).

The function of m7G fraction in anti‑PD‑1/PD‑L1 
immunotherapy
Individuals exhibiting a high TMB status had long-last-
ing clinical responses to anti-PD-1/PD-L1 immunother-
apy. Therefore, the aforementioned findings indirectly 
demonstrate that the differential modification pattern 
of tumor m7G might be a key factor in regulating the 
clinical response to PD-1/PD-L1 immunotherapy. The 
PD-L1 and PD-1 blockade-represented immunotherapy 
has clearly become a significant advancement in cancer 
treatment. This research checked if M7G modification 
characteristics could predict the response of individu-
als to immune checkpoint blockade therapy according 
to two immunotherapy cohorts: GSE78220 for the anti-
PD-1 immunotherapy cohort and IMvigor210 for the 
anti-PD-L1 immunotherapy cohort. Individuals with 
high m7G Scores in the anti-PD-1 cohort demonstrated 
major clinical benefit and prolonged survival (Fig.  6A). 
However, no remarkable variation was seen in immuno-
therapy outcomes among individuals belonging to vari-
ous m7G score subgroups (Fig. 6 B–D). In the anti-PD-L1 
cohort, individuals with low m7G scores had better prog-
nostic outcomes (Fig. 6D) and were more inclined to CR/
PR (Fig. 6E, F). The aforementioned observation implies 
that the quantification of m7G modification patterns 
can serve as a potential and viable biological marker for 
analyzing the prognostic and clinical response of indi-
viduals to immunotherapy and that different statuses of 
m7G modification may represent the response to PD-1 
or PD-L1, but the mechanism is unknown. Subsequently, 
we predicted the level of activity of their hallmark path-
way in an anti-PD-L1 immunotherapy cohort and found 
that, like the m7G Cluster, individuals with a high m7G 
score had more significant activation (Fig. 6G). In addi-
tion, the expression levels of PD-L1 and PD-1 were also 
considerably upregulated in patients with high m7G 
scores (Fig. 6H). In conclusion, this research clearly indi-
cates that m7G methylation modification patterns were 
correlated remarkably with tumor immunophenotype 
and response to anti-PD-1/L1 immunotherapy and that 
the developed m7G modification profile will help predict 
response to anti-PD-1/L1 immunotherapy as well as in 
PD-1/L1 immunotherapy.
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Fig. 5  Assessment of clinical prognosis of m7G scores and somatic tumor mutations. A Survival analysis of high- and low-m7G score groups using 
Kaplan–Meier curves (p < 0.001, Log-rank test). B Comparison of the m7G score among the individuals of Grade 2 and Grade 3 groups (p < 0.001, 
Wilcoxon test). C The proportion of Grade 2 and Grade 3 in high- and low-m7G score groups. D Stratified analysis of the m7G score for individuals 
with LGG by tumor mutation burden (p < 0.001, Wilcoxon test). E Survival analysis of TMB (p < 0.001, Log-rank test). F Survival analysis of TMB 
along with m7G score (p < 0.001, Log-rank test). G Waterfall chart of the high-m7G score group. H Waterfall chart of the low-m7G score group
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Fig. 6  The assessment of immunotherapy response by the m7G score signature in the Anti-PD-1 and Anti-PD-L1 cohort. A The Kaplan–Meier 
curve analysis of high- and low-risk m7G score in the Anti-PD-1 cohort. B The comparison of the m7G score between individuals making complete/
partial response (CR/PR) and those who kept a stable/progressive disease (SD/PD). C The proportion of individuals with LGG made complete/
partial response (CR/PR) or kept a stable/progressive disease (SD/PD) in high- and low-risk m7G scores. D The Kaplan–Meier curve analysis 
between high- and low-risk m7G score in the Anti-PD-L1 cohort. E Comparing m7G scores between subjects making CR/PR and the subjects who 
kept an SD/PD in the Anti-PD-L1 cohort. F The proportion of individuals with LGG made CR/PR or kept an SD/PD in high- and low-risk m7G score 
of the Anti-PD-L1 cohort
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Identification of the indicative role of m7G scores 
in the immune microenvironment
Based on the gene expression profiles of all solid tumors 
in TCGA, Thorsson et  al. [32] established six immune 
expression signature subtypes: Wound Healing (Immune 
C1), IFN-gamma Dominant (Immune C2), Inflamma-
tory (Immune C3), Lymphocyte Depleted(Immune 
C4), Immunologically Quiet (Immune C5), and TGF-
beta Dominant (Immune C6). As per the aforemen-
tioned findings, we observed substantial variation of the 
immune subtypes among the various m7G score groups, 
with C4 dominating the high score group (Fig. 7A), and 
the scores also differed significantly among the immune 
subtypes (Fig.  7B). Stromal scores also increased with 
increasing m7G scores (Fig.  7C). In light of the criti-
cal role of stemness in tumor development and immu-
notherapy, we performed a correlation analysis of DNA 
and RNA stemness scores in LGG patients. Unsurpris-
ingly, the m7G score was linearly related to the stemness 
score (Fig.  7D). To thoroughly explore the link between 
different m7G score subgroups and the immune micro-
environment, we calculated the level of immune cell 
infiltration in each patient in the TCGA-LGG cohort 
following six algorithms: TIMER, CIBERSORT, QUAN-
TISEQ, MCP-counter, XCELL, and EPIC, and found that 
in the high m7G score subgroup had more immune cell 
infiltration with TME in an activated state (Fig. 7E), and 
similarly, most immune cells were correlated positively 
with m7G score (Fig.  7F). Although most of the litera-
ture reports that LGG is insensitive to chemotherapy, we 
explored whether the m7G score-based grouping could 
indicate conventional cytotoxic drugs. Therefore, we cal-
culated the IC50 values of various drugs using the pro-
phetic package. It was found that most of the high m7G 
score groupings were more sensitive to chemotherapeu-
tic drugs (Bleomycin, Cisplatin, Docetaxel, Etoposide, 
Gemcitabine), except Doxorubicin (Additional file 3: Fig 
S3).

