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Aims Available predictive models for sudden cardiac death (SCD) in heart failure (HF) patients remain suboptimal. We assessed 
whether the electrocardiography (ECG)-based artificial intelligence (AI) could better predict SCD, and also whether the 
combination of the ECG-AI index and conventional predictors of SCD would improve the SCD stratification among HF 
patients.

Methods 
and results

In a prospective observational study, 4 tertiary care hospitals in Tokyo enrolled 2559 patients hospitalized for HF who were 
successfully discharged after acute decompensation. The ECG data during the index hospitalization were extracted from the 
hospitals’ electronic medical record systems. The association of the ECG-AI index and SCD was evaluated with adjustment 
for left ventricular ejection fraction (LVEF), New York Heart Association (NYHA) class, and competing risk of non-SCD. 
The ECG-AI index plus classical predictive guidelines (i.e. LVEF ≤35%, NYHA Class II and III) significantly improved the dis
criminative value of SCD [receiver operating characteristic area under the curve (ROC-AUC), 0.66 vs. 0.59; P = 0.017; 
Delong’s test] with good calibration (P = 0.11; Hosmer–Lemeshow test) and improved net reclassification [36%; 95% con
fidence interval (CI), 9–64%; P = 0.009]. The Fine–Gray model considering the competing risk of non-SCD demonstrated 
that the ECG-AI index was independently associated with SCD (adjusted sub-distributional hazard ratio, 1.25; 95% CI, 
1.04–1.49; P = 0.015). An increased proportional risk of SCD vs. non-SCD with an increasing ECG-AI index was also ob
served (low, 16.7%; intermediate, 18.5%; high, 28.7%; P for trend = 0.023). Similar findings were observed in patients 
aged ≤75 years with a non-ischaemic aetiology and an LVEF of >35%.

Conclusion To improve risk stratification of SCD, ECG-based AI may provide additional values in the management of patients with HF.
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What’s new?

• Current approaches for the assessment of the risk of sudden cardiac 
death (SCD) are mainly based on left ventricular ejection fraction 
(LVEF; ≤ 35%) and functional status, and remain suboptimal.

• SCDs also occur frequently in patients without severe left ventricu
lar dysfunction, and there is currently no risk stratification algorithm 
for SCD in patients with heart failure (HF) with mildly reduced or 
preserved ejection fraction (LVEF >35%).

• This observational study showed that electrocardiography-based 
artificial intelligence significantly improved the discrimination and re
classification of SCD in patients with HF when added to the conven
tional guideline-directed indication for implantable 
cardioverter-defibrillator.

• In particular, the predictive ability was observed in patients aged ≤ 
75 years with a non-ischaemic aetiology and an LVEF of >35%.

Introduction
Heart failure (HF) is associated with poor quality of life and premature 
death.1 At present, the incidence of HF is high in both Asian (1.2–6.7%) 
and Western countries (1–14%).2–4 As the prevalence is expected to 
increase, HF is expected to generate a substantial global public health 
burden.

Sudden cardiac death (SCD), typically caused by lethal arrhythmias, is 
responsible for ∼50% of all cardiovascular deaths in patients with HF.5

Although implantable cardioverter-defibrillators (ICDs) are used to re
duce the risk of SCD, the implantation procedure is invasive, and ∼50% 
of patients with ICD implantation experience inappropriate shocks, 

reducing the quality of life and increasing mortality rates.6 Therefore, 
the accurate assessment of SCD risk in patients with HF is paramount 
for clinical decision-making to ensure appropriate device application.

Current approaches to assessing SCD risk are mainly based on left 
ventricular ejection fraction (LVEF ≤ 35%) and the New York Heart 
Association (NYHA) functional classification and remain suboptimal,7,8

resulting in ICD over- and underuse.9 Furthermore, despite the fact 
that SCD also occurs frequently in patients without severe left ven
tricular dysfunction, there is currently no risk stratification algorithm 
for SCD in patients with an LVEF of >35%.10 Artificial intelligence 
(AI) is a promising technology for deriving a statistical model from 
information-rich yet complex datasets. Electrocardiography-based AI 
(ECG-AI) models constructed by convolutional neural networks 
(CNNs) have shown promise for detecting diseases,11 predicting car
diac function,12 and estimating prognosis.13

We aimed to investigate whether AI models trained on 12-lead ECG 
will enable the detection of important features for classifying the risk of 
SCD and improve the risk stratification of patients with HF. The ability 
of ECG-based AI to predict the incidence of SCD was tested in multi
centre HF registry data that captured patients hospitalized for acute de
compensation and were successfully discharged.

