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Introduction

Major depressive disorder (MDD) is the most common seri-
ous mental illness. According to the World Health Organiza-
tion statistics, MDD will rank first in the global human dis-
ease burden in 2030 [1], and one-third of the annual global 
suicides are related to MDD [2]. In particular, the COVID-
19 pandemic triggered a 28% increase in the prevalence of 
MDD globally [3].

The core brain regions associated with emotional disor-
ders include the hippocampus, prefrontal lobe, amygdala, 
hypothalamus, and habenula [4, 5]. However, increasing evi-
dence also shows that the visual cortex is associated with 
depression and antidepressant efficacy. In this manuscript, 
we review the research progress on visual cortex dysfunc-
tions in patients with depression and animal models, based 
on different techniques and their correlation with depres-
sion and antidepressant efficacy. Through analyzing these 
research findings, we hope to present a new perspective on 
the role of the visual cortex in the occurrence and develop-
ment of depression and antidepressant treatments.

Clinical Neuroimaging Studies of Visual Cortical 
Structure and Function in MDD

Neuroimaging is a helpful non-invasive tool with which to 
investigate mechanisms underlying depression. It provides 
anatomical and physiological information through structural 
imaging and functional imaging [6]. Combining the static 
and dynamic information from these imaging studies can 
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help to understand the complex pathophysiology of MDD 
(Fig. 1).

Structural Imaging of the Visual Cortex

As early as 2004, Sanacora et al. found that the grey mat-
ter volume (GMV) of the occipital lobe of MDD patients 
was significantly increased, while the total volume and 
white matter volume of the occipital lobe were significantly 
reduced compared with healthy controls (HCs) in a small 
sample as measured by structural magnetic resonance imag-
ing (sMRI) [7]. An independent large sample sMRI study 
further found that the occipital cortex GMV of lifelong 
MDD patients is abnormally increased compared with non-
lifelong MDD patients [8]. Support vector machine classi-
fier analysis of sMRI data showed increased GMV in the 
bilateral superior marginal gyrus and occipital lobe of MDD 
patients, whereas increased GMV was found in the right dor-
solateral prefrontal lobe of bipolar disorder (BD) patients. 
These structural differences can distinguish MDD and BD 
at the individual level with 75% accuracy [9]. However, a 
study found that young people who often witnessed domestic 
violence in childhood, as a high-risk group for depression, 
have decreased GMV and thickness of the visual cortex in 
adulthood, the bilateral secondary visual cortex and the left 
occipital pole being the most strongly affected [10].

An association study between patients with recurrent 
MDD and HCs showed that single nucleotide polymor-
phisms (SNPs) of two thyroid hormone transporter genes, 
rs496549, and rs479640, are associated with GMV in the left 
occipital cortex [11]. The Shanghai Mental Health Center 
analyzed the interaction of the tumor necrosis factor-α SNP, 
rs1799724, with voxel-based morphometry and structural 
covariance-based graph theory in 144 MDD patients and 
111 HCs, and found that the interaction of rs1799724 is only 
localized to the visual cortex (right superior occipital gyrus), 
and the visual cortex volume of MDD patients is smaller 
than that of HCs [12]. An analysis of the transcriptome-
based polygenic risk score (T-PRS) from a non-clinical sam-
ple of young adults with MDD and the Psychiatric Genomics 
Consortium-MDD genome-wide association analysis data-
base demonstrated that T-PRS is associated with the sever-
ity of depression and hypergyrification in the temporal and 
occipital lobes of male MDD patients [13].

Occipital bending (OB) is an asymmetrical development 
of the occipital lobe where one lobe crosses the midline of 
the brain and wraps around the other lobe. This condition is 
three times more common in MDD patients than HCs and 
right OB is strongly correlated with major depression. MDD 
patients with right OB have a greater cortical thickness in 
three areas of the left occipital lobe (cuneus, lingual gyrus, 
and calcarine sulcus) and a 20% reduction in the size of the 

Fig. 1   Neuroimaging studies of visual cortical structure and function 
in depressed patients. The changes in the visual cortex in depressed 
patients are observed through structural and functional imaging. Red 
upward arrows indicate an increase; red downward arrows indicate a 
decrease. BLA, basolateral amygdala; CBF, cerebral blood flow; DC, 

degree centrality; FC, functional connectivity; GMV, grey matter vol-
ume; OB, occipital bending; rs-fMRI, resting-state functional mag-
netic resonance imaging; sMRI, structural magnetic resonance imag-
ing; t-fMRI, task-related functional magnetic resonance imaging; V1, 
primary visual cortex.
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bilateral lateral ventricles [14]. Taken together, these cortical 
structural differences, including GMV and OB, may sug-
gest maladaptive visual cortical plasticity changes relating 
to depression.