Screening the m7G scores hub genes and investigation 
of best‑fitting compounds on hub genes
We selected the top 5 genes with the highest connectiv-
ity (EIF4E, EIF4E3, EIF4E2, NCBP1, and NCBP2) to be 
considered as hub genes in m7G regulators (Fig.  8A). 
To investigate the most suitable compounds, we per-
formed a virtual screening for molecular docking of 
these five genes using AutoDock Vina 1.1.2 (Fig. 8B–F). 
From a pharmaceutical perspective, different drugs have 
different affinities for critical targets. Bleomycin has a 
strong binding ability to each target, with each drug hav-
ing a somewhat stronger affinity for EIF4E and NCBP1, 
with Bleomycin having a strong affinity for both, with 
total score values of 11.9795. Pymol visualization study 

revealed that Bleomycin bound to the cavity on the sur-
face of EIF4E protein and formed hydrogen bonds with 
nine amino acid residues within the binding pocket, 
including LYS138, ALA229, HIS228, ASN72, SER85, 
ARG87, ILE89, ASP71, ASP116, and LYS183. Like the 
EIF4E protein, Bleomycin also binds to the cavity on the 
surface of the NCBP1 protein and hydrogen bonds with 
many amino acid residues within the cavity, including 
LYS650, ARG646, ARG610, GLN599, ARG458, LYS455, 
ASP369, and GLN753.

In terms of drug targeting, NCBP2 has a strong bind-
ing capacity with three components, Bleomycin (7.6277), 
Cisplatin (6.2128), and Gemcitabine (5.2287), with the 
most vital binding capacity with Bleomycin to NCBP2, 
and with NCBP2 within the binding pocket of ARG227, 
ARG104, VAL126, and ARG119 formed hydrogen bonds. 
NCBP1 had the strong binding ability with three com-
ponents, Bleomycin (11.1593), Etoposide (5.9342), and 
Gemcitabine (5.1208), which had the strong binding abil-
ity with Bleomycin with NCBP2 with the strongest bind-
ing capacity. eIF4E3 had a strong binding capacity with 
Bleomycin (7.6016) and Etoposide (6.5918), with the 
strongest binding capacity with Bleomycin with NCBP2 
and with EIF4E3 within the pocket of LEU83, ALA49, 
GLU93, ARG95, HIS194, LYS192, and ARG152 forming 
hydrogen bonding interaction. EIF4E has a strong bind-
ing ability with two components, Bleomycin (11.9795) 
and Etoposide (5.5992), with the strongest binding ability 
with Bleomycin to NCBP2. EIF4E2 has a strong binding 
ability with two components with strong binding abil-
ity, Bleomycin (5.1874) and Etoposide (5.316), with the 
strongest binding ability with Etoposide to NCBP2, form-
ing hydrogen bonds with THR22, SER24, SER64, and 
THR99 within the binding pocket of EIF4E2.