Methods
Ethical approval/informed consent
According to the Ethical Guidelines for Medical and Health Research 
Involving Human Subjects and Personal Information Protection Law in 
Japan, verbal informed consent was obtained from all participants before 
the study enrolment. All patient information was recorded using an elec
tronic data-capturing system in a de-anonymized form.
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Data source and data collection
Using data from a prospective observational study [the West Tokyo Heart 
Failure Registry (WET-HF)], we analyzed hospitalized patients with HF who 
required urgent treatment for acute decompensation in four tertiary care 
hospitals (Keio University Hospital, Kyorin University Hospital, Sakakibara 
Heart Institute, and St. Luke’s International Hospital) within the metropol
itan area of Tokyo, Japan.8 The WET-HF was launched in January 2006 and 
consisted of six tertiary care hospitals as of December 2017. To ensure a 
robust assessment of the care and outcomes, baseline data and outcome 
measures were collected from the medical records. To ensure the accuracy 
and completeness of the information, the treating physicians were con
tacted by dedicated clinical research coordinators. Data were entered 
into an electronic data-capturing system, which has a robust data query en
gine and system validations for data quality. Exclusive on-site auditing by the 
investigators (Y.S. and S.K.) ensured the proper registration of each patient. 
The objective and detailed design was provided by the University Hospital 
Medical Information Network (UMIN000001171). The study protocol was 
approved by the ethical review committee of each centre, and the study was 
conducted in accordance with the Declaration of Helsinki.

Patient demographics, medical history, laboratory and other tests (such 
as electrocardiogram and echocardiogram), medications, procedures, and 
clinical outcomes during hospitalization and after discharge with a minimum 
2-year follow-up were recorded. The diagnosis of acute HF was made at the 
discretion of the treating cardiologists at each institution based on the 
Framingham criteria. In this cohort, NYHA functional class was evaluated 
at discharge by individual cardiologists at each institution and reviewed by 
the investigators (Y.S., S.K., T.K., Y.N., A.G., and T.Y.). Left ventricular ejec
tion fraction on echocardiography was assessed using the modified 
Simpson’s method during the index hospitalization after stabilization of 
the HF signs and symptoms.

All 12-lead ECG data of the patients were reported and extracted from 
the electronic medical record system of each institution. All the participat
ing hospitals used the same vendor for ECGs (Nihon Koden, Tokyo, Japan) 
throughout the study period. Electrode placement is based on a standard 
12-lead ECG in all hospitals, which has 15 voltage-time traces, including 
those 2.5 s in duration for all 12 leads and those 10 s in duration for leads 
V1, II, and V5. The ECG data were stored as measurements of the time- 
series voltage at a sampling rate of 500 Hz. Of the six hospitals, two 
were not included in the present study because the ECG data could not 
be extracted from the database. Patients who were registered in the re
maining hospitals underwent ECG at the time of discharge.

Study cohort
The patient selection and exclusion criteria as well as the group allocations 
are shown in Supplementary material online, Figure S1. A total of 2559 pa
tients who were successfully discharged between 2006 and 2017 were in
cluded in the present analysis. Patients were allocated to one of three 
cohorts (derivation, validation, or test) based on the hospital of recruit
ment. The ECG data of the patients at the time of discharge were reported 
and extracted from the electronic medical record systems. When multiple 
ECG data were available for the same patient, the latest data were included 
in the analysis.

Model training
The AI model to predict 3-year SCD was constructed using a combination 
of CNN and long short-term memory (LSTM), a variant of recurrent neural 
network (RNN) (see Supplementary material online, Figure S2). The details 
of the architecture have been published previously.14 In brief, the neural 
network is a mathematical model that is constructed with units that simu
late the function of neuron cells. The unit takes multiple inputs and multi
plies the input with internal weights. After summing the results, the 
number is inputted into a function called the activation function. The train
ing process adjusts the internal weights such that the output approaches the 
given label. The architecture used in the present study consists of a neural 
network that stacks up four layers of one-dimensional CNN suitable for de
tecting ‘shape patterns’ with a relatively low computational cost and two 
layers of LSTM suitable for learning time-series data in detail with a relatively 
high computational cost. The model was trained with the data from the der
ivation cohort to minimize the binary cross-entropy loss with the RMSProp 
optimizer with an initial learning rate of 0.0001. The model’s performance 

was calculated using data from the validation dataset at the end of each 
epoch. The final model was chosen as the one that performed best for 
50 epochs in the validation cohort (see Supplementary material online, 
Figure S3). To ensure that the model works on data that were never seen 
during training and the model selection procedure, the performance of 
the final model (i.e. the ECG-AI index) was calculated only once using 
data from the test cohort. Finally, we implemented gradient-weighted class 
activation mapping (Grad-CAM) to identify which regions in ECG were 
based on the prediction of the neural network model (see 
Supplementary material online, Figure S4). The model was trained using 
Tensorflow framework version 2.2.0 with Python version 3.6.8.

