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Abstract

Statistical physics is widely used to study the nonlinear mechanical behaviors of rock. For

the limitations of existing statistical damage models and Weibull distribution, a new statisti-

cal damage with lateral damage is established. In addition, by introducing the maximum

entropy distribution function and the strict constraint on damage variable, a expression of

the damage variable matching the proposed model is obtained. Through comparing with the

experimental results and the other two statistical damage models, the rationality of the maxi-

mum entropy statistical damage model is confirmed. The proposed model can better reflect

the strain-softening behavior for rocks and respond to the residual strength, which provides

a theoretical reference for practical engineering construction and design.

1. Introduction

Unlike most continuous materials, such as metals and plastics, rock is a geological material

that contains numerous micro-pores and micro-cracks, and its mechanical progressive failure

behavior is also intricate under external loads, with strong nonlinear characteristics. Since the

concept of the stress-strain relationship of whole process for rocks was proposed [1], the study

of rock constitutive model that reflects the stress-strain relationship of whole process has been

the focus of traditional rock mechanics [2–5].

After decades of research by scholars, it is clear that the nonlinearity of the rock mechan-

ical behaviors is closely related to the multiple damage mechanisms of its internal structure,

under the external environment or loading, these damage mechanisms comprise the devel-

opment and slip of primary micro-cracks, the initiation of new micro-cracks, the fragmen-

tation and collapse of micro-pores, the elastic failure of mineral particles, the dislocation of

crystals, and the clustering effect of these micro-defects. In order to reflect the constitutive

relationship of rocks comprehensively, the damage mechanics began to be been introduced

into the research [6, 7]. With the further development of damage mechanics for constitutive

response, based on the statistical distribution characteristics of rock micro-defects, Krajci-

novic [8] firstly introduced the statistics physics to simulate the stress-strain relationship of

whole process for rocks, to some extent, which reveals the correlation mechanism between

macroscopic phenomenology and mesoscopic damage. It should be noted that, according to
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the size of the characteristic scale, the material damage can be divided into macroscopic

damage, mesoscopic damage and microscopic damage. The mesoscopic damage mechanics

mainly focuses on mesoscopic damage such as micro-cracks and micro-pores between mac-

roscopic and microscopic scales, with ignoring the microscopic damage at atomic scale,

such as dislocation and point defects.

The rational interpenetrating combination of statistics and damage mechanics (it is so-

called statistical damage mechanics), has greatly promoted the study of progressive failure and

mechanical behaviors of rocks. The constitutive models of rocks based on statistical damage

theory can be roughly divided into two categories: macroscopic models and micromechanical

models. The former accomplishes the damage evolution of the medium mechanical response

by introducing a statistical distribution function for the failure of internal structural units into

one or more sets of scalars or tensors, which is usually carried ou in the framework of contin-

uum mechanics or irreversible thermodynamics [9–11]. The latter, namely the mesomechani-

cal models, which are mainly composed of countless meso-elements that have a certain

volume at the macro level but are small enough at the micro level, investigate the initiation and

development of micro-defects at a specific scale [12–14]. In those models, the statistical distri-

bution pattern of micro-defects corresponds to the overall damage accumulation response for

rock materials.

In recent study, the failure strength of rock meso-elements is expressed in the stress or

strain space based on different rock failure criteria, and it is associated with rock damage

through the statistics [15, 16]. The mechanical properties of rock are directly affected by the

stress level of the internal structure, and this approach is just in line with this point. However,

the residual strength, that is, the strength of the softened area after the peak value of the rock,

is difficult to be fully modeled, Xu [17] and Zhu [18] improved the statistical damage mode by

introducing a damage correction factor, which only belonged to a mathematical concept and

did not involve the mesoscopic model itself. In other similar studies, the development of rock

damage is viewed as a slow process of damage accumulation, and the undamaged area would

gradually change into the damaged area which still bear the load rather than become a hollow

area [19–23]. Meanwhile, the statistical damage models coupled with other external environ-

mental influences are also emerged, for example, Lin [24] suggested that the size effect should

be considered in studying the failure process of rock with mesoscopic damage mechanics. In

fact, the models mentioned in this paragraph still belong to the traditional elastic-plastic

model with the damage variables obtained by statistics theory, more specifically, these models

can also be called mesoscopic statistical damage mechanics models. The downside is that these

models focus on axial damage but often ignore lateral damage in the process of model deriva-

tion, which is not very reasonable and inconsistent with the actual situation of rock

deformation.