Expression validation of the m7G score hub genes 
by qRT‑PCR
In total, five genes were examined using the GEPIA and 
GTEx databases to validate the expression status of the 
m7G Score hub genes(EIF4E, EIF4E3, EIF4E2, NCBP1, 
and NCBP2), and 207 healthy brain tissue samples and 
518 LGG samples were found using the TCGA. Accord-
ing to the findings (Fig. 9A and E), the EIF4E and NCBP2 
expression levels were considerably higher in the lower-
grade glioma tissues in comparison to that in the healthy 
brain tissues (p < 0.05); while EIF4E2, EIF4E3, and 
NCBP1 expression levels in the lower-grade glioma tis-
sues were not statistically different from normal brain 
tissues (Fig.  9B–D). Subsequently, for better characteri-
zation of the m7G Score hub gene’s expression levels in 
healthy and LGG tissues, 10 healthy brain tissue sam-
ples and 10 LGG samples were obtained. EIF4E, EIF4E3, 
and NCBP2 expression levels were  substantially higher 
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Fig. 7  Identification of tumor immune microenvironment across high and low-risk m7G score groups. A. The proportion of LGG patients 
among C3 (inflammatory), C4 (lymphocyte depleted), C5 (immunologically quiet), and C6 (TGF-β Dominant) subtype immune model according 
to high- and low-risk m7G score. B. The comparison of the m7G score among C3、C4、C5、C6. C. (i) The correlation between m7Gscore 
and the Immune Score. (ii) The link between m7Gsocre and the stromal score. D. (i) The correlation between m7Gscore and the RNAs. (ii) The 
correlation between m7Gsocre and the DNAss (p < 0.001). E. Heatmap for immune responses by means of CIBERSORT, TIMER, QUANTISEQ, 
MCPCOUNTER, XCELL, and EPIC algorithms among high- m7Gscore group and low- m7Gscore group. F. The relationship between immune cells 
and m7Gscore. Each color represented a distinct algorithm



Page 16 of 22Maimaiti et al. European Journal of Medical Research  (2023) 28:144

in LGG samples compared to healthy brain tissue sam-
ples (p < 0.05); whereas the EIF4E2 and NCBP1 expres-
sion levels in healthy brain tissues were not statistically 
significant with the expression in lower-grade glioma tis-
sues (Fig. 9F), which is consistent with the results shown 
by GEPIA. Subsequently, the UCSC genome browser 
(https://​www.​genome.​ucsc.​edu/​cgi-​bin/​hgGat​eway) was 
used to visualize gene conversation of EIF4E、 EIF4E3
、 EIF4E2、 NCBP1、 and NCBP2 among homo sapiens 
according to the ChIPseq data of the ENCODE project 
(Fig. 9G–K).

Western blot experiments
The respective expression levels of NCBP1 and EIF4E2 
proteins were lower and remarkably elevated in glioma 
tissues compared to the relatively healthy brain tissues, 

as per a Western blot analysis of 10 LGG tissues and 10 
healthy brain tissues. On the other hand, there were no 
considerable differences in the protein levels of EIF4E, 
EIF4E3, and NCBP2 between healthy brain tissues and 
lower-grade glioma tissues (Fig. 10A–M). This was in line 
with the findings from the TCGA-LGG dataset-based 
bioinformatics analysis.