Function Imaging of the Visual Cortex

Resting‑State Functional Magnetic Resonance Imaging 
(rs‑fMRI)

Comparison of the degree centrality (DC) in 10 different 
frequency subbands in the rs-fMRI blood oxygenation level-
dependent (BOLD) fluctuation data showed that there are 
frequency-specific changes in the occipital lobe of MDD 
patients. The decreased DC in MDD patients is mainly con-
centrated in the occipital lobe in the low-frequency band 
[15]. The visual cortex can be divided into the ventral path-
way for sensing shapes and the dorsal pathway for sensing 
spatial position [16]. In MDD patients, the dorsal visual 
pathway, involved in visuospatial processing, and the ante-
rior/posterior parts of the right temporoparietal junction, 
involved in cognitive, emotional, and social processes, show 
interrupted resting-state functional connectivity [17]. Mul-
tivariable distance correlation between the dorsal attention 
network and the dorsal/ventral visual network was applied 
to quantify the connectivity between the networks in 86 
drug-naive MDD patients and 73 HCs. It was found that 
the autonomy of the dorsal/ventral visual network in MDD 
patients was enhanced, that is a better, more economical, and 
efficient organization with enhanced independence and less 
external regulation by the attention network. These results 
showed functional dysconnectivity of the visual network in 
MDD patients that suggested a pathogenic role of visual 
systems [18].

A study based on rs-fMRI showed abnormal connections 
within and between the visual and auditory networks of 
MDD patients. The connectivity of the auditory networks, 
and visual components 2 (VC2) and 3 (VC3) in MDD 
patients are reduced. The connection between the auditory 
network and VC3 is weakened and the abnormal functional 
connectivity (FC) in the visual network is related to the clini-
cal symptoms of MDD [19]. Depression in old age includes 
early-onset depression (EOD) and late-onset depression 
(LOD). Although the clinical symptoms of both are similar, 
the potential mechanism, treatment strategy, and clinical 
prognosis are different [20]. In a study evaluating the mem-
ory, executive function, and processing speed of 82 late-life 
depression (LLD) patients (40 EOD and 42 LOD patients) 
and 90 HCs, rs-fMRI, and Granger causality analysis found 
that the functional modularity and division are different for 
EOD and LOD patients, and the dorsal visual cortex region 
of interest is a potential specific node in module allocation 
[21].

MDD and post-traumatic stress disorder (PTSD) are 
highly comorbid [22], and up to 50% of PTSD patients are 
also diagnosed with MDD [23]. A study conducted inter-
views, symptom measurements, and rs-fMRI on 38 veterans 
who met the diagnostic criteria of depression/PTSD comor-
bidity. It was found that the FC between the left basolateral 
amygdala (BLA) and the primary visual cortex (V1) was 
increased in female patients, while the severity of depressive 
symptoms in men was related to an increased FC between 
the left BLA and bilateral occipital lobes [24].

Task‑Related fMRI (t‑fMRI)

Non‑emotion Related Visual Tasks  Task-based functional 
MRI in response to visual stimuli has been applied exten-
sively in patients with MDD. An fMRI study revealed 
that MDD patients show abnormal filtering of irrelevant 
information in the visual cortex and abnormal changes in 
the FC between the frontoparietal network and the visual 
cortex [25]. Other mental disorders are usually accompa-
nied by depressive symptoms. In a study of schizophrenic 
patients, no significant activation of the middle occipital 
gyrus (MOG) was observed when they performed object 
perception-related tasks during fMRI, while both sides of 
the MOG were significantly activated in HCs. Depressive 
symptoms were significantly associated with increased acti-
vation of the right MOG, while anxiety was significantly 
associated with decreased activation [26]. BD usually 
alternates between depression and mania. The fMRI data 
showed that the visual cortical responses of patients in the 
depressive and manic states were reduced compared with 
patients in the healthy state and HCs, suggesting that abnor-
mal visual processing may be one of the characteristics of 
BD [27].

Visual Perception Changes  A psychophysical visual 
motor processing task-based study showed that MDD 
patients have enhanced motor awareness of typical inhibi-
tory stimuli compared with a control group, and the degree 
of spatial inhibition is related to the individual disease load 
[28]. The decline in spatial inhibition still exists after the 
patient has stopped medication for several months follow-
ing clinical rehabilitation, indicating that the spatial inhibi-
tion of visual pathways may be a consequence of MDD and 
may last for a long time. This MDD-specific performance 
is related to stimulus characteristics (such as contrast, size, 
and presentation time) and is the result of changes in early 
visual processing rather than general defects or cognitive 
biases [28]. A recent study evaluated the motor visual per-
ception of MDD patients by analyzing the results of their 
judgment of the direction of motion stimulated by a moving 
grating. The results showed that MDD patients took longer 
to make a correct judgment, and the weaker the peripheral 
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inhibition ability, the more severe the depression, which 
was manifested as a higher Hamilton depression score. This 
study suggested that MDD patients’ ability to follow move-
ments in the external world is significantly weakened [29]. 
Moreover, transcranial direct current stimulation (tDCS) 
of MDD patients receiving a single stimulation of the left 
dorsolateral prefrontal cortex (DLPFC) can also reverse the 
selective impairment of visual processing speed in these 
patients [30]. tDCS can stimulate the bilateral occipital lobe 
to induce long-term potentiation-like plasticity of the occip-
ital lobe in HCs, which may be an important mechanism by 
which tDCS restores synaptic plasticity disorders of mental 
diseases, such as depression and schizophrenia [31].

