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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Pseudomonas aeruginosa is a major, but opportunistic, respiratory pathogen, which rarely

infects healthyAU : PleasenotethatasperPLOSstyle; donotuse}subjects}torefertohumans:Hence; allinstancesof }subjects}havebeenreplacedwith}individuals}throughoutthetext:individuals, mainly due to the barrier effect of the human airway epithelium

(HAE). This review explores the interaction of P. aeruginosa with HAE and the progression

of the infection. The basolateral part of the epithelium, which includes the basolateral mem-

brane of the epithelial cells and the basement membrane, is inaccessible in normal tight epi-

thelia with intact junctions. We highlight how P. aeruginosa exploits weaknesses in the HAE

barrier to gain access to the basolateral part of the epithelium. This access is crucial to initi-

ate respiratory infection and is mainly observed in the injured epithelium, in repairing or

chronically remodeled epithelium, and during extrusion of senescent cells or cell multiplica-

tion during normal epithelium renewal. The subsequent adhesion of the bacteria and cyto-

toxic action of virulence factors, including the toxins delivered by the type 3 secretion

system (T3SS), lead to retractions and cell death. Eventually, P. aeruginosa progressively

reaches the basement membrane and propagates radially through the basal part of the epi-

thelium to disseminate using twitching and flagellar motility.

Introduction

Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium mainly found in aqueous

environments and surfaces [1–4]. This opportunistic pathogen is responsible for various infec-

tions, particularly those involving the respiratory tract [5–7]. Owing to intact airway epithelial

barrier [8–11] and optimal lung defenses, P. aeruginosa is rarely pathogenic in healthy individ-

uals [12], and the development of infections depends on epithelial injuries [13–16], mucocili-

ary clearance dysfunctions [17], or immune system impairment [18–21]. Acute or chronic

pneumonia is limited to immunocompromised patients or those with defective pulmonary

function, such as mechanically ventilated patients in intensive care unit [5,22,23], and those

with cystic fibrosis (CF) [24,25] or chronic obstructive pulmonary disease (COPD) [7,26–28].

The intact human airway epithelium (HAE) is a physical and functional barrier against

pathogens [29,30]. The pseudostratified and differentiated mucociliary bronchial epithelium is

usually composed of several different types of cells, supported by the underlying basement

membrane [31] (Fig 1). The ciliated and secretory cells, which are tall, functionally
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differentiated, and highly polarized, reach the apical surface. The basal cells, which are located

at the basal pole under the columnar cells, are multipotent progenitors, which generate the

other cells during the differentiation process [31–33]. In intact healthy HAE, only apical mem-

branes are exposed to the environment [20,34]. Injuries, varying from junction disruptions to

partial shedding of the epithelium, or even to complete denudation of the basement mem-

brane, induce the HAE to initiate a repair process to regenerate and restore its function [35–

37]. In chronic inflammatory respiratory diseases such as CF or COPD, the dysregulated

inflammation can alter the respiratory epithelial repairing process [14,15,35,38–42].

The airway epithelium protects the lungs from various external assaults (pollutants, patho-

gens, allergens, etc.) in three ways. First, the airway epithelium is a physical barrier. Its imper-

meability is ensured by strongly connected cells by tight junctions, adherens junctions, and

desmosomes [43,44]. The tight junctions, located near the apical border, delimit the apical

plasma membrane from the basolateral plasma membrane of the differentiated cells [45–47].

In healthy epithelium, the basolateral part, which is composed of the basolateral cell membrane

and the underlying basement membrane, is not exposed to external agents [29,43]. Second, the

airway epithelium can expel inhaled particles from the airways using the mucociliary clearance

mechanism. The mucociliary clearance is carried out by the ciliated and secretory cells. It is

the main process for removing inhaled foreign particles from the airways [44]. The airway sur-

faces are lined by epithelial cells and covered with an airway surface layer (ASL) composed of

two parts: a mucus layer and a low-viscosity periciliary layer (PCL). Thus, the ASL lubricates

airway surfaces and facilitates ciliary beating for efficient mucus clearance [17]. The mucus

produced by secretory cells forms a continuous layer on the epithelial surface, and this three-

dimensional matrix acts as a physical barrier protecting the underlying epithelia and as a trap

for inhaled particles and exogenous microorganisms [48–50]. It is composed of mucins

(MUC5ac and MUC5b), which are heavily glycosylated proteins within the mucus to which

the pathogens attach [51–53]. Thereby, the coordinated beating of the ciliated cells’ cilia

sweeps the trapped bacteria out of the lungs toward the oropharynx where they are swallowed.

Third, the airway epithelium is capable of defending itself against infectious agents. The airway

epithelium can produce antimicrobial peptides and inflammatory cytokines, which participate

in the innate immune response [20,29].

This review discusses the interaction of P. aeruginosa with HAE as it is an integral part of its

virulence in the respiratory tract. We will first highlight that the essential step to initiate airway

infection is access to the basolateral part of the HAE by P. aeruginosa. Then, we will identify

the different steps in the HAE infection by P. aeruginosa and discuss some specific issues, such

as how the bacteria adhere to the HAE cells, what is the role of pathogen internalization by

HAE cells in infection, and how P. aeruginosa crosses and invades the epithelium.

Access to the basolateral part of HAE is crucial for P. aeruginosa to initiate

respiratory infections

1) Breach of the epithelium is a hallmark of P. aeruginosa infections. The HAE plays a

key role in defense against P. aeruginosa by being a functional physical barrier thanks to inter-

cellular junctions, mainly tight junctions, leading to epithelial polarity and impermeability.

The ability to exploit epithelial breaches to reach the binding receptors in deeper tissues is a

hallmark of P. aeruginosa infections. Most, if not all, pathologies caused by this bacterium illus-

trate this point. Cutaneous infections mostly occur after skin injuries such as extended burns

or chronic cutaneous wounds, the latter being quite common among diabetic patients [54,55].

Keratitis or corneal infections usually follow disruption of the corneal epithelium occurring

after ocular trauma, surgery, or lesions caused by contact lenses [56–59]. The risk factors of
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Fig 1. Lung epithelia structure. The lung is a complex organ composed of conducting airways and gas exchange zones.

The conducting airways branch from the trachea to terminal bronchioles that end up in the alveoli. In airways, the lining

epithelium provides a physical barrier between the external environment and the underlying parenchyma, whose

integrity is maintained by intercellular junctions. The airway epithelium ensures the protection of the lung against

inhaled particles, toxins, and pathogens through the mucociliary clearance and secretion of molecules with antibacterial,
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acute otitis externa, which is mainly observed in pools and hot tub users [60,61], include ear

canal epithelium disruptions, such as abrasion (scratching, clearing ear canals), maceration,

psoriasis, or eczema [60,61]. The likelihood of P. aeruginosa catheter-related urinary tract

infections is increased following damage to the epithelium structure during catheter insertion

or manipulation [62]. For respiratory infections, the significance of epithelial breaches is also

observed, in addition to biofilm formation and impaired mucociliary clearance. HAE lesions

are described in CF and COPD patients, but also in those undergoing intubation or mechani-

cal ventilation [13,63–65]. (See below.)

2) HAE breach allows P. aeruginosa access to the basolateral part of the epithelium.

Epithelial breaches expose the basolateral part of the epithelium (i.e., the basolateral membrane

of HAE cells and/or the basement membrane), which is normally inaccessible in healthy epi-

thelium owing to intact tight junctions [34]. Access to the basolateral part is the main element

of P. aeruginosa interaction and is crucial for initiating P. aeruginosa respiratory infections.