Ascertainment and classification of sudden 
cardiac death or implantable 
cardioverter-defibrillator events
The outcome measure was the composite of SCD and ICD activation (i.e. 
both shock and anti-tachycardia pacing). To ensure SCD assessment ac
curacy, the WET-HF registry was supported by a central study committee 
that adjudicated the mode of death. All deaths were reviewed by the in
vestigators and then categorized into those in need of adjudication or 
those in which the mode of death could be defined clearly. Central com
mittee members (Y.S., S.K., T.K., Y.N., A.G., and T.Y.) reviewed the ab
stracted records and adjudicated modes of death. SCD was defined as 
unexpected and otherwise unexplained death in a previously stable pa
tient or death from documented or presumed cardiac arrhythmia without 
a clear non-cardiovascular cause, including patients who were comatose 
and then died after attempted resuscitation.15 Patients who died and 
had been out of contact for more than 24 h were classified as ‘unknown 
death’.15 All other causes of death were classified as non-SCD. In addition, 
appropriate ICD activation was ascertained through device interrogation 
during regular check-ups or at a suspected instance of an arrhythmic epi
sode and SCD.

Statistical analysis
With respect to descriptive statistics, continuous variables are presented as 
medians and interquartile ranges, while categorical variables are presented 
as frequencies and percentages. For baseline characteristics, the three co
horts (i.e. derivation, validation, and test) were compared using the 
Kruskal–Wallis rank sum test for continuous variables and the χ2 test or 
Fisher’s exact test for categorical variables as appropriate.

The discriminative ability of the conventional guideline-directed indica
tion for ICD (i.e. LVEF ≤35% and NYHA Class II and III) or its combination 
with the ECG-AI index (ECG-AI combined model) for predicting composite 
SCD events over 3 years was evaluated using the receiver operating char
acteristic area under the curve (ROC-AUC) with logistic regression analysis 
and the pairwise Delong’s test. The model’s calibration performance was 
assessed by comparing the predicted and observed probabilities for the 
four groups using the Hosmer–Lemeshow test. The model’s reclassification 
of the composite SCD events was also assessed with net reclassification im
provement using the 3-year estimated probabilities of the composite SCD 
events.

Next, the model’s discriminative abilities were assessed in the 
pre-specified subgroups [i.e. age (≥ 75 vs. <75 years), sex (male vs. female), 
aetiology (ischaemic vs. non-ischaemic), and presence or absence of atrial 
fibrillation (AF)]. In the subset of patients divided by LVEF, the discriminative 
ability of the ECG-AI index, as well as the frequencies of composite SCD vs. 
non-SCD events, was assessed separately: ≤35%, 35–50%, and ≥50%. 
Furthermore, we performed sensitivity analyses using several LVEF cut-off 
values (45, 55, and 60%).

For the survival analysis to assess time-to-event, we first evaluated the 
cumulative incidence of composite SCD and non-SCD events using the 
Aalen–Johansen estimator divided by the risk of the conventional guideline- 
directed indication for ICD and the ECG-AI combined model. The optimal 
thresholds for risk categories (low vs. high risk) for the ICD indication and 
the ECG-AI combined model were determined using the Youden index. 
Next, we examined the association between the ECG-AI index and com
posite SCD events using univariate and multivariate Fine and Gray models, 
which estimated the incidence of outcomes over time and calculated sub- 
distributional hazard ratios, accounting for the competing risk of 

http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac261#supplementary-data
http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac261#supplementary-data
http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac261#supplementary-data
http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac261#supplementary-data
http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac261#supplementary-data
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non-SCD. To assess the model’s discrimination of the survival analysis, we 
used Harrel’s c-statistics for the Fine and Gray model. We transformed the 
ECG-AI index (the output of the neural network model) to be standardized 
(mean = 0; standardized deviation = 1). Finally, a survival analysis that did 
not consider the competing risk was also performed with the time- 
dependent ROC-AUC.

To visualize the proportional risk of composite SCD vs. non-SCD 
events, we divided the patients into three groups by tertile of predicted 
risk by the ECG-AI index alone and the ECG-AI combined model and cal
culated the prevalence of SCD and non-SCD events by group using a trend 
test. All analyses were conducted using the tidyverse, tidymodels, pROC, 
PredictABEL, survminer, cmprsk, riskRegression, and survival packages of 
R version 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria, 
2008).

Results
Patient characteristics
The baseline characteristics of the derivation, validation, and test co
horts are shown in Table 1. The median patient age and LVEF were 
73–78 years and 40–48%, respectively. The proportions of patients 
with NYHA functional Class II and III were 75.2, 92.4, and 93.4% in 
the derivation, validation, and test cohorts, respectively. Medical ther
apies for HF were similarly implemented during the index hospitaliza
tion across each cohort: angiotensin-converting enzyme inhibitors or 
angiotensin receptor blockers, 62.3–69.2%; beta-blockers, 75.7– 
79.2%; and mineralocorticoid receptor antagonists, 29.9–34.9%. The 
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Table 1 Patient backgrounds according to derivation, validation, and test cohorts

Value Derivation cohort 
(n = 1028)

Validation cohort 
(n = 454)

Test cohort 
(n = 1077)