In addition, the most widely used probability density distribution function is the Weibull

distribution in statistical damage models. However, Weibull distribution has its limitations,

for example, the number of samples should not be less than 30 [25], the materials of rock with

complex defect density or brittle [26, 27], and the probability distribution of rock strength is

not approximate to the power low [28]. By contrast, the maximum entropy distribution func-

tion can overcome these problems [29, 30]. As a non-parametric probability density distribu-

tion estimation method, the maximum entropy theory can directly infer the distribution

function of the parameter variables based on the information of test samples and statistical

methods without assuming the distribution of the parameter variables in advance. Besides,

information entropy [31] reflects the randomness of the parameter, so it is scientifically rea-

sonable to infer the distribution function of the randomly distributed parameter variables by

using the maximum entropy theory. Meanwhile, it can avoid nimiety additional personal
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information. Unfortunately, the maximum entropy distribution function is rarely used to

study the stress-strain behavior of rock, although Deng [32] proved the feasibility that the max-

imum entropy distribution function can describe rock mechanical behaviors, there is no rea-

sonable application constraints, so there is a risk that the calculated value of damage variable

may overflow, in other words, the maximum value of damage variable will exceed 1 in actual

calculation, which is contrary to the physical logic.

Focusing on the above problems, this paper assumed that the strength of rock meso-ele-

ments obeys the maximum entropy distribution, and which specific probability distribution

function is deduced, then the damage variable is obtained according to the statistical dam-

age theory of rock. Furthermore, based on the statistical damage theory, a new mesoscopic

statistical damage mechanics model considering the lateral damage is established, and its

constitutive relation equation is deduced. Finally, the proposed model is verified by the

experimental data, and compared with other statistical damage theory models. This study

provides some reference significance for the study of the stress-strain whole process for

rock materials.

2. Methodology

2.1 The maximum entropy principle

Information entropy is used to reflect the amount of information transferred among sys-

tems. The larger the information entropy is, the less information transmitted between sys-

tems will be; the higher the uncertainty, the greater the randomness, and vice versa.

Therefore, there is a specific relationship between information entropy and the randomness

of events. Let x be the random variable, and f(x) is the continuous probability density distri-

bution for the random variable x, then its information entropy can be expressed in the form

[31, 32].

HðxÞ ¼ E½� lnðf ðxÞ� ¼ �
Z

R
f ðxÞlnðf ðxÞÞdx ð1Þ

where H(x) is the information entropy; E represents the mathematical expectation; R
denotes the range of x.

For a particular sample group, Jaynes [29, 30] holds that f(x) with the maximum informa-

tion entropy is the most unbiased under certain information conditions, then Eq (1) can be

written as:

HðxÞmax ¼ E½� lnðfpðxÞ� ¼ �
Z

R
fpðxÞlnðfpðxÞÞdx ð2Þ

where H(x)max represents the maximum information entropy of x; fp(x) is the probability den-

sity function corresponding to H(x)max. Just like the traditional rock statistical constitutive

model, assuming that the strength of the rock meso-elements is x, fp(x) can be obtained by

solving Eq (2) when H(x) is at the maximum value. Because the maximum value of the damage

variable is 1, fp(x) needs to be constrained as:
Z

R
fpðxÞ ¼ 1 ð3Þ

fp(x) cannot be directly solved by Eqs (2) and (3) need to transform the direct solution problem

into an optimal problem by adding constraints. Herein, the information entropy constraints

mainly consist of the characteristics of the probability distribution and the statistical
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characteristics of the sample data. All in all, the optimal problem can be formulated as:

fpðxÞ 2 arg maxHðxÞ ¼ �
Z

R
fpðxÞlnðfpðxÞÞdx

s:t:
Z

R
fpðxÞ ¼ 1

Z

R
giðxÞfpðxÞdx ¼ bi

ð4Þ

8
>>>>>>><

>>>>>>>:

where gi(x) represents the restriction function. gi(x) has an indefinite form. Deng [32] sug-

gested its form is xi (i = 0, 1, . . ., m). bi is the original moment of samples. To solve Eq (4), Eq