Emotion‑related Visual Tasks  Attention Bias: Anxious 
individuals show a “vigilance-avoidance” pattern of atten-
tion towards threatening stimuli when both threatening and 
neutral stimuli are presented simultaneously, a phenomenon 
called “threat bias” [32]. A study by Barch’s group screened 
25 adolescents with and 27 without “threat avoidance” 
using a point detection task, and assessed brain responses 
to threatening and neutral faces by fMRI [33]. The results 
showed that the activity of several regions involved in early 
visual and face processing in the occipital, parietal, and tem-
poral lobes is lower when adolescents with “threat avoid-
ance” are presented with threatening and neutral faces [33]. 
Importantly, adolescents with a history of depression and/or 
anxiety exhibit reduced activity in these three brain regions 
regardless of the type of face presented. This study suggests 
that using attention training to change threat bias during 
adolescence may reduce anxiety/depression symptoms [33]. 
An emotional interference task-based fMRI study revealed 
that MDD adolescents show greater activation in the frontal 
cingulate gyrus and parietal occipital region when ignoring 
fear faces and neutral faces, that is, they need greater brain 
activation in cognitive control and visual attention. The 
authors suggested that attention bias towards negative emo-
tions is one of the important characteristics of adolescent 
MDD [34]. In addition, a continuous attention task-based 
fMRI study showed that the activation of the occipital lobe 
decreases in adolescent MDD patients in the absence of 
reward [35]. Both adolescent and adult MDD patients have 
an impaired ability to selectively pay attention to negative 
emotions and inhibit negative stimuli. An emotional Go/
No-Go task-based fMRI study reported that MDD adoles-
cents have a decreased BOLD response in the right DLPFC 
and bilateral occipital lobe when “No-Go” targets and sad 
faces are presented, suggesting selective attention toward 
negative emotions and a reduced ability to suppress nega-
tive stimuli [36].

Impairments in Emotional Processing: The V1 region of 
MDD patients responds more strongly to emotional stimuli 
(happiness or sadness) than neutral stimuli [37] and the 

response of the right visual cortex to sadness predicts a good 
therapeutic effect of antidepressants [38]. A 7.0 T fMRI 
study showed no significant connection between V1 and 
the orbitofrontal cortex (OFC) in drug-naive female MDD 
patients, but significant positive regulation of the OFC-
V1 pathway in HCs during a negative and neutral emotion 
image-viewing task, supporting the view that interruption 
of the effective connection between OFC and V1 may be 
closely related to the impairment of negative emotion pro-
cessing and regulation in female MDD patients [39]. When 
MDD patients and HCs perform emotion regulation tasks, 
fMRI shows that the activity of the right amygdala and vis-
ual cortex in HCs are downregulated in negative emotional 
states, suggesting that there are obstacles in emotion regula-
tion of the visual cortex in MDD patients [40].

By analyzing the activity pattern of the visual association 
area, the FC between the visual association area and pre-
frontal cortex, and the relationship between the visual asso-
ciation area and core clinical symptoms, a visual delayed 
recognition t-fMRI study revealed that MDD patients have 
connectivity interruption in the process of visual work-
ing memory updating, which is related to the retention of 
unrelated negative information, and could lead to persistent 
emotional abnormalities [41]. MDD patients show an overall 
decrease in the accuracy of performing emotional conflict 
tasks and reduced BOLD activity in the occipital region, 
which is responsible for face perception and emotional infor-
mation processing. However, there is no difference in the 
response to fearful and happy faces [42]. Using alternating 
emotional and neutral visual stimuli, an fMRI study showed 
activation of the bilateral visual cortex during negative and 
neutral stimulation, but patients show stronger activation of 
the visual cortex and weaker activation of the left prefrontal 
cortex [43]. Patients with MDD and borderline personality 
disorder (BPD) differ in emotional regulation but are highly 
comorbid. A study that monitored HCs, MDD patients, and 
BPD/MDD comorbid patients by fMRI during emotional 
interference tasks showed that the visual cortex of BPD/
MDD comorbid patients is more active during the activ-
ity [44]. However, additional studies are required to reveal 
the malleability of these structural correlates of attentional 
bias and emotional processing impairments and to determine 
whether this malleability is altered in patients suffering from 
depression. Together, these results may suggest maladaptive 
changes in visual cortical network plasticity that contribute 
to, and/or result from, depression.

