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Abstract

Immunoglobulin genes are rarely considered as disease susceptibility genes despite their obvious 

and central contributions to immune function. This appears to be a consequence of historical 

views on antibody repertoire formation that no longer stand, and of difficulties that until recently 

surrounded the documentation of the suite of antibody genes in any individual. If these important 

genes are to be accessible to GWAS studies, allelic variation within the human population needs 

to be better documented, and a curated set of genomic variations associated with antibody genes 

needs to be formulated. Repertoire studies arising from the COVID-19 pandemic provide an 

opportunity to meet these needs, and may provide insights into the profound variability that is seen 

in outcomes to this infection.
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The paradox of immunoreceptor genes and their function

Although genetic differences between individuals do not always translate into differences 

in disease susceptibility, variations in even relatively obscure genes that are involved in 

immune function are often investigated for their associations with disease [1–3]. In contrast, 

despite their fundamental role in forming the antibody repertoire with which we fight 
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infections, germline immunoglobulin genes are rarely considered for their possible influence 

on disease susceptibility and disease outcome. In part, this may be because receptor 

formation was historically considered to involve random processes that maximize diversity, 

and because the large sets of highly similar germline genes were thought to ensure that each 

person’s repertoire would be of similar functionality. More recent work has shown that an 

individual’s repertoire is shaped by strong genetically-determined biases [4,5], and that a 

single codon change can alter the ability of an immunoglobulin gene to encode protective 

antibodies [6,7]. It is no longer possible to assume that V(D)J recombination can generate 

any antibody that an individual might require.

The lack of interest in exploring disease association with immunoglobulin genes may also be 

explained by the fact that until recently, it has been difficult to determine the complete set 

of germline IG genes in an individual’s genome. Now that tools and techniques are available 

for this purpose, there is an urgent need to codify variation in these sets within the human 

population. This should then allow us to explore the influence of this variation on disease 

responses.

There has also been little attention paid to a possible role for TCR genes in disease 

susceptibility, though variability in the genes of the Major Histocompatibility Complex 

(MHC) has been a recognized source of variation in the T cell response to pathogens for 

decades [8]. TCR repertoire studies have overwhelmingly focused on the CDR3 regions 

of the TCR chains (e.g. [9,10]), for these are the regions of the TCR that interact most 

closely with antigen in association with MHC. As a consequence, allelic variation of TCR 

genes within the human population is still poorly documented. In this review, we will 

therefore focus on IG genes, though many of the principles under discussion are likely to 

also apply to the TCR regions. We report that antibody repertoire studies can now be used to 

document germline IG genes, and that these studies are providing new insights into the ways 

germline genes shape the antibody repertoire. We describe how the detection of IG genes in 

genome-wide association studies (GWAS) is compromised by the poor SNP coverage of the 

immunoglobulin gene loci, and we suggest that the intense focus on the anti-SARS-CoV2 

antibody response can be used to expand this coverage. Finally, we suggest there is reason to 

believe that such genetic inquiries may also provide insights into the nature of the extreme 

variability that is seen in the outcomes of this infection.

Immunoreceptor genotypes and haplotypes

Any challenge to the view that immunoreceptor genes are of little biological significance 

requires knowledge of the sets of genes that are found in different individuals, and until 

recently, this was extremely difficult to determine. The complexity of the loci, each 

containing as many as 150 highly similar genes and pseudogenes, prevented their routine 

documentation. This has now changed.

Short-read data derived from genomic DNA, either through whole-genome sequencing 

(WGS) or targeted sequencing, is now being used to infer human germline immunoglobulin 

genes [11–13], and this is an approach that may hold promise. It is an approach that has also 

been used to study species of biomedical importance like the cynomolgus macaque [14], and 
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even the elephant [15], but further scrutiny of these data will be needed before the utility of 

the approach can be accepted. Erroneous inferences can be made [16,17], and care will be 

needed if we are to limit the impact of this upon compiled germline datasets.

We believe that high throughput sequencing of expressed antibody genes provides an 

alternative and more reliable pathway to immunoglobulin gene discovery. High throughput 

sequencing is now capable of generating datasets that capture an informative fraction of 

the repertoires of individual subjects, with low error rates [18,19]. Embedded within these 

repertoire datasets of millions of immunoreceptor sequences is other immunogenetic data 

that is usually overlooked. Contained within these datasets are individual immunogenotypes 

- the sets of germline IG genes that are present in different individuals [20–23]. Each 

germline gene identified in these datasets may be supported by hundreds or even thousands 

of V(D)J gene rearrangements, and each one of these rearrangements can be considered an 

independent piece of evidence in support of the existence of a particular combination of V, D 

and J genes. An immunogenotype representing the expressed component of an individual’s 

germline genes can therefore be defined with great confidence.