(1) should be transformed into a Lagrange function as:

HðxÞ ¼ �
Z

R
f ðxÞlnf ðxÞdx � l0

Z

R
ðf ðxÞdx � 1Þ þ

Xm

i¼1

li½

Z

R
giðxÞf ðxÞdx� � bi ð5Þ

where λi and λ0 represent the Lagrange multipliers. If H(x) is at the maximum value, the deriv-

ative of Eq (5) is required to be zero, and the result is shown as:

@HðxÞ
@f ðxÞ

¼ 0) fpðxÞ ¼ expð� l0 �
Xm

i¼1

ligiðxÞÞ ð6Þ

Substituting Eq (6) into the restriction function into Eq (4), a nonlinear system of equations

about the Lagrange multipliers is

Z

R
expð� l0 �

Xm

i¼1

ligiðxÞÞdx ¼ 1 ð7Þ

Z

R
giðxÞexpð� l0 �

Xm

i¼1

ligiðxÞÞ ¼ bi ð8Þ

The Lagrange multipliers λ0, λ0, . . ., λi can be derived by solving Eqs (7) and (8) with

numerical solution. Next, the calculated values of λ0, λ0, . . ., λi are substituted into Eq (6), the

specific functional form of fp(x) is determined. According to the statistical definition, the prob-

ability distribution function of the meso-elements strength for rock is written as:

FðxÞ ¼
Z R

0

fpðxÞdx ¼
Z R

0

expð� l0 �
Xm

i¼1

ligiðxÞÞdx ð9Þ

where F(x) is the probability distribution function of the meso-element strength.

2.2 Statistical damage evolution of rock

Suppose that the macroscopic rock is made up of N meso-elements which are continuous with

each other. As the stress level increases, these meso-elements are destroyed, and their number

Nd increases, the damage variable D can be expressed as [18–20]:

D ¼
Nd

N
¼

N � FðxÞ
N

¼ FðxÞ ð10Þ

with substituting Eq (9) into Eq (10), the damage variable with maximum entropy can be
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expressed as

D ¼
Z R

0

expð� l0 �
Xm

i¼1

ligiðxÞÞdx ð11Þ

For the convenience of subsequent expression, the expression symbol of the strength for

rock meso-elements is replaced by F, then Eq (11) is written as

D ¼
Z R

0

expð� l0 �
Xm

i¼1

ligiðFÞÞdF ð12Þ

where D is the damage variable of rock with maximum entropy, F is the strength of rock

meso-elements.

3. Model establishment

3.1 Model derivation

The damage variable will affect the constitutive relation of rock material, which can increase

the effective stress or reduce the equivalent elastic modulus. The corresponding relationship

can be characterized as follows [33]

s∗ ¼ s=ð1 � DÞ ¼ Eε=ð1 � DÞ ð13Þ

where σ* is the effective stress; σ is the apparent stress; E is the elastic modulus; ε is strain; D is

the damage variable.

Under the external loading, an meso-element has two states of failure and non-failure [16,

17, 20, 22, 23], as shown in Fig 1. These correspond to the two states of imaginary rock

Fig 1. The statistical damage micromechanical model.

https://doi.org/10.1371/journal.pone.0283313.g001
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damaged and undamaged, respectively. S1
1

and S2
1

represent the non-failure and the failure

area, respectively. S1
2

and S2
2

denotes the lateral non-failure part and the failure part, respec-

tively. By convention, the damage variable in statistical damage mechanics is usually defined as

the ratio of the failure area to the total area, so the damage variable in axial direction can be

expressed in the form [20, 23].