The response of the right visual cortex to sadness stim-
uli predicts good therapeutic effects of antidepressants in 
MDD patients. A facial stimuli-task fMRI study showed 
that the severity of depression is positively correlated with 
the response of the right visual cortex to sad stimuli and 
negatively correlated with the response of the left visual 
cortex to happy stimuli in the early stage of treatment. 
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After treatment, a decrease in the response of the right 
V1 to sad rather than happy stimuli is associated with a 
decrease in symptom scores [45]. In another study, two 
weeks of venlafaxine treatment increased the regional 
activity of the previously unresponsive right secondary 
visual cortex in MDD patients during the presentation 
of positive images under fMRI [46]. After receiving 14 
sessions of cognitive behavioral therapy (CBT), MDD 
patients completed tasks including emotional response 
and emotional regulation under fMRI. Compared to the 
baseline before treatment, the down-regulation of BOLD 
activity in the precuneus, occipital lobe, and middle fron-
tal gyrus predicts a better efficacy of CBT [47]. Inter-
estingly, unconventional antidepressant treatments also 
have an impact on the visual cortex. In a double-blind 
placebo-controlled crossover trial, Furey’s group found 
that the activation of the middle occipital lobe (MOC) 
in control participants was significantly enhanced com-
pared to patients with depression at baseline before sco-
polamine treatment [48]. MDD patients at baseline only 
show activation of the bilateral MOC when performing 
facial emotional working memory rather than facial rec-
ognition tasks, and the degree of MOC activation is posi-
tively correlated with the curative effects of scopolamine 
[48]. This study proposed that the MOC is central to the 
curative effect of rapid-onset antidepressants such as sco-
polamine, revealing that the MOC may be the neural basis 
of depression or antidepressant effects [48]. In addition, 
a long-term follow-up fMRI study of alleviated patients 
showed that the reactivity of the visual cortex is inversely 
correlated with recurrence in these patients, including 
distress tolerance. Compared with HCs, MDD patients in 
remission show a more obvious trade-off in the reactivity 
between the medial prefrontal cortex and visual cortex 
than HCs. The reactivity difference score between the two 
brain regions can better predict the recurrence of depres-
sion [49].

It is worth noting that although the above studies found 
dysfunction of the visual cortex in MDD through different 
visual emotional tasks, none of them involved treatment in 
the visual cortex. Our group designed a randomized, double-
blind, and controlled clinical trial in which we used near-
infrared neuronavigation, based on magnetic resonance, 
and demonstrated for the first time the antidepressant effect 
of targeting the visual cortex with transcranial magnetic 
stimulation (rTMS). Based on this trial, we proposed that 
the abnormal neural activity of the visual cortex is not only 
involved in emotional regulation but is also associated with a 
disorder of information processing and processing of depres-
sion [50]. In addition, we found that five consecutive days 
of rTMS in the visual cortex can improve the symptoms 
of MDD patients and increase the expression of circulat-
ing RNA of the dymeclin (DYM) gene (circDYM) in the 

plasma, and the expression of circDYM in MDD patients at 
baseline can effectively predict the efficacy of rTMS in the 
visual cortex [51].

Cerebral Blood Flow Changes

Studies have shown that the incidence of adolescent depres-
sion has increased sharply, the recurrence rate is high, and 
the functional prognosis is poor in child/adolescent MDD 
[52, 53]. As early as 1999, Bonte’s group had found occipital 
lobe perfusion defects in adolescent MDD patients during 
regional cerebral blood flow (rCBF) single-photon emission 
computed tomography (SPECT) [54]. Two years later, the 
same research group compared the rCBF of children with 
MDD and healthy children and found that some adolescent 
MDD patients had a marked defect in occipital lobe pos-
terior blood flow, and the defect was usually symmetrical, 
while other patients preferentially showed a right frontal 
lobe rCBF defect [55]. The reason for this difference is 
unclear, and follow-up research is needed to further explore 
the relationship between CBF and MDD in children/adoles-
cents. The occipital CBF in adults with MDD is also abnor-
mal. A retrospective study based on SPECT of 98 inpatients 
showed that MDD patients had decreased bilateral occipital 
CBF unrelated to age [56]. However, an abnormal increase 
of rCBF in the occipital cortex (bilateral B17, B19, and left 
B18) has been reported in unipolar MDD [57]. These con-
tradictory results might be explained by the fact that the 
clinical presentation may be one of the influencing factors 
for rCBF in the occipital lobe of MDD patients. Psychologi-
cal pain is one of the easily neglected symptoms of depres-
sion. In MDD patients with a high degree of psychological 
pain, the cerebral perfusion of the right DLPFC, occipital 
lobe, inferior frontal gyrus, and left inferior temporal gyrus 
is relatively increased, while the medullary perfusion is 
reduced [58].