Many studies demonstrated that P. aeruginosa poorly interacts with an intact, healthy, and

well-polarized HAE. Conversely, numerous reports demonstrated preferential interactions with

injured or repairing epithelia, or with nonpolarized cells in the basolateral part of HAE. The

first such report showed that in rat tracheal surface, P. aeruginosa interacts in vivo more easily

with brush-injured sites than with those that are not injured [66]. Subsequent studies have also

shown infrequent adhesion to the normal epithelium but increased adhesion to areas of epithe-

lial damage and the basement membrane in airway culture models [9,67]. Lee and colleagues

confirmed the crucial role of epithelial tight junctions in interaction with P. aeruginosa. They

showed that bacterial adhesion and toxic effects are more frequently found near the free edges

of epithelial wounds, where the basolateral cell plasma membrane is accessible [68]. HAE with

intact tight junctions is entirely resistant to P. aeruginosa-induced cell apoptosis, as opposed to

nonjunctional epithelia [69]. Although the mucociliary clearance decreases bacterial access to

the epithelium, the Puchelle team reported that P. aeruginosa is unable to adhere to normal and

uninjured cells because the functional tight junctions play a key role in masking the basolateral

main receptors for bacterial attachment (see below). They described the preferential sites of

interaction with P. aeruginosa on the exposed basolateral plasma membranes, the denuded

basement membrane after injury, as well as the flattened migrating and spreading cells during

repair [11,14,15,70,71]. Other studies confirmed that basolateral plasma membranes exposed

after injury are more likely to bind P. aeruginosa and that the level of the polarity of the cells is

also an important factor, given that nonpolarized migrating cells or incompletely polarized cells

are more susceptible to P. aeruginosa binding and intoxication [72,73].

3) Main settings wherein P. aeruginosa could exploit opportunities to gain access to the

basolateral part of HAE. Injured epithelium. Following an injury to the epithelium, the

antioxidant, and antiprotease activity that act in an orchestrated way to protect the epithelium from lesion factors. The

diversity of cells constituting the epithelial barrier is adapted to the epithelial functions. In the pseudostratified epithelium

lining the trachea and bronchi, different specific cell types such as basal, goblet, and ciliated cells are found. Basal cells are

progenitor cells involved in the epithelial renewal and the anchor of the epithelium to the basement membrane through

hemidesmosomes. Goblet cells, within subepithelial glands, produce the respiratory mucus that entraps noxious particles

and is moved towards the oropharyngeal junction by the coordinated beating of ciliated cells. Some rare secretory Club

cells are also described. In the distal bronchioles, the number of basal cells decreases, and the goblet cells are progressively

replaced by Club cells, mainly involved in the production of anti-inflammatory factors and surfactant proteins. In

addition, other cell types were found more rarely: neuroendocrine cells, which serve as communicators between the

immune and nervous system by secreting neuropeptides; Tuft cells, which have chemosensory, neuronal, and

immunological functions; and pulmonary ionocytes. The alveoli are lined by type I and type II pneumocytes whose

functions are completely different: Type I pneumocytes are involved in the O2/CO2 exchange through their thin

cytoplasm, whereas type II pneumocytes secrete surfactant proteins and act as progenitor cells of the alveolar epithelium.

Created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1011221.g001
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basolateral part becomes accessible to P. aeruginosa because the basolateral membrane of adja-

cent cells and basement membrane are exposed (Fig 2A and left panel).

First, this can result from endotracheal tube insertion and manipulation that, not infre-

quently, induce mechanical damage in ventilator-associated pneumonia (VAP). The endotra-

cheal tube can cause scratching and abrasion of the HAE, removing fragments of the

epithelium and leading to denudation of the basement membrane [13,63,74]. In addition, bio-

film formation on the plastic surface and mechanical impairment of the mucociliary clearance

by the tube facilitate infection [63].

Second, this can result from induced HAE cell death. Dying cells undergo retraction and

tight junction disruptions, leading to subsequent detachment from the adjacent cells and the

basement membrane. The causes of cell injury are extremely diverse and can be induced by

pathogens (viruses, bacteria, etc.), chemical injury (pollutants, toxic substances, allergens, etc.),

or hyperactive inflammation (excess of cytokines, proteases, oxidant stress, etc.) [14,35]. Inju-

ries could be part of a potentially vicious circle since HAE injury by itself will attract immune

cells. For instance, degranulation of neutrophils contributes to inflammation and tissue dam-

age [19,25,75,76], which could increase the number of breaches and thereby provide an oppor-

tunity for P. aeruginosa to reach the basolateral part of HAE. But, a fine-tuned homeostasis has

been described in peritoneal serosa, which is likely transposable to other tissues including the

lung tissue. Indeed, Uderhardt and colleagues reported that such homeostasis is maintained to

prevent the excess of deleterious inflammation in the case of microlesion. Resident tissue mac-

rophages sense rapidly the death of individual cells and sequester the damage owing to extend-

ing membrane processes (pseudopods), thus preventing neutrophil activation [77]. In case of

too many lesions, such as exemplified below for CF and COPD, the cloaking by resident tissue

macrophages is overwhelmed and would not prevent neutrophil-driven inflammation and

subsequent tissue damage.

In CF disease, different factors contribute to P. aeruginosa infections. The most common

and well-accepted paradigm is the “low volume hypothesis” stating that in the absence of a

functional chloride channel CFTR, the airway mucus is dehydrated, hyperviscous, and thick-

ened, thereby compromising the mucociliary clearance [78,79]. The mucus stagnates in the

airways, and this aberrant accumulation of mucus provides a nidus for colonization and recur-

rent infections by opportunistic pathogens, like P. aeruginosa [78]. As CF patients become

chronically infected, P. aeruginosa adapts to the specific lung environment by genotypic and

phenotypic variations, such as loss of virulence and/or increased resistance to antimicrobials

and host immunity. P. aeruginosa usually grows as a biofilm on host tissues/epithelial surfaces

during these chronic infections [78,80]. Bacterial multiplication, following their entrapment

within the mucus, induces a vigorous inflammatory response. Moreover, the deficit in the

immune response due to CFTR dysfunction leads to persistent and hyperactive immunological

stimulation, resulting in chronic lung inflammation [18,19,78]. For instance, the decreased

CFTR functionality reduces bicarbonate secretion in the airways, then decreases the pH of the

mucus in CF patients. It leads to the inactivation of cationic antimicrobial peptides secreted by

the host and to mucus tethering and impaired mucus detachment from the lung epithelium

[78]. Activated neutrophils and macrophages accumulated in the airways, and these cells

release multiples products such as inflammatory cytokines (tumor necrosis factor (TNF)-α,

interleukin (IL)-1, IL-8), reactive oxygen species, or protease (like neutrophil elastase), all con-

tributing to the HAE destruction [19,25,75,76]. This excessive and ineffective inflammatory

response, probably exacerbated by bacterial toxins, leads to the inadvertent destruction and

damage of the HAE [14,18,19,25]. Various injuries to the HAE have been previously described

in CF airways, including microlesions, shedding areas (few basal cells are still present or even
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Fig 2. P. aeruginosa basolateral interaction and progression in the airway epithelium. A. In the first step of infection,

P. aeruginosa gains access to the basolateral part, exploiting various opportunities: 1. Injured epithelium: a. Mechanical

lesion: removal of HAE cells and denudation of the basement membrane. Ex: endotracheal tube in VAP. b. Induced

epithelial cell death: dying cells undergo retraction, tight junction disruption, and detachment from the adjacent cells and

the basement membrane. The injury could be caused by pathogens (viruses, bacteria, etc.), chemical injury (pollutants,
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total denudation of the basement membrane), epithelial sloughing and disorganization of the

epithelial tight junctions, etc. [14,39,64,81,82].