Many IG V(D)J datasets can be analyzed to determine individual haplotypes - the sets 

of germline V, D and J genes that are carried by individuals on each of their copies of 

the relevant chromosome [24,25]. This is highly significant, for V(D)J recombination is a 

chromosomal event, and particular V, D and J genes can only be paired if they are located on 

the same chromosome. Using long-read high throughput sequencing, haplotypes can even be 

extended to document the associated constant region genes that encode isotypes of different 

functionality.

Haplotype data can reveal that an individual who may carry all the necessary genes to 

produce an optimal antibody does not carry the genes on a single chromosome (Figure 1). 

The individual is therefore unable to form that antibody. Other individuals may carry the 

necessary V, D and J genes on a chromosome that lacks the gene that could encode an 

optimal defensive isotype (Figure 2). This kind of analysis therefore represents a powerful 

new way to understand the way genes contribute to variations in the B cell repertoires that 

are available to fight disease in different people.

Variability in the IGH locus

Although the first human antibody genes were reported over forty years ago, it was not until 

1998 that a complete sequence of the immunoglobulin heavy chain (IGH) variable region 

gene locus was reported [26]. The Matsuda sequence contains 44 apparently functional 

IGHV genes and 79 pseudogenes. This sequence was incorporated into the human genome 

reference assembly, because the sequencing and assembly strategies of the Human Genome 

Project were unable to accurately report regions as complex as the IGH locus. It was not 

until 2013 that a second complete sequence was reported [27]. There is substantial structural 

variation between the two reported sequences. The first reported haplotype is actually a 

mosaic of large-insert clones from three libraries, and it is missing at least 11 functional 

and open reading frame IGHV genes. The second haplotype includes an additional 101 kbp 

of sequence, with four structural variants involving ten IGHV genes (seven gains and three 
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losses) [27]. This haplotype is now the reference sequence (GRCh38) for the human IGH 

locus; however, it is critical to point out that this haplotype itself lacks known functional 

IGHV genes, and is therefore also an incomplete representation of the locus.

In recent years, direct and indirect approaches have substantially increased our knowledge 

of IG allelic variation [28,29]. Many previously unreported polymorphisms are now known, 

and allele frequencies within the human population are becoming clearer [23]. We also 

better understand the functionality of allelic variants, and variation in their usage among 

individuals. For example, the VDJbase database clearly shows that the IGHV3–66*01 and 

IGHV3–66*02 alleles are expressed at relatively high frequency, but the IGHV3–66*03 

allele is rarely utilized [23]. This has also been shown for other loci such as IGHV1–69 [6]. 

Such differences in utilization should not be assumed to only reflect differences in antibody 

selection within the individual, for genetic variants within regulatory regions can also 

exert control over V(D)J recombination. For example, polymorphism within Recombination 

Signal Sequences (RSS) has been shown to directly influence IG gene usage [30]. Such 

non-coding variants must explain data from repertoire studies showing marked variation in 

utilization frequencies amongst allelic variants that encode the same amino acid sequence 

[31].

Deletion polymorphisms within the IGH locus are also now well documented [16, 27, 

31]. Deletions of as many as 15 consecutive functional IGHV genes (IGHV3–7 to IGHV4–

28) have been reported [31]. Structural variation has even been reported in the IGHD 

locus, where a common deletion polymorphism involves six of the IGHD genes [31,32]. 

Substantial allelic variation and structural variation has also long been recognized in the 

heavy chain constant region gene locus [33], though the extent of deletion polymorphisms 

of IGHG and IGHA genes within the human population has been insufficiently documented. 

Taken together, it is clear that genetic variation in the IGH locus is common, and it is 

increasingly difficult to imagine that this would be without consequence for human health.