Immunohistochemical experiments
In the subsequent steps, we collected 10 cases of intrac-
table epilepsy tissues and 10 cases of lower-grade glioma 
(WHO II-III) tissues for immunohistochemical detec-
tion. Immunohistochemistry analysis showed that EIF4E, 
EIF4E3, and NCBP2 were increased in lower-grade 
glioma tissues, while lower-grade glioma did not cause 

Fig. 8  A. m7G score-hub gene network for the top 5 most highly regulated genes. B. Combination pattern diagram of Bleomycin and EIF4E. Yellow 
represents hydrogen bonding, and Amino acid residue includes ALA229, HIS228, ASN72, SER85, ARG87, ILE89, ASP71, ASP116, LYS183, and LYS138. 
C. Combination pattern diagram of Etoposide and EIF4E2. Yellow represents hydrogen bonding, Amino acid residue includes SER24, THR22, 
SER64, and THR99. D. Combination pattern diagram of Bleomycin and EIF4E3. Yellow represents hydrogen bonding, Amino acid residue includes 
ARG152, LEU83, ALA49, GLU93, ARG95, HIS194, and LYS192. E. Combination pattern diagram of Bleomycin and NCBP1. Yellow represents hydrogen 
bonding; Amino acid residue includes LYS650, ARG610, ARG646, GLN753, ASP369, LYS455, ARG458, and GLN599. F. Combination pattern diagram 
of Etoposide and NCBP2. Yellow represents hydrogen bonding, Amino acid residue includes ARG227, ARG104, VAL126, and ARG119. Notes: "Pocket" 
is a concave region made up of amino acid residues, the shape and chemistry of which allow other molecules to fit in and combine

https://www.genome.ucsc.edu/cgi-bin/hgGateway


Page 17 of 22Maimaiti et al. European Journal of Medical Research  (2023) 28:144	

a significant difference in EIF4E2 and NCBP1 proteins 
(Fig. 11A, B).

Discussion
The m7G modifications are involved in gene regulation 
and tumor development [33]. Over- or under-expres-
sion of m7G regulators can alter m7G modifications in 
tumors and affect tumor progression [34]. Therefore, for 
treatment and patient prognosis of early tumor diagnosis, 
it is essential to study the molecular processes of m7G 
modification and to identify aberrant expression of m7G 
regulators in clinical, surgical specimens. The function 

of several m7G modulators in TME cell infiltration and 
the molecular mechanisms of the anti-tumor immune 
response are still unclear, despite the fact that the role of 
m7G in many cell types and microenvironments is begin-
ning to emerge. For the purpose of characterizing TME 
cell infiltration in various m7G modification patterns, 
LGG immunotherapy was investigated. In a trial of PD-1/
L1 inhibitors for the treatment of glioma, Cloughesy 
Timothy F et  al. [35] found that the neoadjuvant PD-1 
blockade administration promotes the local and sys-
temic antitumor immune response and could be a more 
effective strategy for treating this consistently fatal brain 

Fig. 9  A–E. Comparison of the expression profiles of five hub genes (EIF4E, EIF4E3, EIF4E2, NCBP1, and NCBP2) between TCGA (518 LGG samples) 
and GTEx (207 healthy brain samples) cohorts by means of GEPIA. F. Bar plots representing the expression of five hub genes in LGG and healthy 
brain samples assessed by performing qRT-PCR (***p < 0.001, *p < 0.05). G-K. EIF4E, EIF4E2, EIF4E3, NCBP1, and NCBP2 gene conservation analysis 
among Homo sapiens was visualized using the UCSC genome browser
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Fig. 10  A–B Western blot experiment highlights the expression profile of NCBP1, NCBP2, EIF4E, EIF4E2, and EIF4E3 proteins in a total of ten tissue 
samples of LGG and ten healthy brain tissues. C–M Relative expression levels of NCBP1, NCBP2, EIF4E, EIF4E2, and EIF4E3 (five potentially prognostic 
m7G regulatory proteins) in ten LGG tissues and ten normal brain tissues. GAPDH was utilized as a loading control. The values were normalized 
by log2 fold change (ratio of tumor to healthy tissue expression) of the target proteins

Fig. 11  A, B. Immunohistochemistry (IHC) staining of intractable epilepsy tissues and LGG tissue using hematoxylin and eosin (HE) staining
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tumor. In addition, PD-1 neoadjuvant therapy similarly 
modulated  the tumor immune microenvironment in a 
single-arm phase II clinical trial(NCT02550249) aiming 
to examine the feasibility, safety, and immunobiological 
effects of PD-1 blockade in individuals undergoing sur-
gery for glioblastoma [36], resulting in elevated cytokine 
expression, increased immune cell tumor infiltration, and 
clonal expansion of tumor-infiltrating T cells.