Besides the mucociliary clearance elevator, the mucus composition could also play a role in

bacterial virulence in the lung. In healthy epithelium, the mucus protects against pathogens’

epithelial adhesion and cytotoxicity and appears to play an important role in suppressing bac-

terial virulence. It was shown that mucins prevented P. aeruginosa aggregation and adhesion

to the underlying surface and that mucins triggered the dispersal of P. aeruginosa biofilm

[83,84]. Mucins significantly enhanced twitching motility and decreased biofilm formation

[85]. It was also described that mucins attenuated the virulence of P. aeruginosa, decreasing

many virulence genes (such as type 3 and 6 secretion systems (T3SS/T6SS), siderophores, and

quorum sensing), disintegrating biofilms, and reducing cytotoxicity on human epithelium

colorectal cells and burn infections in a porcine model [86]. When mucus structure and/or

properties are compromised, the mucus’ protective abilities may be significantly decreased. It

is exemplified in CF with a defect of mucin expression and mucus production associated with

more susceptibilities to P. aeruginosa infection than in the healthy lung [50].

In COPD patients, the chronic and excessive inflammation due to the causative inhaled irri-

tants (for instance, cigarette smoke) leads to an increased number of neutrophils and macro-

phages in the lungs, as well as to the activation of airway epithelial cells and mucus

hypersecretion. Emphysema and luminal occlusion by aberrant mucus and inflammatory exu-

date is commonly observed [87]. A reduced mucociliary clearance is also described in COPD

[88]. Cells produce pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IL-8, and

release elastase. Combined with the products of oxidative stress, it contributes to the HAE

breakdown [87,88]. Microbial colonization of the respiratory tract is often observed, which

can be associated with acute exacerbation, enhancing the host inflammatory response [7]. This

combined pathogen and host actions enhance HAE injuries [7]. Particularly, in COPD, the

major alteration of the lung is parenchymal destruction [65]. Coinfections with viruses and

bacteria have been described to cause more severe functional lung impairments in COPD

patients [89]. Viruses, notably the respiratory syncytial virus, alter the expression of receptor

molecules on respiratory epithelial cells and provoke cell death. In turn, an increase in the

adhesion and invasion by P. aeruginosa leads to coinfections or superinfections [7,90].

Repair of the epithelium after injury/epithelium remodeling. To regenerate and restore

its function following injury, the HAE has to repair itself. During this process, the surviving

basal cells that are adjacent to the wound edge, spread, and migrate to cover the denuded base-

ment membrane [35,91]. Basal cells then proliferate, forming a transitional squamous metapla-

sia [37]. Cells undergo a differentiation process, progressively regenerating their polarity and

reform junctions, resulting in a complete and functional pseudostratified mucociliary epithe-

lium. During this repairing process, the exposed cells display low or no differentiation levels,

toxic compounds, etc.), or excessive inflammatory processes (excess of cytokines, proteases, oxidant stress, etc.). Ex:

excess inflammation injuring HAE in CF and COPD. 2. Repair of the epithelium after injury/epithelium remodeling: a.

After an injury, HAE undergoes a repair process: basal cell dedifferentiation, spread and migration, transitional

squamous metaplasia or basal/mucous hyperplasia, and progressive differentiation. Cells display low differentiation

levels, low polarity, and no functional tight junctions. Ex: repair in CF and COPD. b. Chronic and pathologically

remodeled epithelium: squamous and goblet cells metaplasia, hyperplasia of surface goblet and basal cells. Cells display

low differentiation levels, low polarity, and no functional tight junctions. Ex: remodeled epithelia in CF and COPD. 3.

Nonpathological access in differentiated epithelium: transient disruption of tight junctions during: a. Extrusion of a

senescent cell. b. Cell division. B. P. aeruginosa virulence factors induce airway damage, notably by T3SS toxin injection

on the basolateral membranes of the cells. T3SS effectors (ExoS, ExoT, and ExoU) induce cell retraction and death,

facilitating the subsequent access of bacteria to the adjacent or underlying cells and the basement membrane. C. Bacteria

cross the epithelium by this paracellular route, gain access to the basal part, and progressively propagate radially through

the epithelium to disseminate, using pili and flagella. Created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1011221.g002
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low or no polarity, no functional tight junctions, and expressed alternative receptors, favoring

interactions with P. aeruginosa [14,15,35,43,70,72] (see “Adhesion” section and Table 1). As

for injuries described above, for CF and COPD, P. aeruginosa interactions with repairing HAE

are facilitated (Fig 2A and middle panel).

In CF and COPD, chronic and pathological remodeling, such as squamous metaplasia or

hyperplasia of goblet and basal cells, is typically observed [34,38–42,65,82]. As in the repairing

process, cells in remodeling epithelia show reduced differentiation, low polarity, absence of

functional tight junctions, and expression of alternative receptors, again enhancing their

potential interaction with P. aeruginosa [14,15,70] (see “Adhesion” section and Table 1).

Access in nonpathological conditions. Bacteria can also gain access to the basolateral part

of the HAE in differentiated epithelium without any injury or repair process, due to the nor-

mal epithelial renewal. Some studies have shown that after a transient disruption of the epithe-

lial junctions, either following extrusion of a senescent cell or cell division during

multiplication, the basolateral part becomes exposed and P. aeruginosa can interact with the

HAE [92–94]. As previously described for the pathogenic bacteria Listeria monocytogenes in

the MDCK cell line [95], Heiniger and colleagues described that P. aeruginosa adhesion to the

apical membrane of ciliated cells from primary differentiated human epithelium is very low

(see “Adhesion” section). They also showed that the interaction with the cells occurs after a

transient disruption of the epithelial barrier during the extrusion of a senescent cell. The baso-

lateral membrane of the ciliated cells is then exposed, and the bacteria can easily interact with

it [94]. Disruptions of tight junctions occur during cell divisions or cell senescence and are

both natural phenomena ensuring epithelial homeostasis [92,93]. In the MDCK cell line

model, Golovkine and colleagues showed that very soon after HAE infection (approximately 3

hours), P. aeruginosa takes advantage of these brief and transient ruptures of the epithelial bar-

rier to gain access to the basolateral part. In this model, cell deaths were not caused yet by P.

aeruginosa but were natural/physiological deaths [93] (Fig 2A and right panel).

The clinical impact of the interaction of P. aeruginosa to the basolateral part in vivo in

healthy humans might be low and insufficient to develop an infection, as P. aeruginosa is rarely

described in community-acquired pneumonia [96]. The functional mucociliary clearance and

competent immune defenses are likely to clear most of the P. aeruginosa present in the airways

of healthy individuals. Moreover, airway cell divisions/senescence are infrequent, decreasing

the probability of encountering P. aeruginosa to initiate infections in healthy individuals.

Indeed, (i) the cell turnover rate of the HAE self-renewal is one of the lowest compared to

other epithelia, more than 100 days for HAE [97,98] versus 3 to 5 days for intestinal epithe-

lium, 10 days for corneal epithelium, or 20 days for cutaneous epithelium [99–102]; (ii) Golov-

kine and colleagues described that the opportune interaction of P. aeruginosa is not systematic

in their model but is rather a rare event since many sites of cell divisions/deaths were not

exploited by the bacteria [93]; (iii) the cloaking by resident tissue macrophages prevents excess

tissue damages and preserves tissue homeostasis [77]; and (iv) the few cases of P. aeruginosa
community-acquired pneumonia, described in healthy individuals, were often associated with

prolonged or repeated exposures to contaminated whirlpools or hot tubs aerosols [61,103–

105]. The number of P. aeruginosa observed in these contaminated waters, wherein the bacte-

ria are proliferating, was high (up to 105 colony-forming units (CFU)/mL) [61,105–107]. We

can speculate that the high infectious inoculum of P. aeruginosa can counter the strong barrier

effect by increasing the probability of encountering the rare physiological breach event,

thereby explaining the development of infection in a healthy individual.