D ¼ S2

1
=ðS1

1
þ S2

1
Þ ð14Þ

where D represents the damage variable in axial direction.

As shown in Fig 1, s∗
1

and s0
1

is the axial net stress applied on the non-failure area and the

failure area, respectively; s∗
3

and s0
3

is the lateral net stress involved on the non-failure part and

the failure part, respectively. Here, let s0
1
¼ sr

1
, sr

1
is the axial residual strength, based on the

static equilibrium in axial direction, we have

s1ðS
1

1
þ S2

1
Þ ¼ s∗

1
S1

1
þ sr

1
S2

1
ð15Þ

where σ1 is the axial apparent stress. Eq (14) is substituted into Eq (15), then Eq (15) can be

rewritten as

s1 ¼ s
∗
1
ð1 � DÞ þ sr

1
D ð16Þ

In terms of lateral damage, considering that in a triaxial test, the confining pressure remains

unchanged, and when rock is completely damaged, the net stress in the damaged area should

be equal to the confining pressure. Based on the above description, let s0
3
¼ Ds3, namely, in

the case of constant confining pressure, it is assumed that the net stress in the lateral damage

area is proportional to the damage degree, then the lateral static equilibrium expression is writ-

ten as follows

s3 ¼ s
∗
3
ð1 � DÞ þ Dðs3DÞ ð17Þ

Eqs (16) and (17) are different from the equations derived in existing studies that ignore the

lateral damage or are replaced s0
3

with sr
1
. By investigating Eq (17), when the damage variable

gradually rises to the maximum value (D = 1), the lateral apparent stress value is equal to the

confining pressure. It is consistent with the actual situation. Since the proposed damage

mechanics model itself is a mathematical model hypothesis, there is no unified specific expres-

sion of the relationship between rock’s exact mesoscopic physical damage mechanism and

macroscopic phenomena. On the other hand, the primary purpose of the assumption of net

stress in the lateral damage area is to solve the problem of axial residual strength. Therefore, so

the expression of the mechanical mechanism of the lateral hypothesis will not be discussed in

depth.

According to the mechanics of materials, each principal stress produces a linear strain in

two directions besides its own for a single element body. Let ε1 be the principal strain in the

direction of σ1, the expression of ε1 can be obtained as

ε1 ¼ ε0
1
þ ε@

1
þ ε

000

1
ð18Þ

where ε0
1

represents the linear strain of σ1 in the axial direction; ε@
1

is the linear strain of σ2 in

the axial direction; ε000
1

denotes the linear strain of σ3 in the axial direction. Based on strain

coordination, the strain produced by the undamaged material is consistent with that of the
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damaged material, thus

ε∗i ¼ εr
i ð19Þ

Combined with Eq (19) and Hooke’s law, the following physical equations can be obtained

as

ε0
1
¼ s∗

1
=E

ε@
1
¼ � ms∗

2
=E

ε@
1
¼ � ms∗

3
=E

ð20Þ

8
><

>:

Substitute Eq (20) into Eq (18), the new expression of ε1 is given as follows

ε1 ¼
s∗

1

E
�

2ms∗
3

E
ð21Þ

that is

s∗
1
¼ ε1Eþ 2ms∗

3
ð22Þ

Then, substitute Eq (22) into Eq (16), the following equation is given

s1 ¼ ðEε1 þ 2ms∗
3
Þð1 � DÞ þ sr

1
D ð23Þ

Eq (17) is substituted into Eq (23), Eq (23) can be further written as:

s1 ¼ Eε1ð1 � DÞ þ 2ms3ð1 � D2Þ þ sr
1
D ð24Þ

In addition, it is well-known that rock damage is closely related to the stress level, so it is

necessary to determine a damage threshold to control the onset of damage. The final statistical

model proposed here can be obtained by substituting Eq (12) into Eq (24), we have