P-value

Age, years 78 (69–84) 73 (60–81) 77 (67–84) <0.001

Men, n (%) 606 (58.9) 288 (63.4) 638 (59.2) 0.400

Body mass index, kg/m2 21.5 (19.3–24.1) 21.8 (19.5–24.1) 21.1 (18.7–23.8) <0.001

Systolic blood pressure, mmHg 110 (100–120) 108 (97–120) 113 (100–128) <0.001

Heart rate, bpm 70 (60–78) 71 (61–80) 70 (61–80) <0.001

LVEF, % 48 (32–59) 40 (30–56) 48 (34–59) <0.001

LVEF ≤ 35%, n (%) 321 (31.5) 209 (46.2) 290 (26.9) <0.001

NYHA Class II and III, n (%) 771 (75.2) 416 (92.4) 990 (93.4) <0.001

Ischaemic aetiology, n (%) 279 (27.1) 115 (25.3) 305 (28.3) 0.006

Previous HF hospitalization 337 (32.7) 146 (31.7) 257 (27.5) <0.001

Atrial fibrillation, n (%) 607 (59.0) 210 (46.1) 428 (39.7) <0.001

Hypertension, n (%) 653 (63.5) 266 (58.5) 766 (71.1) <0.001

Diabetes mellitus, n (%) 296 (28.8) 145 (31.8) 428 (39.7) <0.001

Stroke, n (%) 140 (12.9) 66 (14.2) 141 (13.1) 0.552

COPD, n (%) 27 (2.5) 42 (7.4) 67 (6.0) <0.001

Haemoglobin, g/dL 11.9 (10.5–13.3) 12.5 (10.7–14.3) 11.9 (10.6–13.4) <0.001

Blood urea nitrogen, mg/L 20.1 (15.2–29.4) 23.9 (18.0–32.2) 24.4 (17.9–35.2) <0.001

eGFR, mL/min/1.73 m2 51.8 (37.7–64.5) 50.3 (36.3–62.4) 49.2 (30.9–66.0) 0.001

Sodium, mEq/L 139 (137–141) 139 (137–141) 139 (136–141) 0.522

Potassium, mEq/L 4.3 (4.0–4.6) 4.4 (4.1–4.7) 4.3 (4.0–4.7) <0.001

Uric acid, mg/L 6.6 (5.3–7.8) 6.9 (5.6–8.2) 7.2 (5.7–8.6) <0.001

Albumin, mg/L 3.6 (3.3–3.9) 3.7 (3.3–4.0) 3.4 (3.0–3.7) <0.001

BNP, pg/mL* N/A 244 (116–479) 247 (128–508)

NT-proBNP, pg/mL* 1830 (1109–3612) N/A N/A

Loop diuretics, n (%) 820 (79.8) 315 (69.2) 821 (76.2) <0.001

ACEi or ARB, n (%) 640 (62.3) 315 (69.2) 687 (63.8) 0.018

Beta-blocker, n (%) 788 (76.7) 360 (79.2) 815 (75.7) 0.304

MRA, n (%) 307 (29.9) 193 (34.9) 378 (34.9) <0.001

Digitalis, n (%) 73 (7.1) 54 (7.0) 77 (7.0) 0.011

Amiodarone, n (%) 75 (7.2) 42 (8.8) 114 (10.5) 0.044

ICD, n (%) 52 (5.1) 38 (8.4) 32 (3.0) <0.001

CRT, n (%) 19 (1.9) 32 (7.1) 13 (1.2) <0.001

*BNP was measured in the validation and test cohorts, while NT-proBNP was measured in the derivation cohort. 
LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; HF, heart failure; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; 
BNP, B-type natriuretic peptide; NT-proBNP, N-terminal pro-B-type natriuretic peptide; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MRA, 
mineralocorticoid receptor antagonist; ICD, implantable cardioverter-defibrillator; CRT, cardiac resynchronization therapy.
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prevalence of ICD implantation was low at 3.0–8.4%. Overall, there 
were 236 (21.9%) deaths [48 (20.3%) SCDs and 188 (79.7%) 
non-SCDs] and 4 ICD activations occurred in 1077 patients who 
were included in the test cohort in 3 years following the hospitalization 
events.

ECG-based artificial intelligence 
performance
The ROC curve analysis, without considering time-to-event, showed a 
good discriminative ability for predicting SCD over 3 years of the 
ECG-AI index with 0.62 [95% confidence interval (CI), 0.54–0.70] of 
ROC-AUC compared to the conventional guideline-directed indication 
for ICD. Figure 1A shows that the addition of the ECG-AI index to the 
conventional indication for ICD, inclusive of LVEF and NYHA class, sig
nificantly improved the discrimination [ROC-AUC = 0.66 (95% CI, 
0.58–0.73) vs. 0.59 (95% CI, 0.52–0.66) with and without the ECG-AI 
index, P = 0.017, Delong’s test] compared to the conventional indica
tion for ICD alone [sensitivity = 0.635 and 0.423, and specificity = 
0.648 and 0.760 (χ2 test, 8.28, P < 0.001)]. The ECG-AI combined mod
el showed good calibration (Figure 1B; P = 0.11, Hosmer–Lemeshow 
test). Furthermore, the addition of the ECG-AI index to the conven
tional indication for ICD improved the indices of reclassification [net re
classification improvement, 36% (9–64%; P = 0.009)].