Either way, it is noteworthy that the studies describing P. aeruginosa interaction with intact

airway epithelium in ex vivo culture models used very high bacterial inocula (from 106 to 108

CFU [72,94,108–112]) or high concentration of purified virulence factors (such as elastase

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011221 March 30, 2023 8 / 33

https://doi.org/10.1371/journal.ppat.1011221


[113–117], LPS [118], rhamnolipids [119,120], and 3OC12-HSL [121–123]). Although both

are related to the bacterial load commonly detected in clinical samples [124,125], they corre-

spond to thresholds commonly seen in clinical microbiology laboratories at the time of airway

infection diagnosis. Considering the bacterial proliferation in the infected airways, they are

likely far higher than the inoculum at the initiation of the epithelial breach. Additional studies

are needed to address the relevance of the infectious inoculum in vivo, when P. aeruginosa pul-

monary infections occur in CF, COPD, or VAP.

The steps of progression of P. aeruginosa during airway infection

1) Adhesion of P. aeruginosa to the airways. Respiratory infections by P. aeruginosa are

usually initiated by the adhesion of the bacteria to the HAE cells or the basement mem-

brane. Appendices of motility and adherence, pili, and flagella are virulence factors present

on the bacterial surface, mainly responsible for movement and attachment to the cells [109].

Table 1. P. aeruginosa airway receptors.

Airway receptors Type of cells used to

evidence airway

receptors

Location in healthy

airways

Pathological epithelia PA adhesin References

Glycosphingolipids

(Lipid rafts

components)

Asialo GM1 (GalNAcβ1-

4Gal disaccharides)

Primary human nasal

epithelial cells

(differentiated and not

differentiated)

Basal cell membrane Specific apical

membrane expression

by regenerating

epithelium or CF

epithelium

- Type IV pili

(C-terminal

part)

- Flagella

[16,127–131]

Globotriaosylceramide Gb3

(CD77, αGal–βGal–βGlc–

Cer saccharides)

Cell lines (H1299 kc,

A549)

Unknown - LecA [132–137]

N-glycoproteins N-glycans Cell lines (Calu 3)

Primary bronchial cell

Apical membrane

mainly (expressed

on basal cell

membrane, but few

interactions with

PA)

Enhanced expression

in damaged epithelium

Type IV pili [109,138,139]�

CFTR Cell lines (CFT-1,

CFBE41o-, A549, WI-

38) Primary human

bronchial epithelial

cells (differentiated)

Apical membrane Decreased expression

in dedifferentiated and

remodeled epithelium

LPS [140–145]

Integrins α5β1 integrin–Fibronectin Cell lines (16HBE)

Primary nasal cells

(differentiated)

Absent in normal

airways

Apically exposed and

overexpressed in

repairing epithelium

OprQa [70,71,146–148]

αvβ5 integrin–Vitronectin Bronchial tissue Unknown Increased expression in

repairing epithelium or

inflamed epithelium

OprD [149–152]

Proteoglycans HSPG (Heparan sulfate

proteoglycans) (HS chain)

Cell lines (Calu 3,

16HBE) Primary nasal

cell

Basal cell membrane

mainly

Apically increased

during epithelial injury

and dedifferentiation

Flagella [109,138,153,154]�

ECM Laminin Type I and IV

collagens

Not applicable Basement

membrane (ECM

beneath the

epithelium)

Accessible only in

injured epithelium

OprD, OprG,

EstA,

PA3923b

[14,155,156]

CFTR, cystic fibrosis transmembrane regulator; ECM, extracellular matrix; LPS, lipopolysaccharides; OMP, outer membrane protein; PA, P. aeruginosa.
aRoger and colleagues described a 50-kDa OMP, probably corresponding to the OprQ porin described later by Arhin and colleagues.
bde Bentzmann and colleagues described 60 kDa OMPs, probably corresponding to the OprD, OprG, EstA, PA3923a porin described later by Paulsson and colleagues.

�References [139,154], cited for the localization of the airway receptor, were performed in another context than P. aeruginosa infection.

https://doi.org/10.1371/journal.ppat.1011221.t001
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Utilizing different mechanisms of motility (swarming, swimming, and twitching), the bac-

teria sense the optimal surface for initiating cell surface contact and properly attached to the

surface [126]. Several molecules, present on the host epithelial cell and extracellular matrix

components and containing long carbon chains, bind the different adhesins of P. aeruginosa
(Fig 3 and Table 1).

It is noteworthy that some of these receptors, listed in Table 1, are expressed at different loca-

tions on the epithelium, depending on specific situations. At the apical side of healthy airway

epithelium, very few receptors are present, which strongly limit interaction with P. aeruginosa.

For instance, integrins or N-glycans are hardly or not at all present at the apical part of healthy

epithelium, but they are overexpressed during the repair process specifically [138]. Asialo GM1

and HSPG are mainly expressed at the basolateral part but are specifically recovered at the apical

part in regenerating or CF epithelia [16,128,138]. Migrating cells actively synthesize cellular

fibronectin/vitronectin, and their receptors, the integrins, are up-regulated and apically exposed

during migration in the repairing process [70,148,151]. As fully detailed in Part I, the adhesion

of P. aeruginosa to receptors at the basolateral part of the epithelium can only occur in case of

Fig 3. Airway receptors of P. aeruginosa. Green membrane: P. aeruginosa; brown membrane: host cells. Created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1011221.g003
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disruption or lack of tight junctions or when cells lose their polarization, which is mainly

observed within injured or repairing/remodeled epithelium [9,14–16,67,68,94].

Pili-mediated adhesion, combined with their retractive ability, creates close contact

between bacteria and host cells and induces the action of various export systems. In particular,

the T3SS is an important contact-dependent virulence factor that injects toxins through the

membrane of the host cell [157,158]. Pili mechanical retraction induces the chemosensory sys-

tem phosphorelay (Chp), leading to stimulation of adenylate cyclase CyaB and up-regulating

the signaling molecule adenosine-cyclic monophosphate (cAMP) production, which allosteri-

cally activates the virulence factor regulator (Vfr)-dependent virulence system [158,159]. Vfr

regulates multiple virulence factors in P. aeruginosa, including the T3SS, but also the T2SS and

the quorum sensing [160,161].

2) Airway damage induced by P. aeruginosa. P. aeruginosa virulence factors involved

in respiratory infections. P. aeruginosa is an environmental bacterium adapted to the soil and

aqueous habitat. It is an opportunistic pathogen found mainly in immunocompromised

patients. Human airway pathogenicity of P. aeruginosa is explained by the production of many

virulence factors, displaying varied and complementary properties [162,163]. Some factors are

involved in motility and adhesion, persistence in the host, iron uptake, or resistance to oxida-

tive stress. The toxins are mostly involved in the destruction of the host cells [163].

The main virulence factors of P. aeruginosa involved in respiratory infections are illustrated

in Fig 4 and their functions are detailed in Table 2.

Most of these virulence factors are not synthesized constitutively but are regulated depend-

ing on the needs of the bacteria in different types of settings and collaterally during infection.

The production is fine-tuned by quorum sensing, which is a communication system based on

the detection of bacterial density in the environment [164]. The communication is mediated

by the secretion of small signaling molecules, such as homoserines lactones or quinolones,

used as autoinducer messengers. Each bacterium produces these messengers, thereby their

concentration depends on the growing bacterial population [164]. When the critical threshold

is reached (i.e., quorum), four regulatory systems are activated to coordinate the response of

the bacterial population: Las, Rhl, PQS, and IQS systems [164–167]. Around 10% of the P. aer-
uginosa genome is estimated to be regulated by the quorum sensing system [168].