s1 ¼ Eε1 þ 2ms3 þ ðs
r
1
� Eε1Þð

Z R

0

expð� l0 �
Xm

i¼1

ligiðxÞÞdxÞ � 2ms3½

Z R

0

expð� l0 �
Xm

i¼1

ligiðxÞÞdx�
2For F > 0

s1 ¼ Eε1 þ 2ms3 For F � 0

ð25Þ

8
><

>:

where F represents the strength of rock meso-element. For Eq (25), when F�0, namely no

damage (D = 0) occurs to rocks, the constitutive model of rock will degenerate to the tradi-

tional form.

3.2 Determination of the strength for rock meso-elements

The strength values of the rock meso-elements are the basic for determining the probability

density distribution function, which was defined in different ways. Cao [34] pointed out that

the strength values (F) of rock meso-elements are a function of stress levels, internal friction

angle, and cohesion. Pariseau [35] proposed that the failure strength of rock meso-element is

closely related to rock failure criteria. In view of the good engineering practice background of

the Mohr-Coulomb criteria, the suggestion of Deng [32] and Cao [31] is adopted here to

depict the strength of rock meso-element, i. e.

F ¼
Eε1½ðs1 � s3Þ � ðs1 þ s3Þsin��

s1 � 2ms3

ð26Þ

where φ is the internal friction.
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3.3 Discussion of the axial residual strength

Existing studies on rocks mechanics behaviors have shown that the failure process of rocks is

the process in which effective elements decrease and failure elements increase. At the same

time, macroscopic fracture plane begins to appear slowly and gradually, leading to the gradual

reduction of cohesion on the fracture plane and the gradual change of friction strength to a sta-

ble value [36], which also explains the source of rock residual strength.

As mentioned above, through the statistical damage mechanics of rock, it can be considered

that the damage meso-elements can still bear a certain stress. When rock is completely dam-

aged, the net stress of the damaged elements equals the residual strength. Here the residual

strength is used to replace the net stress in the damaged area. Herein, through the proposal in

Zareifard and Fahimifar [37], the axial residual strength is written as:

sr
1
¼ 2crcosφr=ð1 � sinφrÞ þ s3ð1þ sinφrÞ=ð1 � sinφrÞ ð27Þ

where ϕr is the internal friction angle at residual strength, and cr is the cohesion at residual

strength, linear regression was performed on the experimental data, then these two parameters

can be obtainable.

4. Model validation

To verify the model proposed in this paper, the experimental data for sandstone and marble

conducted by Zeng [38] and Rummel and Fairhurst [39] respectively is adopted here. Cao [34]

used the experimental data of the former to verify the statistical damage model based on Wei-

bull distribution (which is called WSDM for short here), and Li [40] used the experimental

data of the latter to verify the statistical damage model based on maximum entropy distribu-

tion (which is called MSDM for short here). The proposed new statistical damage model

(which is called NMSDM for short here) in this paper will be compared with these two models

respectively. It should be noted that the comparison data cited from Cao [34] and Li [40] was

obtained through the software: Graph Digitizer, which is a program for digitizing graphs and

plots. The mechanical parameters of sandstone [38] and marble [39] are shown in Table 1.

4.1 K-S test of the probability distribution

The Kolmogorov-Smirnov test (K-S test) is a useful method for nonparmetric hypothesis test,

which is mainly used to test whether a set of samples is derived from a probability distribution.

In order to confirm the correctness of the hypothesis that the strength of rock meso-elements

obey the maximum entropy distribution, so the K-S test will be carried out.

Take a set of marble samples for example, if σ2 = σ3 = 3.5MPa, through Eq (25), the strength

of rock meso-elements can be calculated as (unit: MPa): 0, 9.894, 16.534, 23.920, 30.232,

38.233, 45.740, 51.433, 57.955, 64.590, 70.385, 75.594, 80.917, 80.640, 84.750, 92.551, 92.559

and 96.346, which first-order, second-order, third-order origin moments of the above samples

are needed to be calculated, then according to Eq (7), the Lagrange multipliers are computed

as: λ0 = 3.90680, λ1 = 0.07510, λ2 = -1.4×10−3, λ3 = 5.58639×10−7. Set the maximum entropy

probability density function attained herein as f(x), the corresponding probability distribution

Table 1. Mechanical parameters of sandstone [38] and marble [39].