Changes in Visual Cortical Neurotransmitters 
and Metabolism

The level of γ-aminobutyric acid (GABA) in the occipital 
lobe was first reported in 1999 to be 52% lower in patients 
with MDD than HCs [59]. Subsequently, a correlation 
between neurotransmitters and depression was consist-
ently found in different populations. Intravenous injection 
of the selective serotonin reuptake inhibitor (SSRI), citalo-
pram (10 mg), produced an increase of 35% in the relative 
GABA concentration in the occipital lobe, as measured by 
proton magnetic resonance spectroscopy (1H-MRS), sug-
gesting a direct action of SSRIs on cortical GABA neurons 
rather than a secondary consequence of mood improvement 
[60]. 1H-MRS showed that the level of glutathione in the 
occipital lobe of adolescent MDD patients is lower than that 
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of healthy adolescents [61]. In addition to the decrease in 
GABA concentration [62], there is also an abnormal increase 
in the glutamate level in the occipital lobe of adult MDD 
patients [7, 63]. A study comparing the 1H-MRS data of 
patients with treatment-resistant depression (TRD) and non-
TRD patients found that the level of GABA in the occipital 
lobe of TRD patients is 16.4% lower than that of non-TRD 
patients, suggesting that abnormality of the glutamate/glu-
tamine/GABA cycle may be more serious in TRD patients 
[64]. Primary insomnia and MDD are closely associated in 
cross-sectional and longitudinal studies. 1H-MRS results 
showed that patients with primary insomnia have reduced 
GABA in the occipital lobe, similar to MDD patients [65]. 
It is worth noting that a recent study showed that patients 
with depression have abnormal visual motion, which is due 
to marked deficiencies in the concentrations of the excitatory 
neurotransmitter glutamate and the inhibitory neurotrans-
mitter GABA in the brain area with sensory functions (the 
middle temporal lobe complex) [29]. Furthermore, studies 
have shown that the severity of anhedonia in MDD patients 
is negatively correlated with the level of glutathione in the 
occipital lobe, suggesting that there may be abnormal oxi-
dative stress in the occipital lobe of MDD patients [66]. In 
addition, a study analyzing the postsynaptic brain GABA 
receptor of MDD patients with [123I] iomazenil SPECT dem-
onstrated that although the decrease in GABA level in the 
occipital lobe of MDD patients is reproducible, there is no 
significant abnormality in the postsynaptic GABA receptors 
of the occipital lobe [67].

Different antidepressant therapies have potentially differ-
ent mechanisms, and their effects on the level of GABA in 
the occipital lobe are also different. Eleven MDD patients 
who took oral SSRI antidepressant treatment for 2 months 
showed significantly improved levels of GABA in the occipi-
tal lobe [68], while electroconvulsive therapy in 8 MDD 
patients tripled the concentration of GABA in the occipi-
tal lobe [69]. However, there was no significant change in 
GABA levels in the occipital lobe of MDD patients receiv-
ing 12 weeks of CBT [70]. A significant decrease in GABA 
levels in the occipital lobe also exists in recovered MDD 
patients, significantly correlating with the recurrence rate 
of depression [71], while glutamate and glutamine levels 
are significantly higher in recovered MDD and BD patients 
[72]. However, the finding of a low occipital GABA in MDD 
has been challenged. In 2015, Godlewska et al. combined 
1H-MRS with ultrashort echo time “special” technology to 
measure the levels of GABA, glutamate, and glutathione in 
the occipital lobe of MDD patients [73]. This study found no 
significant difference between the levels of GABA and glu-
tamate in the occipital lobe of MDD patients and HCs, but 
the level of glutathione in MDD patients was significantly 
lower than that in HCs [73]. After 6 weeks of SSRI treat-
ment, the depressive symptoms of MDD patients improved, 

but with no significant change in the GABA, glutamate, and 
glutathione levels [73].