In some conditions, and notably in CF disease, P. aeruginosa is known to form structured

aggregates known as biofilms. After adhesion to a surface, the bacteria congregate in highly

organized communities, surrounded by an extracellular matrix composed of exopolysacchar-

ides (alginate, PEL, and PSL), extracellular DNA, lipids, and proteins [169]. This matrix, repre-

senting between 50% and 90% of the total volume of the biofilm, strengthens its structure and

protects bacteria from effectors of the host’s immune response (such as phagocytosis or anti-

body actions) and antibiotics, making their eradication very difficult [18,167,169]. In addition,

bacteria within the biofilm are exposed to oxygen gradients and nutrient limitations leading to

modification of bacterial metabolism. One clinically relevant phenotype that occurred in such

a situation is the small colony variant phenotype, which is characterized by slow growth and a

loss of cytotoxicity [25]. Biofilm formation is regulated by the quorum sensing system

[18,165]. The development of the mucoid phenotype by overproduction of alginate found in

biofilms is a strategy for the bacteria to survive in a hostile environment and is mainly

observed in P. aeruginosa chronic respiratory infections (such as in CF patients) and biomate-

rial-associated infections (endotracheal tubes, urinary catheters, etc.) [25,170]. The inert sur-

faces of the biomaterial are used as a base that facilitates the development of biofilms [18,171].

During the progression of chronic P. aeruginosa infection in CF patients, phenotypic and

genotypic changes occur in P. aeruginosa to adapt to the specific mucus-plugging environ-

ment. Strains established in this long-term colonization show less inflammation and less
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cytotoxicity against HAE than the first strains years earlier in the same patient [18]. A switch

from acute to chronic phenotype occurred. It has been described to be characterized by down-

regulation of some virulence factors (motility with loss of flagellum and pili, protease, rhamno-

lipids, pigments, . . .), increased biofilm formation, the apparition of mucoid or small colony

variant phenotype, change in LPS, and alteration of quorum sensing system [18,78].

From the first stages of P. aeruginosa interaction with the airway epithelium, the first line of

defense of the innate immune system in the lung recognizes P. aeruginosa components and

virulence factors, activating an immune reaction to prevent or resolve the infection. Various

immunity actors are then recruited, and inflammation processes are observed [19].

First, specific P. aeruginosa patterns are recognized thanks to pattern recognition receptors

(PRRs) [19,221]. Three types are described: (i) Secreted PRR, such as Complement C1q, collec-

tins, and surfactant proteins SP-A and D, which bind P. aeruginosa cell wall and mark it for

clearance by macrophages and neutrophils. (ii) Transmembrane PRR, the most important

actors, represented by the Toll-like receptors (TLRs) present on immune and epithelial cell

membranes. They recognize different components of P. aeruginosa call the PAMPs (pathogen-

associated molecular patterns). For example, TLR2 recognizes the pili, TLR4 and CFTR the

LPS, and TLR5 the flagella. (iii) Cytosolic PRRs, such as TLR9 and NOD-1, can recognize bac-

terial DNA or cell wall components of the internalized/phagocytosed bacteria.

Fig 4. aeruginosa main virulence factors in respiratory infections. P. Created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1011221.g004
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Table 2. Virulence factors of P. aeruginosa in respiratory infections.

Class Virulence factor Gene(s) General function(s) HAE-specific

function(s)

Type of cells

used to

evidence

HAE-specific

function(s)

Molecular host target SS Reference

Motility/

Adhesion

Flagella fliC Swimming and

swarming motility

Host cell adhesion and

internalization

Motility and

basal adhesion to

HAE cells

HAE infection

progression

Primary nasal

cells, cell lines

(Calu 3,

1HAEo-),

mice

pneumonia

Heparan sulfate,

proteoglycans,

AsialoGM1

- [127,130,138,172]

Type IV pili pilA Twitching motility

Host cell adhesion,

biofilm formation

Motility and

apical adhesion

to HAE cells

Allow T3SS

injection. HAE

infection

progression

Cell lines

(Calu 3)

N-glycans - [138,173,174]

LPS waa,

wzy,

wzz,

wbp,

wzx

Resistance to serum

killing and

phagocytosis,

inflammatory

response

Binding to CFTR

Cell junctions’

disruptions and

apoptosis

Apical adhesion

to HAE cells

Disruption of

HAE tight

junctions

HAE cell

apoptosis

Cell lines

(A549,

NCL-H292,

Beas-2b)

CFTR, Tight junctions

(ZO-1)

- [54,118,175–177]

Lectin A

Lectin B

lecA
lecB

Host cell adhesion:

binding to galactose

(LecA) and fucose

(LecB)

Internalization (LecA)

Cytotoxicity (LecA

and LecB)

Apical and basal

adhesion to HAE

cells

HAE cell

internalization

HAE cell

cytotoxicity

Primary nasal

cells, cell lines

(H1299,

A549), mice

pneumonia

Globotriaosylceramide

Gb3 (CD77)

- [132,134,178]

Protection/

Persistence

Exopolysaccharides

(Alginate, Psl, Pel)

alg,

muc,

psl, pel

Biofilm main

component:

polymeric matrix

Persistence, bacteria

protection (from IS

and antibiotics)

Biofilm

persistence in

chronic HAE

infection

- - - [167,179–181]

Iron uptake Siderophores:

- Pyoverdin

- Pyochelin

pvd
pch

Iron siderophore,

green pigment

(pyoverdine)

Cytotoxicity (ROS

production)

- - DNA, lipid membrane,

proteins

- [182–185]

Heme uptake systems:

- Pseudomonas heme

uptake

- Heme assimilation

systems

phu
has

Extracellular heme

acquisition (uptake in

the cytoplasm)

- - - - [185–187]

Oxidative

stress

Pyocyanin phz Cytotoxicity (ROS

production: O2
−,

H2O2)

IS regulation

(apoptosis), blue-

green pigment

Inhibition of

ciliated HAE

function

Primary sheep

cells

DNA, lipid membrane,

proteins

- [188–190]

(Continued)
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Table 2. (Continued)

Class Virulence factor Gene(s) General function(s) HAE-specific

function(s)

Type of cells

used to

evidence

HAE-specific

function(s)

Molecular host target SS Reference

Biosurfactant Rhamnolipid rhl Amphiphilic:

detergent and

solubilizing properties

Disruption cell

junctions

IS regulation

(neutrophils lysis)

Biofilm formation,

motility

Solubilization of

airway surfactant

Disruption of

HAE tight

junctions

Primary nasal

cells

Tight junctions (ZO-1,

occludin, JAM-A)

- [120,191–193]

Esterase EstA estA Autotransporter

enzyme:

Hydrolyze glycerol

esters

Rhamnolipids

production

Disruption of

HAE tight

junctions

See

Rhamnolipid

See Rhamnolipid - [194]

Excreted

toxins

Alkaline protease aprA Protease activity: IS

inactivation

(antibodies,

neutrophils,

complement,

cytokines) and

laminin

Degradation of

HAE

extracellular

matrix:

(basement

membrane:

laminin)

- Laminin T1SS [195,196]

Elastase lasB,

(lasA)
Protease activity:

elastin, collagen,

transferrin,

antibodies,

complement! Tissue

damage

Disruption of cell

junctions

Degradation of

HAE

extracellular

matrix (basement

membrane and

alveolar septum:

elastin and

collagen)

Disruption of

HAE tight

junctions

Primary nasal

cells, cell lines

(Calu 3)

Elastin, Collagen, tight

junction (ZO-1, claudin,

occludin)

T2SS [113,114,117,197]

Exotoxin A toxA Host cells protein

synthesis inhibition:

eEF2 inhibition by

ADP-ribosylation

! Cell death

HAE cell death Cell lines

(CuFi-1)

eEF2 T2SS [198,199]

Phospholipase C plcH Hydrolysis of

phospholipids

(erythrocyte and

leukocyte cytolysis),

surfactant degradation

Pulmonary

surfactant

degradation

- Phosphatidylcholine,

Sphingomyelin

T2SS [200–203]

Exolysin exlA Pore-forming toxin:

cell membrane

disruptions

(erythrocytes,

leukocytes, epithelial

cells)

HAE cell death

and retraction

Cell lines

(A549), mice

pneumonia

Phophoslipid bilayers - [108,204,205]

CFTR inhibitory

factor

cif - TAP-1 mediated-

MHC class 1

antigen

presentation and

CFTR-mediated

chloride

secretion

inhibition

Cell lines

(CFBE41o-,

A549)