Rock classification Elastic module Poisson’s Internal friction

(E) Ratio (ν) angle (φ)

sandstone 95 MPa 0.2 31.1˚

marble 51.62 GPa 0.25 44.0˚

https://doi.org/10.1371/journal.pone.0283313.t001
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function is F(x), and assume H0: F(x) = F0(x); Set the empirical probability distribution func-

tion as Fn(x), and the statistic Dn can be calculated as

Dn ¼ max
� 1<x<þ1

jF0ðxÞ � FnðxÞj ð28Þ

Here, the sample size n = 19, and the significance level α is set at 0.1, the critical value D19,

0.10 = 0.363, which can be found in the K-S test table [32]. Through Eq (28), the calculated sta-

tistic D19 = 0.089, obviously D19<D19, 0.10, therefore, the original hypothesis cannot be rejected.

It means that the imitative effect of the maximum entropy probability distribution function

obtained is perfect.

4.2 Model comparison

Through the above solution method of maximum entropy function, the calculations of the

Lagrange multipliers under different confining pressures are shown in Table 2.

Through substituting the Lagrange multipliers in Table 1 into Eq (25), the rock constitutive

equation can be determined, and the calculation example is as follows:

The same group of samples in the above K-S test is still used for calculation demonstration,

in which, the strength of meso-elements for the third point is 16.534 MPa, for facilitate under-

standing, the step-by-step calculation is adopted.

First, the damage variable of the third point can be given by Eq (12), we have

D ¼
Z 16:534

0

expð� l0 �
Xm

i¼1

ligiðFÞÞdF ð29Þ

Second, the Lagrange multipliers (λ0 = 3.90680, λ1 = 0.07510, λ2 = -1.4×10−3, λ3 =

5.58639×10−7) calculated in this set of samples are substituted into Eq (29), then, using the soft-

ware MATLAB to compile a program for integrating Eq (29), and the corresponding damage

variable can be calculated to be 0.208.

Finally, by substituting the damage variable value 0.208 into Eq (24), the calculated value of

stress for the third point was obtained as 69.86 MPa, and all the other points are calculated in

this way. The obtained fitting curves of sandstone and marble are shown in Fig 2.

Although the physical properties and mechanical parameters of sandstone and marble dif-

fer greatly, overall, the proposed model can still simulate the post-peak softening behaviors of

both, which indicates the applicability of the new model. From Fig 2, it can be found that the

confining pressure influences the axial peak strength of rock and seems to increase in direct

proportion, which is consistent with the traditional rock mechanics. In addition, it can be

found that the greater the confining pressure, the greater the residual strength of the rock. The

Table 2. The calculated Lagrange multipliers under different confining pressures.

Rock classification Confining pressures /MPa Lagrange multipliers

λ0 λ1 λ2 λ3

Sandstone 0 4.45679 0.02667 -2.053725×10−4 3.95647×10−7

5 4.26732 0.02475 -2.40024×10−4 6.24729×10−7

10 5.45264 0.02547 -2.84668×10−5 -5.45348×10−8

20 4.57542 0.01621 -5.45348×10−8 -1.98512×10−8

Marble 3.5 3.90680 0.07510 -1.4×10−3 5.58639×10−7

7 3.97580 0.04340 -2.0×10−4 -4.15684×10−7

14 4.17670 0.04660 -5.0×10−4 -1.27865×10−8

https://doi.org/10.1371/journal.pone.0283313.t002
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probable reason is that the increase of confining pressure will increase the contact stress

between each element or fracture plane inside the rock, and the residual strength will still

increase when the friction coefficient remains unchanged.