As early as 1983, it was reported that the binding of 
imipramine in the occipital lobe of MDD patients was 
significantly reduced compared with HCs. The number of 
imipramine binding sites was reduced while receptor affin-
ity remained normal [74]. In 2000, a small sample study 
found that treatment with the SSRI fluvoxamine can signifi-
cantly improve the clinical symptoms of MDD patients and 
improve the uptake of [18F] fluoro-ethyl-spiperone ([18F]
FESP) in the frontal and occipital lobes [75]. The increased 
binding of [18F]FESP may reflect a modification in seroto-
nin (5-HT) receptor 2 binding capacity secondary to changes 
in cortical 5-HT activity [75]. A resting positron emission 
computed tomography (PET) readouts study showed that 8 
weeks of treatment with the SSRI antidepressant citalopram 
improved emotional symptoms and cognitive function while 
increasing glucose metabolism in the occipital lobe of LLD 
patients [76]. Similarly, acute citalopram (40 mg) treatment 
also clearly elevated glucose metabolism in the occipital 
lobe of LLD patients, and chronic treatment with citalo-
pram for 8 weeks increased glucose metabolism in the left 
occipital lobe [77]. In addition, PET-CT results showed that 
5-HT2a receptor binding potential in the occipital lobe of 
MDD patients with remission for at least 6 months increased 
by an average of 19% compared with HCs [78]. The binding 
potential was positively correlated with the dysfunctional 
attitude score of MDD patients during remission [78].

Clinical Neurophysiology Studies of the Visual 
Cortex

The steady-state visual evoked potential has been used to 
detect attention bias and the capacity of working memory 
(WM) has been evaluated before and after the induction 
of negative emotion. In the study by Woody et al., rMDD 
women (a subgroup of MDD with a higher risk for recur-
rence) showed difficulty in suppressing attention to all 
emotional disruptors before negative emotion induction. 
The strongest effect was seen with negative distractors (sad 
faces). Among all women with rMDD, lower WM ability 
indicates that it is more difficult to suppress attention to 
negative and neutral distractors [79].

Many studies have shown that ketamine has a rapid 
and efficient antidepressant effect [80]. A recent meta-
analysis has shown that intravenous ketamine has a better 
antidepressant effect than nasal spray [81]. A randomized, 
single-blind, crossover study using magnetoencepha-
lography (MEG) evaluated task-related high-frequency 
oscillations of the visual and motor cortices in 20 HCs 
after intravenous injection of 0.5 mg/kg ketamine and 
found that ketamine increased the visual cortex β and γ 
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band amplitude, but reduced the γ peak frequency [82]. 
Animal studies have shown that enhancement of the γ 
frequency band is associated with the disinhibition of 
cortical pyramidal cells [83]. Thus, regulation of the γ 
oscillation frequency by ketamine may underlie the basis 
of its rapid antidepressant effect and deserves further 
study. Ketamine can also quickly alleviate the depres-
sive symptoms of patients with TRD. A double-blind, 
crossover, placebo-controlled study compared a single 
intravenous injection of ketamine hydrochloride (0.5 mg/
kg) and a normal saline placebo in 19 untreated TRD 
patients and 15 HCs [84]. MEG data collected before and 
6-9 h after injection showed that ketamine administration 
accelerated the transmission of GABA and N-methyl-D-
aspartate in the early visual cortex (V1-V3), and led to 
direct and indirect changes in local inhibition of the early 
visual cortex and inferior frontal gyrus [84]. Moreover, 
reductions in depressive symptoms in TRD participants 
after treatment with ketamine are associated with faster 
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
transmission and increased gain control of spiny stel-
late cells in the early visual cortex [84]. Although many 
1H-MRS studies have shown that GABA concentration 
in the occipital lobe of MDD patients is significantly 
reduced, a MEG study of 19 female rMDD patients and 
18 HCs showed no abnormality in the GABA system of 
both groups, but the early visual evoked response in the 
rMDD group was significantly impaired [85].

Clinical Histological and Molecular Biological 
Studies of the Visual Cortex

The reduced occipital lobe GABA level reported in 1H-MRS 
studies, although not found in MEG studies, is supported 
by histological examination. Using a three-dimensional cell 
counting probe on postmortem samples, a reduction in the 
density of calbindin-immunoreactive GABAergic neurons 
in layer II of the occipital lobe of MDD patients has been 
found [86]. Intriguingly, the size of these GABAergic neu-
rons was unchanged in MDD patients compared to controls 
[86]. This study suggested that a deficit in cortical GABAe-
rgic interneurons may contribute to the lower GABA levels 
reported in neuroimaging studies of MDD patients.

A study using enzyme-linked immunosorbent assay in 
autopsy brain tissue samples showed that compared with 
drug-naive MDD patients and HCs, the level of brain-
derived neurotrophic factor (BDNF) in the parietal cortex 
of treated MDD patients was significantly higher, while neu-
rotrophic factor 3 levels in the parietal lobe, temporal occipi-
tal lobe, cingulate gyrus, thalamus, putamen, and caudate 
nucleus were also significantly increased [87]. This study 
revealed that antidepressant drugs mediate the changes in 
neural plasticity through the action of neurotrophic factor 
(NTF) [87]. These clinical studies suggest that GABAer-
gic interneurons and NTF levels are altered in the visual 
cortex of depressed patients (Fig. 2). However, whether 
these abnormalities in the visual cortex are fundamentally 
involved in the etiology of MDD remains to be addressed.