CFTR and TAP-1 OMV [206,207]

(Continued)
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Table 2. (Continued)

Class Virulence factor Gene(s) General function(s) HAE-specific

function(s)

Type of cells

used to

evidence

HAE-specific

function(s)

Molecular host target SS Reference

Injected

toxins

Exo S (exoenzyme S) exoS GTPase-activating

protein activity and

ADP

ribosyltransferase

activity: inhibition of

several host cell

functions (cell

apoptosis, cell division

and cell migration

inhibitions, junctions

and actin cytoskeleton

disruptions)

HAE cell death

and retraction

Mice

pneumonia

Rho family of GTPases,

Ras superfamily

GTPases

T3SS [163,208,209]

Exo T (exoenzyme T) exoT

Exo U (exoenzyme U) exoU Phospholipase A2

activity: membrane

phospholipids

hydrolysis (rapid cell

necrosis)

Rapid HAE cell

death and

retraction

Mice

pneumonia,

cell lines

(Beas-2b)

Phospholipids T3SS [163,208,210]

Exo Y (exoenzyme Y) exoY Adenylate cyclase

activity: actin

cytoskeleton

disruptions

HAE cell death

and retraction

Mice

pneumonia,

cell lines

(PMVECR1)

Tau protein

(microtubule)

T3SS [211–214]

Phospholipase D pldA,

pldB
- Host cell

internalization

- Bacterial

competition

HAE cell

internalization

Cell lines

(Calu 3)

Akt kinase H2

(pldA)

H3

(pldB)

T6SS

[110,215,216]

VgrG2b vgrG - Host cell

internalization

- Bacterial

competition

HAE cell

internalization

Cell lines

(Calu 3

γ-tubulin ring complex

(γTuRCn microtubule

component)

H2

T6SS

[110,217]

Phospholipase TplE TplE - Host cells

endoplasmic

reticulum disruption

- Bacterial

competition

- - Endoplasmic reticulum

apparatus

H2

T6SS

[218]

Tse1-3 Tse1-3 Bacterial competition

(peptidoglycan

degradation)

- - - H1

T6SS

[215]

Short RNA sRNA52320 - - Decrease of IL-8

secretion

Bronchial

primary cells

Kinases of the LPS-

stimulated MAPK

pathway

OMV [219]

Global

regulatory

system

Quorum sensing las, rhl,
pqs, iqs

Autoinducer peptides

(for instance,

homoserines lactones

3O–C12–HS) detect

critical density!

activation of 4

regulation systems:

impact on virulence

factors production

and biofilm formation

Disruption of

tight junctionsa
- Tight junctions (ZO-1,

ZO-3, JAM-A,

occludin)

- [122,123,164,165,

220]

aDisruption of cells’ tight junction described in the intestinal epithelial model (Caco2 cells), not yet in HAE.

CFTR, cystic fibrosis transmembrane regulator; eEF2, eukaryotic elongation factor 2; HAE, human airway epithelium; H2O2, hydrogen peroxide; LPS,

lipopolysaccharide; MHC, major histocompatibility complex; OMV, outer membrane vesicle; O2, superoxide; IS, immune system; ROS, reactive oxygen species; SS,

secretion system; TAP, transporter associated with antigen processing; TxSS, type x secretion system.

https://doi.org/10.1371/journal.ppat.1011221.t002
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Various cells coordinate efforts to produce an appropriate innate immune response

[18,19,78]. Epithelial cells of the HAE play an important role of alert of P. aeruginosa presence.

After TLR-mediated activation, they produce a large panel of pro-inflammatory cytokines

(TNF-α, IL-1β, IL-2, Il-6, . . .) and the chemokine IL-8, which initiate inflammation and recruit

other more specialized immune cells such as neutrophils. They also produce antimicrobial

peptides (defensin, cathelicidin LL-37) and reactive oxygen species (radical hydroxide,

hypothiocyanite), acting directly against P. aeruginosa. Neutrophils play a critical role in P. aer-
uginosa destruction and the development of the inflammatory response. Not present in the

uninfected lung, they are recruited by attractive chemokines released by sentinel cells during

infection, such as macrophages or epithelial cells, mediated by PRR signals. They phagocyte

and kill the bacteria and they generate a great number of antibacterial molecules, such as reac-

tive oxygen species (superoxide anion, hydrogen peroxide, radical hydroxide, nitric oxide,

responsible for an oxidative burst), proteases (elastase), and antimicrobial peptides (defensin,

cathelicidin LL-37), lactoferrin and lysozyme. Alveolar macrophages are the resident leukocyte

of the lung, acting as the main sentinel for infectious agents’ detection. They recognize P. aeru-
ginosa with their PRR, phagocytose it, and complete the immune cells activation of the HAE

cells, through pro-inflammatory cytokines secretion.

After this review of all P. aeruginosa virulence factors involved in respiratory infection, we

will focus on the most important damages described in airway infections, caused by the main

virulence factors secreted by P. aeruginosa. Two types of degradation will be described: (i)

HAE cell damages, wherein the key role of T3SS in host cell retraction and disruption of tight

junctions facilitates the subsequent access of bacteria to the adjacent or underlying cells (ii) air-

way components degradation (basement membrane, surfactant), allowing the radial progres-

sion of P. aeruginosa in the epithelium (Fig 2B and 2C).

HAE cells damages: The key role of the T3SS cytotoxic activity Among all the virulence

factors produced by P. aeruginosa, the T3SS and its effectors are commonly considered the

major determinant of virulence during infection [157]. This extensively studied secretion sys-

tem plays a key role in the P. aeruginosa pathogenesis by injecting effectors that include toxins

directly into the cytoplasm of the host cells including HAE cells [157]. P. aeruginosa strains

that do not express T3SS are less virulent in human clinical infections and animal infection

models [157,222,223].

T3SS-mediated delivery of the exoenzymes requires the adhesion of the bacteria to the host

cell. As previously described, attachment via pili and their retraction activate signaling pathways,

mediated by the Chp system, and cAMP/Vfr circuit, which lead to the transcription of virulence-

associated genes, notably T3SS effectors [158,160,161]. Four well-known T3SS effectors have

been described (exoenzymes ExoS, ExoT, ExoU, and ExoY), but not all are produced by every P.

aeruginosa strain. ExoT and ExoY are found in nearly all strains, but ExoS and ExoU are mutually

exclusive [224,225] and rarely found together in the same strain [226,227]. Two types of P. aerugi-
nosa strains are therefore observed, with distinct pathogenesis phenotypes: (i) the “ExoU profile,”

expressing ExoT, ExoU, and ExoY, is highly virulent, induces rapid cell death of the host cells,

and shows a low rate of cell internalization; and (ii) the “ExoS profile,” expressing the ExoS,

ExoT, and ExoY, causes slower death and exhibits a higher rate of internalization. The pheno-

types associated with the expression of “ExoU profile” are mainly encountered in acute infections

(bacteremia, ocular infections, acute pneumonia, etc.), while the “ExoS profile” is predominant in

pulmonary chronic infections (in CF, COPD, etc.) [163,208,228–230].

ExoU, which is considered the most potent of type 3 secreted toxins, has a phospholipase

A2 activity that induces host cell membrane disruption by phospholipids hydrolysis. It leads to

rapid necrotic death of both epithelial and immune cells. ExoU was mainly described in severe

and acute infections, especially respiratory infections [163]. ExoS and ExoT are bifunctional
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proteins both displaying two distinct enzymatic activities: an N-terminal GTPase-activating

protein (GAP) activity and a C-terminal adenosine diphosphate ribosyl-transferase (ADPRT)

activity. Inhibiting host cell GTPases, such as Rho-, Rac-, Ras-, Rap-, and Cdc42 GTPases,

ExoS, and ExoT cause actin cytoskeleton depolymerization of the HAE cells. It eventually

results in the detachment of HAE cells from the basement membrane due to cell retraction

(disruption of the cell structure and subsequent tight junctions disruption), cell rounding and

apoptosis [157,163,231].