Similar findings were observed in the pre-specified subgroup analyses 
(Figure 2). In particular, compared to the conventional indication for 
ICD, the ECG-AI combined model showed significantly better 

discrimination of the incidence of SCD among younger patients (≤75 
years) with a non-ischaemic aetiology and the absence of AF.

The proportion of patients with SCD vs. non-SCD steadily de
creased as LVEF increased, and the ECG-AI index showed the best dis
criminative ability in patients with an LVEF of 35–50% (Figure 3). In 
sensitivity analyses using several LVEF cut-offs, the ECG-AI index 
showed the best performance for patients with LVEF 35–50%, although 
a good discriminative ability was also observed among those with an 
LVEF of 35–60% (see Supplementary material online, Table S1). In add
ition, another sensitivity analysis stratifying patients who met or did not 
meet the conventional indication for ICD showed a better discrimina
tive ability of the ECG-AI index with 0.64 (95% CI, 0.53–0.75) of 
ROC-AUC in those who did not meet the ICD indication (n = 809) 
compared with those who met the ICD indication (ROC-AUC = 
0.51 [95% CI, 0.38–0.65]).

Competing risk analysis for adjusting 
non-sudden cardiac death
The results of the survival analysis accounting for the competing risk of 
non-SCD (see Supplementary material online, Table S2) show that the 
ECG-AI index [adjusted sub-distributional hazard ratio (sHR), 1.23; 
95% CI, 1.04–1.49; P = 0.015], as well as the conventional guideline- 
directed indication for ICD (adjusted sHR, 1.98; 95% CI, 1.11–3.54; 
P = 0.02), was independently and significantly associated with the risk 
of SCD using the Fine–Gray models. In this competing analysis, our 
new model combined with the conventional indication for ICD and 
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(P = 0.11 for the Hosmer–Lemeshow test). CI, confidence interval; ECG-AI, electrocardiography-based artificial intelligence; ICD, implantable 
cardioverter-defibrillator; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; ROC-AUC, receiver operating characteristic 
area under the curve; SCD, sudden cardiac death.
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the ECG-AI index showed good discriminative ability, with a 0.65 con
cordance index (95% CI, 0.62–0.69) using a bootstrapping technique 
(500 sets).

In subgroup analyses, the ECG-AI index was also independently asso
ciated with composite SCD events among each subset of patients in the 
Fine–Gray competing risk model (see Supplementary material online, 
Figure S5). The cumulative incidence calculated via Aalen–Johansen es
timates further demonstrates this relationship [see Supplementary 
material online, Figure S6, using both the ECG-AI index (A) and the 
ECG-AI combined model with LVEF and NYHA class (B)]. These re
sults were similar to the time-dependent ROC-AUC without adjust
ment for the competing risk of non-SCD (see Supplementary 
material online, Figure S7).

Proportional risk of sudden cardiac death 
vs. non-sudden cardiac death using the 
ECG-based artificial intelligence models
Figure 4 shows that the ECG-AI index alone and the ECG-AI com
bined model could discriminate between SCD and non-SCD across 
the low-, intermediate-, and high-risk patient groups. We observed 
an increase in the proportional risk of SCD vs. non-SCD as the 
ECG-AI index increased as follows: low risk, 16.7%; intermediate 
risk, 18.5%; high risk, 28.7% (P for trend = 0.023). A similar but 
sharper separation was seen in the ECG-AI combined model: low 
risk, 11.8%; intermediate risk, 15.7%; high risk, 36.1% (P for trend 

< 0.001). Notably, the ECG-AI index found not to be associated 
with the risk of all-cause mortality over 3 years [odds ratio, 1.02 
(95% CI, 0.90–1.16); P = 0.720].

Discussion
In the present study, the association between the ECG-AI index and 
SCD was evaluated. Overall, the ECG-AI index, when added to the con
ventional guideline-directed indication for ICD based on LVEF and 
NYHA functional class, significantly improved the indices of discrimin
ation and reclassification of SCD. We also observed an increased pro
portional risk estimation of SCD vs. non-SCD. Importantly, similar 
findings were observed in subsets of patients with HF with a non- 
ischaemic aetiology and those with an LVEF of >35%.