Fig. 2   Visual cortical neurotransmitter, metabolism, and molecu-
lar changes in depressed patients. The histological and molecular 
changes of the visual cortex in depressed patients or after antidepres-
sant treatment. Red upward arrows indicate an increase in depression; 
red downward arrows indicate a decrease in depression; green upward 
arrows indicate an increase in recovered MDD or after therapy; green 

downward arrows indicate a decrease in recovered MDD or after 
therapy. 5-HT, serotonin; AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; CB, calbindin; [18F] FESP, [18F] fluoroe-
thyl-spiperone; GABA, γ-aminobutyric acid; MDD, major depressive 
disorder; NMDA, N-methyl-D-aspartate; NTF, neurotrophic factor; 
V1, primary visual cortex; V3, visual association cortex.
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Preclinical Studies

Animal models are valuable tools in which to explore 
mechanisms of visual cortical dysfunction in the context 
of depression (Fig. 3). Preclinical studies have shown that 
depression may lead to disorders of the sensory perception 
systems, including olfactory, auditory, visual, or gustatory 
[88]. Manganese-enhanced magnetic resonance imaging in 
mouse models of interferon-induced depression showed that 
the manganese uptake in the visual cortex was significantly 
lower than that in the control group, suggesting a dysfunc-
tion of the visual cortex [89]. In a rat depression model 
established by bilateral olfactory bulb resection, chronic 
administration of citalopram significantly diminished the 
regional cerebral glucose utilization [90]. Rs-fMRI showed 
that the regional homogeneity (ReHo) of the visual cortex 
in rats with chronic unpredictable mild stress (CUMS) was 
increased, while telmisartan, an adjuvant drug for MDD with 
memory impairment, reversed the abnormal changes of the 
visual cortex [91]. Based on ReHo analysis, the spontaneous 
activity of the visual cortex in CUMS mice is impaired and 
exercise significantly reduces CUMS-induced depression-
like behaviors and increases the spontaneous activity in the 
visual cortex [92]. Male rats with both depression and erec-
tile dysfunction are considered to have non-organic erec-
tile dysfunction. fMRI in these animals indicated a central 
pathological mechanism of the visual cortex [93].

An imbalance of neuronal excitatory (E) and inhibitory 
(I) signals in the 5-HT system of the neocortical network 
can lead to serious neurological diseases, including MDD. 
Patch clamp studies have found that 5-HT in the visual cor-
tex can regulate the balance of E-I signals, suggesting its 
role in multisynaptic sensory circuits [94]. Liu and cow-
orkers established a new mouse model of early-life chronic 
mild stress without anxiety or depression-like behavior in 
adulthood and found that these mice showed normal matu-
ration of visual acuity and orientation/direction selectivity, 
while their visual cortical neurons displayed lower spatial 
frequency and higher temporal frequency than control mice 
[95]. Thus, early adverse experiences may have a lasting 
effect on the visual development of mice in a sex-dependent 
manner [95]. Intake of the SSRI antidepressant fluoxetine 
for four weeks can restore the ocular dominant plasticity and 
promote the recovery of visual function in adult amblyopic 
rats. These effects are accompanied by decreased inhibition 
in the cortex and increased BDNF expression in the visual 
cortex [96].

Fragile X pre-mutation phenotypes include anxiety, depres-
sion, social phobia, and memory defects. Mouse models of 
this condition have abnormal morphology in the pyramidal 
neurons of layer II/III of V1, resulting in abnormal synaptic 
circuits. This may be a fragile X-related characteristic lesion 
of the nervous system [97]. The orphan nuclear receptor 
gene Nurr1 is involved in the differentiation, maturation, and 

Fig. 3   Visual cortical dysfunction in animal models of depression. 
The changes of neuronal activity, metabolism, synaptic plasticity, 
and neural circuits in the visual cortex in depressive animal mod-
els or after antidepressant treatment. Red upward arrows indicate an 
increase in animal models; red downward arrows indicate a decrease 
in animal models; green upward arrows indicate an increase after 

therapy; green downward arrows indicate a decrease after therapy. 
ABCA1, ATP-binding cassette transporter A1; ApoA1, apolipopro-
tein A1; c-MSST, combined magnetic stimulation system treatment; 
ECMS, early-life chronic mild stress; Ent, entorhinal cortex; V2M, 
secondary visual cortex.
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maintenance of dopaminergic neurons. When healthy adult 
mice are forced to swim, the expression of Nurr1 is upregu-
lated rapidly and widely throughout the brain at 30 min or 3 h 
later, including the primary and secondary visual cortices, sug-
gesting that the visual cortex is involved in the stress response 
through the Nurr1 gene [98].