It is worth noting that the studies describing preferential T3SS cytotoxicity towards the

basolateral part rather than the apical surface of HAE used mainly differentiated epithelium

models, such as human or bovine primary airway epithelial cells cultured at the air–liquid

interface (from 7 days to 6 weeks) [68,72,94] (Fig 5 and S1 Table). Such models likely mimic

more in vivo conditions than immortalized cell lines [232].

Altogether, T3SS effectors play a key role in HAE damaging by facilitating the subsequent

access of bacteria to the basolateral surface of other HAE cells nearby, allowing P. aeruginosa
to break through the epithelium (Fig 2B and 2C).

Other secreted toxins or membrane constituents of P. aeruginosa have been shown to act

complementarily to T3SS leading to enhanced cytotoxicity on HAE cells. For instance, the

T2SS-secreted Exotoxin A catalyzes the ADP-ribosylation of its host target protein, the eukary-

otic elongation factor 2 (eEF2), resulting in the inhibition of protein synthesis and ultimately

leading to cell death [198,199]. The LecA and LecB binding proteins have also been shown to

participate, at least in part, in a cytotoxic effect on HAE cells and to lung injury in a murine

model [134]. The LPS can also induce apoptosis in lung endothelial and epithelial cells [177].

ExlA exolysin, a pore-forming toxin recently discovered in some strains of P. aeruginosa lack-

ing T3SS, forms pores in the host cell membrane, leading to a massive entry of Ca2+ that in

Fig 5. Models of airway epithelia. It is of the utmost importance to use relevant experimental models to assess the

host–pathogen interactions driving P. aeruginosa infection, depending on the physiological relevance needed: Various

models exist, from cell lines to primary cells and tissue explants/animal models, each with their advantages and

disadvantages. All the models used in the references of the review are listed in S1 Table. Created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1011221.g005
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turn activates the ADAM10 metalloprotease [233]. The subsequent cleavage of the adherens

junctions constituent E cadherin leads to HAE cell membrane disruption and death [108,205].

Some virulence factors affect the cells’ tight junctions and allow P. aeruginosa tissue pro-

gression. The proteolytic LasB elastase disrupts the tight junctions by acting on occludin, clau-

din, or ZO-1 proteins [113,114,116,117]. Rhamnolipids could also play a role thanks to their

amphiphilic properties. They are incorporated into membranes and disrupt the architecture of

tight junctions after several hours of infection in culture models [119,120,193]. In the same

way, the LPS, a membrane component of P. aeruginosa, increases airway epithelium barrier

paracellular permeability by disrupting the tight junctions, by affecting ZO-1 and ZO-2

[118,176]. Although studied only in an intestinal epithelium model, the homoserine lactone

3O–C12–HS of the P. aeruginosa quorum sensing has been shown to induce rupture of epithe-

lium integrity [121]. It activates various cellular kinases implicated in tight junction’s functions

(p38 or p42/44), leading to a modification of ZO-1, ZO-3, JAM-A and occludin production, as

well as a reorganization of the actin cytoskeleton [121–123].

However, the inoculum of P. aeruginosa in the healthy epithelium is likely to be very low

and the produced quantity of these factors might probably not be sufficient to break down

alone intact tight junctions. Their impact is more likely delayed in P. aeruginosa epithelial

invasion, after access to the basolateral part and bacterial proliferation in the infected airways,

resulting in an inoculum far higher (commonly detected from 105 to 107 CFU/mL in respira-

tory clinical samples [124,125]. The role of these components might be then complementary to

the action of T3SS-secreted exoenzymes in tissue progression.

Degradation of other components of respiratory barriers In addition to the factors lead-

ing to the breakdown of the cells in respiratory epithelia, P. aeruginosa secretes several factors

capable of destroying various components of the extra-epithelial components of the respira-

tory barriers, such as the basement membrane, the surfactant, and the mucins, which promote

bacterial spread in the epithelium (Fig 2B and 2C).

P. aeruginosa produces proteases that play an important role in the degradation of the base-

ment membrane and the mesenchyme. For instance, the LasB elastase, the most important

protease of P. aeruginosa, degrades elastin and collagen and participates in tissue invasion and

progression into the lung tissue [234]. The alkaline protease cleaves notably laminin, another

important and biologically active component of the basement membrane [195].

Several other factors are involved in the degradation of the pulmonary surfactant: phospho-

lipase C, which hydrolyses phospholipids [201,203,235], and the rhamnolipids, amphiphilic

glycolipids having detergent and solubilizing properties [192].

It has been shown that P. aeruginosa sdsA1 gene, encoding a secreted sulfatase, plays a cen-

tral role in the degradation of mucin and that the sdsA1 inhibition decreased the release of sul-

fate from mucin. sdsA1 mutant showed a decreased mucin gel penetration and an attenuation

of P. aeruginosa virulence in leukopenic mice intraperitoneally infected [236].

3) P. aeruginosa internalization in HAE cells. Although P. aeruginosa is primarily an

extracellular pathogen, internalization in nonphagocytic cells, such as airway epithelial cells,

has been widely described for many years [71,72,217,237–240]. However, these descriptions

were based on nonpolarized cells in the majority (S1 Table). Therefore, considering some of

the recent findings, this mechanism might be not crucial, and, if observed, only a very small

proportion of the bacteria is internalized, depending on bacterial clone and host cell types. The

fraction of internalized bacteria in airway epithelium cultured from primary cells cultured at

the air–liquid interface was estimated to be very low. From the primary airway cells model,

Fleiszig and colleagues found an approximate rate of internalization of approximately 0.0001%

within human nasal epithelium or approximately 0.001% in the bovine tracheal epithelium

[72]. Conversely, internalization rates in cell lines were higher: approximately 1% to 2% within
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MDCK or HeLa cells [72,110,138,241] (Fig 5). Furthermore, the host cell membrane composi-

tion, the intactness of tight junctions, and the level of cell polarization play a key role in the

internalization process. It occurs more frequently on the basolateral cell surface, in cells with

disrupted tight junctions or with low polarity levels, the latter being mainly observed on

injured or repairing/remodeled epithelium [11,72,73,242–244].

Internalization process As with many other bacteria, P. aeruginosa internalization involves

the formation of membrane lipid rafts [132,245], a signaling platform in the plasma membrane

locally enriched in glycosphingolipids and cholesterol, which migrate within the phospholipid

bilayer to form lipid aggregates [246]. No lysosomal fusion has been described after vacuole

uptake and multiplying bacteria have been observed in the vacuoles [238]. Following bacterial

binding, internalization is mediated by the rearrangement of the cellular actin cytoskeleton.

The phosphatidylinositol 3-kinase (PI3K) coupled with the Akt pathway is involved in the

entry into host cells through both apical and basolateral plasma membranes of epithelial cells

[109]. The cytoskeleton microtubules have also been involved in the internalization of the bac-

teria, via the effectors delivered into cells by the T6SS. This mechanism promotes P. aeruginosa
uptake into epithelial cells by interfering with the PI3K/Akt pathway, through the action of

several effectors (H3-T6SS-dependent phospholipase D effector (PldB) and H2-T6SS VgrG2b

effector), which interact with the γ-tubulin ring complex [110,216,217,247].

P. aeruginosa was shown to interfere with the epithelial polarity to enhance binding to the

cells: It can induce a subversion of airway epithelial cell polarity to locally transform the apical

into a basal plasma membrane and thus allow bacterial attachment and internalization into

cells under. After remodeling, the membrane forms protrusions that internalize bacteria with-

out disrupting the tight junctions [248–250].