Antibody genes and disease susceptibility

A number of early reports described associations between genes of the IGH locus and 

antibody-associated autoimmune conditions [34–37]. The single report in this period 

described an association between immunoglobulin genes and infectious disease - a 

susceptibility to Haemophilus influenzae infection, linked to the *02 allelic variant of 

IGKV2D-29, a kappa light chain gene [38]. This allele includes two SNPs that distinguish 

it from the more protective IGKV2D-29*01 sequence, as well as having a difference 

in its RSS. For any individual carrying the allele, the RSS polymorphism results in a 

low utilization frequency in the kappa chain repertoire. This expression level may be an 

important contributing factor to the poor performance of this gene, for those individuals, in 

the context of H. influenzae infection. Although clonal selection and clonal expansion may 

ultimately lead to the development of a large clone of protective B cells, clonal selection 

involves stochastic processes. If antigen-specific B cells express surface Ig that is encoded 

by rarely-expressed genes, their numbers will be low within the naive B cell repertoire. The 

time that it takes for one or other of these cells to encounter antigen, and to be selected, 

will therefore usually be longer than is the case for more commonly-encoded specificities 

Collins et al. Page 4

Curr Opin Syst Biol. Author manuscript; available in PMC 2023 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 2). This could have important implications for the kinetics of an infection, and for its 

resolution.

In recent years, new associations with both infectious and non-infectious diseases have been 

reported. Susceptibility to chronic lymphocytic leukemia was recently associated with the 

light chain IGLV3–21*01 gene [39], while protection from influenza has been associated 

with broadly neutralizing antibodies encoded by some but not all heavy chain IGHV1–69 

alleles [6]. A phenylalanine residue within the CDR2 region of the IGHV1–69 heavy 

chain appears to be critical for this broad reactivity. The heavy chain products of seven 

of the nineteen known allelic variants of the gene lack this critical residue. It has been 

suggested that differing frequencies of these alleles within different human populations 

could ultimately contribute to variations in the efficacy of different influenza vaccines [6]. 

Another disease association is suggested by the power of the broadly-neutralizing VRC01 

class of anti-HIV antibodies. These antibodies are partially encoded by specific alleles of the 

IGHV1–2 gene [7,38].

Only a handful of disease associations in IGHV have been noted by genome-wide 

association studies (GWAS) [41–44]. For example, six SNPs mapping to the IGHV 

locus were identified in a study of Kawasaki disease (KD) in a Han Chinese population 

[41], though the signals did not reach genome-wide significance and did not localize to 

specific gene segments. Nevertheless, this is a finding that warrants further investigation, 

particularly with the recent emergence of the KD-like, SARS-CoV2-associated Multisystem 

Inflammatory Syndrome in Children (MIS-C). A more recent GWAS of rheumatic heart 

disease in the South Pacific identified a susceptibility signal that maps to the IGHV4–61*02 

allele [42].

We believe that other strong associations have not yet been found because the complexity 

of the immunoglobulin gene loci has made them challenging to interrogate effectively using 

standard high-throughput approaches, such as those employed by GWAS [16, 45]. For many 

commercially available genotyping arrays, SNP coverage is sparse and it is unclear how 

accurate imputation-based approaches are for the whole of the locus [16]. As a result, it is 

uncertain whether array-based approaches adequately represent the full extent of germline 

polymorphism in the IGH locus, including the complex patterns of shared and unshared 

SNPs within sets of allelic variants. It is the combination of SNPs within a gene that is 

probably critical for antibody function (see Figure 3). Haplotype diversity associated with 

the large structural variants in the locus are also unlikely to be effectively tagged by common 

SNPs present on microarrays [27].

The study of IG and TCR genes has tended to focus on the identification of alleles, rather 

than SNPs. This allelic variation now should also be presented as a curated set of SNPs that 

can be used for GWAS studies and as annotations of the reference assembly. Such a curated 

set could extend to regions of the loci beyond the V, D and J genes themselves - which 

have received little attention to date. Little is known, for example, about genetic variation 

in the IGH constant genes, although these genes encode the Fc regions which interact with 

the antibody Fc receptors, and so determine signalling pathway responses. A recent study 

in Brazil identified 28 new IGHG alleles that encode the IgG1, IgG2 and IgG3 isotypes 
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[46]. How these variants affect isotype function is yet to be determined. However, other 

studies have shown that allelic variants of the constant region genes can vary with respect 

to complement fixation, FcR binding and antibody-dependent cellular cytotoxicity [47, 48]. 

Complex patterns of N-glycosylation, which determine antibody functions, may also vary 

between allelic variants of constant region genes [49], and variation in IgG glycosylation 

levels have been observed between human populations [50].

Disease susceptibility and SARS-CoV2 infection

Although socio-economic factors, as well as age and comorbidities account for much 

of the worldwide variation in rates of SARS-CoV2 infection and severity of outcomes, 

genetic variation within the human population is almost certain to be a contributing factor. 