The experimental curves of sandstone and marble, calculated curves of the WSDM model

for sandstone and calculated curves of the MSDM for marble serve as the control groups, the

comparison result is shown in Figs 3 and 4.

It is found that all these theoretical models can well reflect the progressive failure phenome-

non for rocks before the peak value. In the post-peak curve stage, the axial strength gradually

decreases, and the strain continues to grow, this phenomenon belongs to the strain-softening

behavior of rocks, and the three calculated curves can also well capture this characteristic. At

the end of the curve, the axial strength tends to a stable value, it is ostensibly independent of

strain, at this point, the stress state mainly depends on the loading condition and the friction

strength of the internal structure.

The actual experimental curve is not completely smooth, and there are always some abrupt

points, such as the end segment of Fig 4(A), which is more obvious. However, it is difficult for

the three theoretical models mentioned in this paper to deal with these irregular points accu-

rately. Perhaps the main reason is that the statistical distribution functions used by the three

theoretical models ultimately all belong to the continuous power functions in nature, the limi-

tation of smooth statistical distribution function naturally limits the accuracy of simulation. In

order to deal with these points thoroughly, it may be necessary to find more flexible statistical

distribution functions or carry out piecewise simulation. Besides, it is also one of the

approaches to establish a more realistic mesoscopic damage model.

4.3 Precision discussion

Mean relative error is a quantitative index to evaluate the simulation effect of a model, in this

paper, the mean relative errors of the theoretical model for sandstone and marble are calcu-

lated respectively. It should be pointed out that the mean relative errors of the models are only

used for horizontal comparison, and there is no universally accepted satisfactory value or criti-

cal value for distinguishing the simulation effect. The mean relative errors of theoretical mod-

els for sandstone and marble are given in Tables 3 and 4.

As shown in Tables 3 and 4, the proposed model can well match the experimental curves,

its total mean relative errors for sandstone and marble are 10.41% and 10.12% respectively,

and are slightly smaller than those of model WSDM and MSDM respectively. The mean rela-

tive error of the fitting results of the NMSDM model is smaller than the WSDM model under

different confining pressures, but higher than the MSDM model when the confining pressure

is 14 MPa for marble. Although the stress-strain relationship of whole process for rocks can be

Fig 2. Fitting curves of the proposed model (NMSDM): (a) sandstone; (b) marble.

https://doi.org/10.1371/journal.pone.0283313.g002

PLOS ONE Modeling for strain-softening rocks

PLOS ONE | https://doi.org/10.1371/journal.pone.0283313 March 30, 2023 10 / 15

https://doi.org/10.1371/journal.pone.0283313.g002
https://doi.org/10.1371/journal.pone.0283313


Fig 3. Comparison of experimental and calculated values for sandstone: (a) σ2 = σ3 = 0MPa; (b) σ2 = σ3 = 5MPa; (c) σ2 = σ3 =

10MPa; (d) σ2 = σ3 = 20MPa.

https://doi.org/10.1371/journal.pone.0283313.g003

Fig 4. Comparison of experimental and calculated values for marble: (a) σ2 = σ3 = 3.5MPa; (b) σ2 = σ3 = 7MPa; (c) σ2 = σ3

= 14MP.

https://doi.org/10.1371/journal.pone.0283313.g004
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reflected well by the proposed model, there are still some calculated points which deviate

slightly from the experimental curve. Probably there are two reasons: From the statistical

standpoint, the damage of rocks is complex, rely on a mathematical distribution function to

describe the gradual failure process of rocks seem too idealistic; From the standpoint of the

failure mechanism for rocks, in the gradual failure, its physical parameters will inevitably

change, and it is difficult to maintain a constant, so further research is needed.

5. Conclusions

The exploration of rock deformation process and damage mechanism has always been the

focus of geotechnical engineering research. In this research, the maximum entropy distribu-

tion function is used to describe the damage characteristics of rock, and a rock constitutive

model with lateral damage is established by using meso-damage statistics theory. Using experi-

mental data, the proposed model is compared with other theoretical models to verify its appli-

cability. The following conclusions are obtained as follows:

1. Within a certain test range of confining pressure, the current model can respond to the

mechanical behaviors of strain softening for rock. By comparison, it can be seen that the

error between the theoretical results and the experimental results is relatively small, which

has certain reference significance for the study of the progressive failure process of rock.