Therefore, an in-depth study of the role of PD-1/L1 
in tumors is needed to improve the benefits of therapy. 
For example, in our anti-PD-1 cohort study, individuals 
with a high m7G Score showed significant clinical ben-
efit and significantly prolonged survival. However, no 
considerable differences in immunotherapy outcomes 
among individuals in different m7G Score subgroups 
were observed. Interestingly, in the anti-PD-L1 cohort, 
individuals with low m7G Scores had better prognostic 
outcomes and were more inclined to CR/PR. As a result, 
evaluating m7G modification patterns is a promising and 
reliable biomarker for evaluating patient prognosis and 
relevant clinical outcomes following immunotherapy. 
PD-1 or PD-L1 response may be represented by the dif-
ferential status of m7G alteration, which may also aid in 
predicting the efficacy of anti-PD-1/L1 Immunotherapy 
and PD-1/L1 immunotherapy.

Additionally, using patterns of m7G methylation modi-
fication, we identified DEGs. Additional investigation 
revealed that these DEGs contained signature genes 
related to the m7G pattern and tumor prognosis. These 
m7G pattern-associated signature genes were genotyped 
based on cluster analysis. ssGSEA results indicated that 
they were closely associated with significantly enhanced 
hallmark pathway activity. After that, adjusting mRNA 
levels in accordance with the m7G methylation modi-
fied genes, we classified them into groups with high and 
low expression based on median mRNA expression. Fur-
thermore, the m7G riskScore was developed to assess the 
m7G modification pattern of different LGG patients and 
to counteract the impact of individual heterogeneity. In 
individuals with LGG, this offered an accurate guide fori-
Immunotherapy. Numerous studies have shown that high 
TMB is closely related to clinical benefits and prolonged 
survival in patients [37–39]. To aid clinical decision-
making, TMB can be employed as a predictive biomarker 
for LGG patients. The results of our study showed that 
the m7G score was substantially and positively corre-
lated with TMB, i.e., lower TMB scores in the Low-m7G 
score group and Low-TMB grouping represented bet-
ter prognostic outcomes, and when the Low-m7G score 
combined with Low-TMB indicated better prognostic 
outcomes, which further validated the predictive advan-
tage of m7G score in immunotherapy for LGG patients. 
In addition, we identified six drugs with significant 

sensitivity in the prognostic model (Bleomycin, Cispl-
atin, Docetaxel, Etoposide, and Gemcitabine) that may 
improve the clinical outcome of LGG.

Numerous studies have found that m7G regulator hub 
genes (EIF4E, EIF4E3, EIF4E2, NCBP1, and NCBP2) are 
crucial in tumor progression and metastasis. EIF4E is a 
key translation messenger ribonucleic acid (mRNA) to 
protein initiator in eukaryotic cells, previously Dr. Rug-
gero et  al. [40] found that EIF4E ± mice containing only 
one copy incubated by gene editing in mice, although 
expressing only 50% of the amount of EIF4E, do not affect 
the overall mRNA translation of the mice but rather tar-
get the expression of only a specific class of genes, espe-
cially those in some oncogenic pathways. The EIF4E-Sox2 
axis has also been demonstrated to represent a novel 
mechanism for unmodulated self-renewal of glioma-
initiating cells, offering a potential therapeutic target for 
glioma [41]. Using a particular structural pose, Frosi Yuri 
et  al. showed how molecules interact with eIF4E at the 
eIF4G binding site [42]. In addition, it has been shown 
that the upregulation of eukaryotic translation initiation 
factor 4E enhances cell proliferation both in  vitro and 
in  vivo and is linked to an unsatisfactory prognosis in 
cases of gallbladder cancer [43]. In addition, High EIF4E2 
expression has been shown by Yang et al. to be an inde-
pendent prognostic risk factor for UM patients. During 
the course of UM, EIF4E2 may be crucial in hypoxia-
related signaling pathways [44]. A regulatory mechanism 
for this potential tumor suppressor in the inhibition of 
HIF-2- and eIF4E2-mediated translation activation of 
oncogenic mRNAs was discovered by other research-
ers, who found that DDX28 (DEAD Box Protein Family 
Member) is a Negative Regulator of Hypoxia-Inducible 
Factor 2α- and Eukaryotic Initiation Factor 4E2-Directed 
Hypoxic Translation [45]. Melanson Gaelan et  al. found 
the EIF4E2-Directed Hypoxic Cap-Dependent Transla-
tion Machinery Reveals Novel Therapeutic Potential for 
Cancer Treatment [46]. eIF4E3 is a core component of 
translation initiation and regulation in eukaryotic cells 
and can selectively control the translation and expres-
sion of oncogenes. eIF4E3 is a newly identified potential 
oncogene. According to prior studies, overexpression of 
eIF4E3 can compete for target mRNAs that bind eIF4E 
and prevent the translation of factors such as VEGF, sug-
gesting that eIF4E3 is a potential oncogene against eIF4E 
[47]. Landon, AL  et al. [48] further found that in addi-
tion to inhibiting the function of eIF4E1, eIF4E3 can ini-
tiate the translation of n-Myc, HMGA, CDX2, Twist, etc. 
which are usually not the target genes of eIF4E1, suggest-
ing that eIF4E3 can initiate the translation of target genes 
different from eIF4E1.