The early AI model applied to the ECG data used neural network 
structures (i.e. multilayer perceptron) other than CNN or RNN. 
Improvements in computing and neural network technology have al
lowed the development of a deeper network pattern and, as a result, 
have enabled the handling of more complex data. For example, 
ECG-AI models using two-dimensional CNN reportedly predict age 
and sex and detect LV function and further latent atrial fibrillation 
from normal sinus rhythm ECG.12 We reported that an ECG-based 
AI model combining a one-dimensional CNN with RNN (i.e. LSTM) 
successfully identified patients with chest pain requiring urgent revascu
larization in an emergency setting.14 Recurrent neural network can the
oretically learn the time-series voltage data more precisely than CNN, 
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as it explicitly deals with data ordering. Although some complex tasks 
may still require an RNN, the superiority of model performance using 
RNN over CNN is unclear; thus, consensus is lacking about the tasks 
that are suitable for RNN or CNN. In the present study, we attempted 
to establish an ECG-AI model using RNN combined with CNN to pre
dict the incidence of SCD in patients with HF, and our results showed 
its good performance beyond the conventional indication for ICD. As 
accurate risk prediction of SCD is essential in clinical practice, and these 
new approaches using AI algorithms may help clinicians provide a basis 
for decision-making to ensure the appropriate application of ICDs.

Previous studies reported that several ECG features (e.g. heart rate 
variability, T-wave alternance, early repolarization, late potential, and 
atrial fibrillation) are associated with SCD and can provide independent 
values beyond LV dysfunction.16 In fact, the Grad-CAM showed that 
our neural network model looked at the QRS wave and T-wave, which 
seemed to focus on early repolarization, late potential, and T-wave al
ternance. Our ECG-based AI algorithm likely integrates specific fea
tures associated with SCD and can be accurately applied to a 
broader spectrum of patients with HF than classical predictive models. 
This is important as SCD represents a substantial burden for patients 
with HF and an LVEF of >35% evidenced by the fact that ∼50% of 
SCD cases occur in the absence of severe LV dysfunction following 
myocardial infarction.17 Furthermore, a retrospective analysis of 714 
patients with SCD found that only one-third exhibited sufficient LV dys
function to meet the ICD criteria.18 Our ECG-based AI algorithm de
monstrated a more refined risk stratification, in particular, an 
enrichment in the proportional risk estimation of SCD vs. non-SCD re
gardless of LVEF. As the number of patients with HF and an LVEF of 
>35% is increasing worldwide and the prediction of SCD in these pa
tient populations is considered highly difficult, we believe that our find
ings are highly encouraging.

A known limitation of the conventional ICD indication also exists in 
non-ischaemic patients. The DANISH trial (The Danish Study to Assess 
the Efficacy of ICDs in Patients with Non-ischaemic Systolic Heart 
Failure on Mortality) reported that patients with HF of a non-ischaemic 
aetiology could not benefit from ICD as a primary prevention for 
SCD.19 However, a subgroup analysis of the DANISH trial indicated 
a mortality benefit of ICD implantation in younger patients corre
sponding to a lower proportion of SCD relative to non-SCD with in
creasing age.20 In the present study, the ECG-AI index showed good 
discriminative ability, especially among younger patients with non- 
ischaemic aetiology. Another factor may be that women are more likely 
to have a non-ischaemic aetiology (see Supplementary material online, 
Table S3). In addition, the ECG-AI combined model showed significantly 
better discrimination of the incidence of SCD events among patients 
without AF than among those with AF. The reason for the better pre
dictive values of ECG-AI in these patients is uncertain, as there were no 
compelling differences in patient characteristics between these sub
groups. Therefore, the full interpretability of ECG-AIs will be the focus 
of future research.

We also observed that the ECG-AI index alone and the ECG-AI 
combined model could discriminate between SCD and non-SCD 
across patients with different risk scores. As patients at increased risk 
of SCD are also likely to have a significantly higher risk of non-SCD 
mortality, those with a higher absolute risk of SCD are not always at 
a higher proportional risk. Importantly, previous reports demonstrated 
that the projected ICD benefit is relatively insensitive to absolute SCD 
risk but is highly sensitive to proportional risk.7,21 Furthermore, a re
cent analysis identified seven novel indicators associated with SCD; 
however, all were associated with non-SCD to at least the same extent 
and, hence, do not specifically predict SCD.22 These observations fur
ther highlight the potential impact of the ECG-AI index applied in our 
study. Overall, the ECD-AI index appears well poised to meet the re
quirements of SCD predictions, which are distinctly lacking from the 
conventional standards.