2. Compared with the other statistical damage meso-mechanics models established with the

same general idea, the meso-mechanics model in this manuscripts actively considers the

influence of lateral damage on the internal stress distribution of rock in conventional triax-

ial test, which is also an important reason why the current model can still maintain rela-

tively good simulation accuracy at the end of the curve.

3. The maximum entropy distribution function is more objective than Weibull function

which requires the experimental data to be used for the optimization and identification of

parameters with a repeated inversion suspicion, but the calculations of the former are more

burdensome, if for better simulation accuracy, this also can be acceptable.

4. Existing statistical damage constitutive models assume that the strain produced by the

undamaged material is consistent with that of the damaged material, based on the assump-

tions, in the progressive failure process of rock, the physical equation of the damage mate-

rial is difficult to be determined strictly, or there is a contradiction with the current

statistical damage hypothesis, which requires further research and discussion.

Table 3. Mean relative errors of theoretical models for sandstone (%).

Model Confining pressures /MPa Total mean relative error

0 5 10 20

WSDM 38.80 9.54 7.38 31.74 21.87

NMSDM 7.74 5.64 4.69 23.60 10.41

https://doi.org/10.1371/journal.pone.0283313.t003

Table 4. Mean relative errors of theoretical models for marble (%).

Model Confining pressures /MPa Total mean relative error

3.5 7 14

MSDM 15.9 8.43 6.05 10.12

NMSDM 8.05 5.89 6.39 6.77

https://doi.org/10.1371/journal.pone.0283313.t004

PLOS ONE Modeling for strain-softening rocks

PLOS ONE | https://doi.org/10.1371/journal.pone.0283313 March 30, 2023 12 / 15

https://doi.org/10.1371/journal.pone.0283313.t003
https://doi.org/10.1371/journal.pone.0283313.t004
https://doi.org/10.1371/journal.pone.0283313


Supporting information

S1 File.

(XLS)

Acknowledgments

Thanks are due to the three excellent reviewers and Associate Editor for their excellent and

professional comments to improve the quality of the paper.

Author Contributions

Conceptualization: Xiaoming Li, Mingwu Wang, Fengqiang Shen.

Data curation: Xiaoming Li, Hongfei Zhang.

Formal analysis: Mingwu Wang.

Investigation: Fengqiang Shen, Hongfei Zhang.

Methodology: Xiaoming Li.

Resources: Hongfei Zhang.

Supervision: Fengqiang Shen.

Validation: Xiaoming Li.

Writing – original draft: Xiaoming Li.

Writing – review & editing: Mingwu Wang.

References
1. Cook NGW. The failure of rock. Int. J. Rock. Mech. Sci. 1965; 2: 389–403.

2. Barla G, Barla M, Debernardi D. New triaxial apparatus for rocks. Rock Mechanics and Rock Engineer-

ing. 2010; 43: 225–230. https://doi.org/10.1007/s00603-.009-0076-7

3. Desai CS, Toth J. Disturbed state constitutive modeling based on stress-strain and nondestructive

behavior. International Journal of Solids and Structures. 1996; 33: 1609–1650. https://doi.org/10.1016/

0020-7683(95)00115-8

4. Fang X, Xu J, Wang P. Compressive failure characteristics of yellow sandstone subjected to the cou-

pling effects of chemical corrosion and repeated freezing and thawing. Eng Geol. 2018; 233: 160–171.

https://doi.org/10.1016/j.enggeo.2017.12.014.

5. Martin CD, Chandler NA. The progressive fracture of Lacdu Bonnet granite. International Journal of

Rock Mechanics and Mining Sciences. 1994; 31: 643–659. https://doi.org/10.1016/0148-9062(94)

90005-1
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