In 2022, our research group independently developed 
a new precision magnetic stimulation technology, com-
bined magnetic stimulation system treatment (c-MSST), 
and treated the left V1 regions in two mouse models of 
depression, CUMS and lipopolysaccharide-induced. The 
magnetoelectrical effect generated significant improve-
ment in depression-like behavior over five days. We also 
analyzed the disease/efficacy-related protein, apolipopro-
tein A1 (ApoA1), and its interacting protein, ATP bind-
ing cassette transporter A1 (ABCA1), in the V1 region by 
high-throughput omics technology, and demonstrated that 
ABCA1/ApoA1 is associated with improved synaptic plas-
ticity in the visual cortex at multiple levels, thus contributing 
to antidepressant efficacy [99].

Neural Circuit Research in Depressive Animal 
Models

In a mouse model of depression induced by long-term expo-
sure to aversive stimuli or chronic social failure stress, light 
therapy can improve depression-like behavior with observ-
able changes in synapses connecting the retina and the lat-
eral habenula [100]. Although the study did not evaluate the 
role of the visual cortex in the antidepressant effect of light 
therapy, as the most important cerebral cortex for receiving 
and processing visual information, its role deserves further 
study.

It is worth noting that a new study in 2022 showed that 
neurons in layer 5A of the mouse entorhinal cortex (Ent) 
independently project to the medial area of the secondary 
visual cortex (V2M). Chronic social frustration stress is 
widely used to induce depression-like animal models with 
two phenotypes: stress-resistant and stress-sensitive. In 
stress-sensitive mice, the activity of neurons in layer 5A of 
the Ent is significantly decreased. Inhibition of the Ent-V2M 
pathway induces depression-like behavior in stress-resistant 
mice, while activation of this pathway in stress-sensitive 
mice significantly alleviates depression-like behavior. These 
results show that the Ent-V2M axis plays an important role 
in stress-induced depression-like behavior [101].

Conclusion

The etiology and mechanism of depression are complex. It 
is urgent to deeply explore the pathophysiological mecha-
nism of depression. We believe that the importance of MDD 

visual cortical disorders is seriously underestimated. This 
review summarizes abnormalities in visual cortical struc-
tures and perfusion, information filtering, visual process-
ing, spatial inhibition, motor visual perception, attention 
bias hypotheses such as visual emotion processing disorder, 
abnormalities in neurotransmitter levels, metabolism of the 
visual cortex, the connection of visual grid function, syn-
aptic plasticity, and neural circuits. Clinical and preclini-
cal findings suggest that the alterations of the visual cortex 
structure and function are closely associated with depres-
sion-related emotions, and antidepressants can change the 
electrophysiological characteristics and neurotransmitters of 
the visual cortex, thus extending our present insights of the 
possibility of visual cortical abnormalities in the pathogen-
esis and antidepressant mechanism of depression.

Although more and more evidence shows a relationship 
between MDD and visual cortex disorders, the research 
is still in its infancy, with many problems and limitations. 
First, most studies are small-sample clinical trials, and only 
a few clinical studies have used longitudinal designs, which 
may have a certain false positive rate and lead to partially 
contradictory results. Prospective and large-scale clinical 
trials should be designed to obtain more accurate results. 
Longitudinal studies are needed to evaluate how changes 
in clinical phenotype affect imaging or neurophysiological 
findings. Second, there is no unified standard for the design 
of visual tasks for participants, so consistent and comparable 
results are difficult to obtain. Optimizing visual tasks and 
finding the corresponding representation of different types of 
visual disorders and MDD are the key problems to be solved 
in the future. Third, at present, there are only a few studies 
directly targeting the visual cortex. In the future, techniques 
such as rTMS, theta burst stimulation, or c-MSST can be 
used to directly intervene in the visual cortex. Viral vectors 
or nanomaterials can be used to deliver drugs to the visual 
cortex, so as to find direct evidence of the involvement of the 
visual cortex in MDD and develop new intervention strat-
egies. Finally, current studies on the visual cortex remain 
superficial. Most of the studies involve the whole occipital 
lobe and the visual cortex. In addition, it remains unclear 
whether positive findings are consequences and/or causes of 
depression. The possible interaction between different cell 
types in the visual cortex is a new research direction worthy 
of further exploration. Exploring the molecular mechanisms 
of depression to discover more effective, rapid, and precise 
targets for antidepressant drugs will become a new hot spot 
in the field of depression research. Identification of baseline 
biomarkers that predict and monitor the treatment response 
in MDD patients will provide important tools for personal-
ized medicine.
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