Strengths and limitations
This study has some strengths including the standardized assessment 
and adjudication of SCD by the central study committee of the 
WET-HF registry and the derivation and validation of the ECG-AI index 
using different hospitals with different patient backgrounds. This study 
has also several inherent limitations. First, the limited number of pa
tients and clinical events resulted in a relatively low power to detect 
the incidence of fatal arrhythmic events, although our result is compar
able to previously reported values, demonstrating that ∼20% of pa
tients with HF with a preserved LVEF succumbed to SCD over a 
3-year follow-up period.18 Clearly, further studies are needed to valid
ate our ECG-AI in a larger-scale database with a longer follow-up. In 
addition, we did not perform substantial statistical adjustments in the 
multivariable models, in which only two parameters, LVEF and 
NYHA class, were covariables. It was not possible to adjust the model 
with respect to several aetiologies, such as dilated cardiomyopathy, 
hypertrophic cardiomyopathy, or cardiac sarcoidosis, due to limited 
power. Other indicators, such as sex and body mass index, are report
edly useful for discriminating SCD from non-SCD,7 but they have not 
been universally confirmed as relevant tools for predicting SCD. 
Furthermore, it limited our ability to train on multiple institutions and 
validate/test on an external one, because we only had access to data 
from the four institutions. Third, most patients in this cohort were of 
East Asian ancestry; thus, the results for other regions and races 
need to be confirmed. Fourth, angiotensin receptor-neprilysin inhibi
tors and sodium glucose cotransporter 2 inhibitors, which reduce the 
risk of SCD and are the standard of care based on the current clinical 
practice guidelines, were not available in Japan for patients with HF dur
ing the study period. Fifth, the lack of information regarding changes in 
medical treatment during follow-up may have affected the results of this 
study. However, from the CHAMP-HF (Change the Management of 
Patients with Heart Failure) registry including outpatients in the USA, 
it is also true that there has been no significant improvement in the 
guideline-directed medication use over 12 months, despite the publica
tion of the new HF practice guidelines and increased recognition of the 
validity of HF performance measures related to guideline-directed med
ications.23 Finally, a pitfall of these AI models is that unidentified biases 
or flaws can exist in the dataset, which can lead to misclassification.

Conclusions
In this study, the AI-based assessment of ECG was tested as a new mod
el for risk stratification of SCD in patients with HF and found to be 
more discriminatory than conventional standards. Specifically, we ob
served improved prediction of SCD in patients with an LVEF of 35– 
50% and a non-ischaemic aetiology as well as discrimination between 
SCD and non-SCD. The multifactorial nature of the ECG-AI index 
has allowed the creation of a more sensitive predictive model that 
may address the current shortcomings of capturing dynamic and pro
portional SCD risk in patients with HF. Further investigations are 
needed to validate our results in external cohorts with high-quality 
data inputs and ultimately compare AI-guided treatment with the 
standard treatment in a randomized controlled trial.
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Acknowledgements
Editorial support, in the form of medical writing, assembling tables and cre
ating high-resolution images based on authors’ detailed directions, collating 
author comments, copyediting, fact checking, and referencing, was provided 
by Editage, Cactus Communications.

http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac261#supplementary-data
http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac261#supplementary-data
http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euac261#supplementary-data


940                                                                                                                                                                                          Y. Shiraishi et al.

Funding
This research was supported by research grants from the Japanese 
Circulation Society (Y.S. 2019), the SECOM Science and Technology 
Foundation (Y.S. 2020–22), and the Uehara Memorial Foundation (Y.S. 
2021). This study was also supported by a Grant-in-Aid for Young 
Scientists (Y.S. JSPS KAKENHI, 18K15860), a Grant-in-Aid for Scientific 
Research (T.Y. JSPS KAKENHI, 23591062 and 26461088; T.K. 17K09526; 
S.K. 20H03915), a grant from the Japan Agency for Medical Research and 
Development (S.K. 201439013C), and Sakakibara Clinical Research 
Grants for the Promotion of Science (T.Y. 2012–20).

Conflict of interest: Y.S. received honoraria from Otsuka 
Pharmaceuticals Co., Ltd and Ono Pharmaceuticals Co., Ltd. S.K. received 
an unrestricted research grant from the Department of Cardiology, Keio 
University School of Medicine, Bayer Pharmaceuticals Co., Ltd, Daiichi 
Sankyo Co., Ltd, and Novartis Pharma Co., Ltd. The authors declare no con
flicts of interest. The authors declare no patents, products in development, 
or marketed products.

Data availability
The data underlying this article will be shared on reasonable request to the 
corresponding author.

References
1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW et al. Heart 

disease and stroke statistics—2021 update: a report from the American Heart 
Association. Circulation 2021;143:e254–743.

2. Sato N. Epidemiology of heart failure in Asia. Heart Fail Clin 2015;11:573–9.
3. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M et al. 2021 ESC 

guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 
2021;42:3599–726.

4. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM et al. 2022 AHA/ 
ACC/HFSA guideline for the management of heart failure: a report of the American 
College of Cardiology/American Heart Association Joint Committee on Clinical 
Practice Guidelines. Circulation 2022;145:e895–e1032.

5. Solomon SD, Wang D, Finn P, Skali H, Zornoff L, McMurray JJV et al. Effect of cande
sartan on cause-specific mortality in heart failure patients: the Candesartan in Heart 
Failure Assessment of Reduction in Mortality and Morbidity (CHARM) program. 
Circulation 2004;110:2180–3.

6. Poole JE, Johnson GW, Hellkamp AS, Anderson J, Callans DJ, Raitt MH et al. Prognostic 
importance of defibrillator shocks in patients with heart failure. N Engl J Med 2008;359: 
1009–1017.