Nuclear cap-binding proteins NCPB1 and NCPB2 
(known in the literature as cap-binding protein 80 
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[CBP80] and CBP20, respectively, based on their 
molecular weights) form heterodimers to produce 
nuclear CBC, which is largely conserved from plants 
to humans [49]. Strong evidence revealed that NCPB1 
and NCPB2 engage in transcription, splicing, tran-
scriptional output and translation, and the processing 
of histone RNA15 and mammalian spliceosome [50]. 
In addition, one researcher extensively investigated 
the function of NCBP1 in lung cancer cell prolifera-
tion and migration using two lung cancer cell lines 
with NCBP1 knockdown and overexpression. H1299 
cells’ proliferation and migration were inhibited when 
NCBP1 was downregulated, whereas the effect was 
contrary when NCBP1 was subjected to overexpres-
sion. These findings imply that lung cancer cell pro-
liferation and migration may be at least  facilitated by 
NCBP1 [51]. In addition, hypoxic tumor-associated 
fibroblasts increase NCBP2-AS2/HIAR through an 
enhanced VEGF signaling pathway and promote 
endothelial cell sprouting [52].

RT-qPCR was conducted to explore the expression of 
hub genes, revealing that, with the exception of EIF4E3, 
our samples shared a similar expression pattern with 
the samples from the public database. Western blot 
analysis showed that the protein expression levels of 
EIF4E2 and NCBP1 were significantly elevated in gli-
oma tissues compared to matched healthy brain tissues. 
In contrast, immunohistochemical analysis of 10 refrac-
tory epilepsy tissues and 10 lower-grade gliomas (WHO 
grade II-III) tissues showed that lower-grade gliomas 
did not significantly increase in EIF4E2 and NCBP1 
protein expression, while EIF4E, EIF4E3, and NCBP2 
were increased. The value of the m7G score in clinical 
practice for individuals with LGG is demonstrated by 
a systematic study of the score. The m7G score can be 
utilized to analyze the TME cell infiltration status that 
corresponds to the m7G methylation pattern in LGG 
patients, which can improve our understanding of the 
immunophenotype of LGG and enhance the trans-
lational impact of therapy. Moreover, the m7G score 
could serve as an independent predictive biomarker 
for LGG, providing additional criteria for clinical treat-
ment and evaluating the clinical outcomes of immu-
notherapy. Importantly, this study confirms the role of 
m7G regulators or m7G phenotype-associated genes in 
LGG, offering new avenues for epigenetic and oncolog-
ical studies and potential regulatory mechanisms.

While we explored the transcriptional link between 
m7G methylation modifications and LGG in our study, 
it is important to note that not all m7G methylation 
alterations are fully reflected in transcriptional changes. 
Other factors, such as protein modification states, 
also play a crucial role. As such, additional studies are 

necessary, along with histology data, to fully compre-
hend the relationship between m7G methylation modi-
fications and LGG.

Conclusion
In summary, the present investigation thoroughly 
assessed the modification patterns of 23 m7G regu-
lators in LGG. It was thus shown that various modi-
fication patterns might play a significant role in the 
variability and heterogeneity of TMB inhibition. Based 
on an analysis of m7G modification patterns, this will 
clarify the TMB infiltration features of LGG patients 
and their role in PD-1/L1. In addition to providing 
opportunities for prognosis prediction and investiga-
tion of new immunotherapies in clinical LGG patients, 
this encourages basic research in related fields.
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