Many potential disease susceptibility genes have already been suggested. Likely contenders 

include the Angiotensin-converting enzyme 2 (ACE2) gene, the ABO blood group locus, 

genes regulating Toll-like receptor and complement pathways, and of course the MHC locus 

[51–54]. As has been true so often in the past, comprehensive reviews of potential disease 

susceptibility genes highlight MHC genes, but mention neither TCR nor IG genes. The 

general variability that has been reported in the antibody response to the SARS-CoV-2 virus, 

as well as the specific nexus between antibody genes, Kawasaki Disease and MIS-C, lead us 

to believe that antibody genes should be considered candidate susceptibility genes.

Antibody responses to the SARS-CoV-2 virus are still being defined, but are likely to range 

from disease enhancing antibodies, like those seen in response to the earlier SARS-CoV-1 

virus [55], to broadly neutralizing antibodies, that are produced by some but not all of those 

who are infected [56,57]. Based on available data thus far, it appears that SARS-CoV-2 

neutralizing IgG antibodies may develop outside the germinal centres [58]. These antibodies 

carry far fewer point mutations than are typically reported for IgG antibodies [59,60], 

emphasizing the importance of the germline. And the neutralizing antibody response is 

often convergent - that is, highly similar antibodies are seen in multiple individuals, as a 

consequence of a stereotypical response by naive B cells [59,60]. A number of these public 

clonotypes have been reported, and they use a limited number of the available germline 

genes. Broadly neutralizing antibody heavy chains have been reported to be encoded by 

IGHV1–69, IGHV3–30-3 and IGHV1–24 [61], as well as IGHV3–53 and IGHV3–66 

[62,63]. Other studies have highlighted a role for the heavy chain genes IGHV3–9 and 

IGHV3–30-3 [59] and the heavy and light chain gene pairs IGHV1–58/IGKV3–20 and 

IGHV3–30/IGKV1–39 [64].

Many of the genes that encode these neutralizing antibodies are represented by extensive 

allelic variation, and can be deleted entirely from an individual genome. Although a variety 

of important genes and allelic variants have been identified, the loss of one or more of them 

could compromise the suite of antibodies that act together in any immune response. For 

example, the region of the locus encoding the IGHV3–9 gene has been shaped by a complex 

event. Some individuals carry chromosomes bearing the IGHV1–8 and IGHV3–9 genes, 

while others carry the IGHV5–10-1 and IGHV3–64D genes [23, 27]. The IGHV3–30-3 

gene occupies the central part of another region that has been shaped by complex genetic 

events [16, 27]. Some or all of a group of seven genes, from IGHV3–30 to IGHV4–31 
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are frequently absent from the repertoire of available germline genes [23]. In view of the 

possible role of these genes in an effective antiSARS-CoV-2 response, their identification in 

different patients acquires some importance.

Structural variation is also seen in the IGHD region of the locus, and this can lead to 

an absence of other genes that are necessary for the generation of protective antibodies. 

IGHD gene usage has not yet been reported in the anti-SARS-CoV-2 response, but public 

clonotypes share IGHD genes in other viral infections. For example, the CDR3 regions 

of convergent anti-influenza antibodies are largely encoded by the IGHD5–5/5–18 gene 

sequence [65]. The IGHD5–5 gene is part of a common, large deletion polymorphism 

involving six consecutive genes (IGHD3–3 to IGHD2–8) [31, 32]. The possibility that 

IGHD genes are disease susceptibility genes should therefore be considered.

It has been suggested that the genetic basis for susceptibility to the SARS-CoV-2 virus could 

be explored by the whole genome sequencing of 500 or 1000 age- and gender-matched 

patients [66]. This approach and other large-scale initiatives [eg 67] have not yet found links 

to the IGH locus, and we believe they will have limited ability to find such links, because as 

previously outlined, routine whole genome short-read sequencing struggles to accurately and 

comprehensively document the IG loci.

We believe that high throughput sequencing of full-length V(D)J gene sequences offers a 

straightforward way to determine an immunoglobulin immunogenotype, and we recently 

established the VDJbase database to generate and document such genotypes and haplotypes 

from submitted datasets [23]. Dozens of repertoire studies are now being performed in 

search of therapeutic antibodies, and in support of the quest for a SARS-CoV-2 vaccine. 