7. Shadman R, Poole JE, Dardas TF, Mozaffarian D, Cleland JGF, Swedberg K et al. A novel 
method to predict the proportional risk of sudden cardiac death in heart failure: deriv
ation of the Seattle Proportional Risk Model. Heart Rhythm 2015;12:2069–77.

8. Fukuoka R, Kohno T, Kohsaka S, Shiraishi Y, Sawano M, Abe T et al. Prediction of sudden 
cardiac death in Japanese heart failure patients: international validation of the Seattle 
Proportional Risk Model. Europace 2020;22:588–97.

9. Rohde LE, Chatterjee NA, Vaduganathan M, Claggett B, Packer M,  Desai AS et al. 
Sacubitril/valsartan and sudden cardiac death according to implantable cardioverter- 
defibrillator use and heart failure cause: a PARADIGM-HF analysis. JACC Heart Fail 
2020;8:844–55.

10. Buxton AE, Waks JW, Shen C, Chen PS. Risk stratification for sudden cardiac death in 
North America–current perspectives. J Electrocardiol 2016;49:817–23.

11. Goto S, Mahara K, Nelson LB, Ikura H, Katsumata Y, Endo J et al. Artificial 
intelligence-enabled, fully automated detection of cardiac amyloidosis using electrocar
diograms and echocardiograms. Nat Commun 2021;12:2726.

12. Attia ZI, Kapa S, Jimenez FL, McKie PM, Ladewig DJ, Satam G et al. Screening for cardiac 
contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat 
Med 2019;25:70–4.

13. Raghunath S, Cerna AEU, Jing L, vanMaanen DP, Stough J, Hartzel DN et al. Prediction of 
mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat 
Med 2020;26:886–91.

14. Goto S, Kimura M, Katsumata Y, Goto S, kamatani T, Ichihara G et al. Artificial intelli
gence to predict needs for urgent revascularization from 12-leads electrocardiography 
in emergency patients. PLoS One 2019;14:e0210103.

15. Hicks KA, Tcheng JE, Bozkurt B, Chaitman BR, Cutlip DE, Farb A et al. 2014 ACC/AHA 
key data elements and definitions for cardiovascular endpoint events in clinical trials: a 
report of the American College of Cardiology/American Heart Association Task Force 
on clinical data standards (writing committee to develop cardiovascular endpoints data 
standards). Circulation 2015;132:302–61.

16. Liew R. Prediction of sudden arrhythmic death following acute myocardial infarction. 
Heart 2010;96:1086–94.

17. Faxén J, Jernberg T, Hollenberg J, Gadler F, Herlitz J, Szummer K. Incidence and predic
tors of out-of-hospital cardiac arrest within 90 days after myocardial infarction. J Am Coll 
Cardiol 2020;76:2926–36.

18. Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R et al. Population-based 
analysis of sudden cardiac death with and without left ventricular systolic dysfunction: 
two-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll 
Cardiol 2006;47:1161–1166.

19. Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E et al. Defibrillator implant
ation in patients with nonischemic systolic heart failure. N Engl J Med 2016;375: 
1221–1230.

20. Elming MB, Nielsen JC, Haarbo J, Videbæk L, Korup E, Signorovitch J et al. Age and out
comes of primary prevention implantable cardioverter-defibrillators in patients with 
nonischemic systolic heart failure. Circulation 2017;136:1772–80.

21. Bilchick KC, Wang Y, Cheng A, Curtis JP, Dharmarajan K, Stukenborg GJ et al. Seattle 
Heart Failure and proportional risk models predict benefit from implantable 
cardioverter-defibrillators. J Am Coll Cardiol 2017;69:2606–18.

22. Rohde LE, Vaduganathan M, Claggett BL, Planczyk CA, Dorbala P, Packer M et al. 
Dynamic changes in cardiovascular and systemic parameters prior to sudden cardiac 
death in heart failure with reduced ejection fraction: a PARADIGM-HF analysis. Eur J 
Heart Fail 2021;23:1346–1356.

23. Bozkurt B. Reasons for lack of improvement in treatment with evidence-based therap
ies in heart failure. J Am Coll Cardiol 2019;73:2384–7.


	Improved prediction of sudden cardiac death in patients with heart failure through digital processing of electrocardiography
	Introduction
	Methods
	Ethical approval/informed consent
	Data source and data collection
	Study cohort
	Model training
	Ascertainment and classification of sudden cardiac death or implantable cardioverter-defibrillator events
	Statistical analysis

	Results
	Patient characteristics
	ECG-based artificial intelligence performance
	Competing risk analysis for adjusting non-sudden cardiac death
	Proportional risk of sudden cardiac death vs. non-sudden cardiac death using the ECG-based artificial intelligence models

	Discussion
	Strengths and limitations

	Conclusions
	Supplementary material
	Acknowledgements
	Funding
	Data availability
	References