In the years to come, it is likely that hundreds of these studies will be completed. They 

will better serve the research community if the genotyping and haplotyping data embedded 

within these datasets is extracted and shared. This will allow the research community 

to properly test whether or not different genotypes or haplotypes contribute differently 

to COVID disease protection. It will also provide data that will finally allow us to 

document the population genetics of immunoglobulin genes. This in turn will make it 

possible to investigate the contribution of antibody genes to susceptibility to all infectious 

and non-infectious antibody-associated diseases. It may also guide vaccine development. 

Many SARS-CoV-2 vaccines are in development, and different vaccines may be more or 

less effective in individuals with particular IG genotypes [68]. In time we can hope that 

personalized vaccines will be developed, in which immunogens are engineered to stimulate 

the best immune response they can, from the immunoglobulin genes that an individual has at 

hand [69].
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Text Box:

Four steps to improve understanding of the role of immunoreceptor genes in disease 

responses

1. Define a simple standard representation of the immunohaplotype. A 

standardised format will facilitate consolidation of information from multiple 

studies, and eventual use in diagnostics.

2. Encourage the routine use of immunohaplotyping in full-length adaptive 

immune receptor repertoire (AIRR) studies. Many studies have been 

conducted to examine the response to disease. Recently, studies on the 

response to COVID-19 have been published by numerous groups (For an up-

to-date list, see https://b-t.cr/t/publicly-available-covid-19-airr-seq-data-sets/

849). Routine derivation of immunohaplotypes from AIRR-Seq data could 

open up fruitful areas of investigation for an individual study, and will also 

help to create a larger consolidated dataset of immunohaplotype variation.

3. Develop improved genotyping approaches for the immunoreceptor loci. 

Current arrays poorly represent known genes and polymorphisms. Denser 

coverage of these regions on commercial arrays as a means to better represent 

known variation would enable more accurate information to be collected in 

GWAS.

4. Benchmark approaches to infer immunohaplotypes from other (non-AIRR-

Seq) sources. Some progress has been made in predicting HLA genotypes 

from widely available Next Generation Sequencing sources [70]. Predicting 

immunohaplotypes has many of the same challenges. Creating a benchmark 

framework would encourage innovation while raising awareness of the 

challenges.
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Highlights

• Genetic information encoded in the immunoglobulin loci shapes the antibody 

response

• Variations in antibody responses may affect outcomes of diseases such as 

COVID-19

• Immunoglobulin locus complexity makes documenting germline 

polymorphism a challenge

• Current SNP arrays fail to fully reflect variability in the heavy chain (IGH) 

locus

• Immunoglobulin repertoire studies can document individual variation in the 

IGH locus
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Figure 1: 
Structural and allelic variation in the IGHV locus. A. A schematic representation of all 

known functional IGHV genes of the IGH locus; the relative positions of genes are 

displayed on the reference assembly reported by Rodriguez et al. [16]. Known structural 

variants that have been characterized by genomic sequencing are also shown. Further 

variation can be inferred from VDJbase haplotypes. B. VDJbase haplotype ribbon plots 

for 12 individuals who are heterozygous at the IGHJ6 locus for alleles *02 and *03. 

Ribbons show IGHV haplotypes associated with the IGHJ6*02-bearing chromosomes. 

Black corresponds to gene deletions, grey to uncertainty, and colours represent different 

numbered alleles (eg orange = *01; purple = *02). C. Allelic variation and deletion 

polymorphisms lead to the absence of particular VDJ rearrangements from the naive IG 

repertoires of many individuals. Names of genes and alleles are for illustration purposes 

only. Panel C was created with BioRender.com.
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Figure 2: 
The generation of optimal IG specificities and optimal isotypes in individuals with differing 

IGH haplotypes. Optimal V alleles are shown in red, and deletion polymorphisms are shown 

with a cross. Cells with optimal specificities are shown with horizontal hatching and with 

red IG binding sites. Cells that express the optimal isotype for a particular response are 

shown with vertical hatching. The success of the response to a pathogen is a consequence 

of clone sizes, of the fine specificities of antigen-specific cells, and of the ability for class 

switching to result in expression of optimal isotypes. Heavy chain D and J genes, and light 

chain genes also contribute to the expression of optimal specificities, but are not shown.
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Figure 3: 
Ten SNPs define 11 reported IGHV1–69 alleles. Alleles shown are IMGT-named 

sequences that have adequate supporting evidence of their existence in VDJbase (https://

www.vdjbase.org). The nucleotide positions of the SNPs are numbered according to the 

IMGT numbering system.
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