Consequences of P. aeruginosa internalization on the pathogenicity The consequences

of P. aeruginosa internalization in airway epithelial cells are still unclear. In an ALI airway epi-

thelium model, which is highly representative of the conditions observed in the in vivo airway

epithelium, the extremely low number of internalized bacteria found (around 0.0001%) is

likely to indicate a probable accessory role of the internalization in the pathogenesis [72]. Dif-

ferent hypotheses have been proposed.

a. The invasion of the epithelium. Internalization, as a prerequisite to the invasion of the epi-

thelium, is the most common hypothesis. Some authors argue that internalization, without

any killing observed, represents a route for the bacteria to cross the cells, reaches the basal

part and the bloodstream system, and allows dissemination to distant organs [109,238].

Thereby, the bacteria could multiply, cross cells to reach the basal part, and invade the sur-

rounding tissues [244,250]. However, all these studies do not define precise mechanisms,

and there is no evidence of this transcellular route as the mainstay of its pathogenicity

towards the HAE.

b. Persistence and establishment of chronic infections. As there is no lysosomal killing after

internalization, this mechanism has been hypothesized to allow P. aeruginosa to escape

from the different effector cells of the host immune response, such as phagocytes, thereby

favoring its persistence and establishment of chronic infections. [217,238,242,250]. Inter-

nalization could then induce the transition from an acute to a chronic phenotype in P. aeru-
ginosa [110].

c. P. aeruginosa clearance by airway cell desquamation. This last and contradictory hypothesis

proposes that internalization is more detrimental than beneficial for the bacteria. In healthy

individuals, P. aeruginosa binding to CFTR channels leads to bacterial internalization and

triggers host immune system activation, notably inflammation and neutrophil recruitment,
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which causes the detachment of the infected cells and their removal by mucociliary clear-

ance [251]. Conversely, in CF patients lacking functional CFTR channels, P. aeruginosa is

not internalized, hampering its clearance. The bacteria persist in the dehydrated mucus pro-

tected from neutrophils and lead to chronic infections. In this pathology, chronically

induced inflammation is ineffective and deleterious [144,237,251].

4) Crossing of the epithelium and dissemination. Recently, a new model has emerged to

describe the crossing and the propagation of P. aeruginosa at the HAE. To gain access to the

basement membrane, P. aeruginosa uses a paracellular route and then radial propagation

through the basal compartment (Fig 2C). This new model excludes the suspected, but never

demonstrated, theory of a transcellular route used by P. aeruginosa (by internalization) to

cross the epithelium.

Zulianello and colleagues observed the absence of internalization but a paracellular invasion

of P. aeruginosa in differentiated airway epithelia when the integrity of cellular junctions was

compromised by rhamnolipids [120]. Subsequently, Heiniger and colleagues demonstrated

the exact route used by the bacteria between cells to access the basement membrane during

infection [94]. After P. aeruginosa adhesion to the basolateral surfaces of ciliated cells, the bac-

teria inject cytotoxic toxins using T3SS (ExoS and ExoT). The toxins lead to cell retraction and

detachment, allowing access to other basolateral membranes of adjacent ciliated cells or the

resting basal cells, and the progression of P. aeruginosa through the airway epithelium. Pili-

mediated twitching mobility was necessary for this bacterial progression. Radial bacterial dis-

semination across the entire epithelium was then observed [94]. More recently, Golovkine and

colleagues provided a detailed description of this phenomenon. Using a real-time microscopy

technique, they described precisely the progression of the paracellular bacterial migration

through the epithelium. During the epithelial infection, P. aeruginosa takes advantage of tran-

sient ruptures in the tight junctions to access the basolateral part and once the first bacterium

has entered into the breach, a cohort of bacteria rapidly follows at the same entry point. A

radial propagation from this entry point through the basal compartment followed, involving

the injection of the T3SS-secreted toxins (ExoS and ExoT) into the cells. The pili-mediated

twitching motility and the flagella were also necessary for this progression. Interestingly, no

internalization of the bacteria was observed in this model, making transcellular migration

highly unlikely [93].

Conclusions

P. aeruginosa is a major respiratory pathogen, expressing an impressive panel of complexes

and complementary virulence factors that, in a well-coordinated manner, promote HAE inva-

sion. However, P. aeruginosa is an opportunistic pathogen that rarely infects healthy individu-

als, and the barrier effect of the airway epithelium plays a key role in limiting its pathogenicity.

P. aeruginosa exploits weaknesses in the HAE barrier to gain access to the basolateral part of

the epithelium, which is normally inaccessible in healthy epithelium with intact tight junctions.

This access is crucial for initiating infection and represents the common point of all the various

clinical pathologies due to these bacteria, ranging from lung infections and corneal infections

to catheter-related urinary tract infections.

A new pathogenesis model has emerged, replacing a suspected, but incompletely supported,

model, where P. aeruginosa invades through a transcellular route within the epithelium follow-

ing its internalization. This new paradigm relates to a paracellular crossing of the HAE after

access to the basolateral part of the HAE and the radial propagation of P. aeruginosa through

the basal compartment. Therapeutic approaches, including the use of compounds that inhibit

access of P. aeruginosa to the basolateral membrane, could allow alternative treatment
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strategies, which have the potential to bypass the classic antibiotics, reducing the emergence of

antimicrobial resistance.
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LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect

Immun. 2009; 77:2065–2075. https://doi.org/10.1128/IAI.01204-08 PMID: 19237519

135. Mewe M, Tielker D, Schönberg R, Schachner M, Jaeger K-E, Schumacher U. Pseudomonas aerugi-

nosa lectins I and II and their interaction with human airway cilia. J Laryngol Otol. 2005; 119:595–599.

https://doi.org/10.1258/0022215054516313 PMID: 16102212

136. Zheng S, Eierhoff T, Aigal S, Brandel A, Thuenauer R, de Bentzmann S, et al. The Pseudomonas aer-

uginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the

adaptor protein CrkII. Biochim Biophys Acta Mol Cell Res. 2017; 1864:1236–1245. https://doi.org/10.

1016/j.bbamcr.2017.04.005 PMID: 28428058

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011221 March 30, 2023 27 / 33

http://www.ncbi.nlm.nih.gov/pubmed/11095601
https://doi.org/10.1007/s11095-013-1210-5
http://www.ncbi.nlm.nih.gov/pubmed/24065598
https://doi.org/10.1128/IAI.01772-05
http://www.ncbi.nlm.nih.gov/pubmed/16714541
https://doi.org/10.1016/j.febslet.2006.11.057
http://www.ncbi.nlm.nih.gov/pubmed/17157842
https://doi.org/10.1016/j.ejcb.2010.03.002
http://www.ncbi.nlm.nih.gov/pubmed/20434232
https://doi.org/10.1016/j.yexcr.2008.10.044
http://www.ncbi.nlm.nih.gov/pubmed/19038248
https://doi.org/10.1136/jcp.25.8.697
http://www.ncbi.nlm.nih.gov/pubmed/4627746
https://doi.org/10.3109/inf.1983.15.issue-2.05
https://doi.org/10.3109/inf.1983.15.issue-2.05
http://www.ncbi.nlm.nih.gov/pubmed/6192493
https://doi.org/10.1007/s00253-019-10201-w
https://doi.org/10.1007/s00253-019-10201-w
http://www.ncbi.nlm.nih.gov/pubmed/31768614
https://doi.org/10.1172/JCI116779
https://doi.org/10.1172/JCI116779
http://www.ncbi.nlm.nih.gov/pubmed/8104958
https://doi.org/10.1183/09031936.99.13356599
http://www.ncbi.nlm.nih.gov/pubmed/10232427
https://doi.org/10.1164/ajrccm/154.4_Pt_2.S163
http://www.ncbi.nlm.nih.gov/pubmed/8876536
https://doi.org/10.1165/rcmb.2003-0260OC
http://www.ncbi.nlm.nih.gov/pubmed/14607814
https://doi.org/10.1165/ajrcmb.19.2.2889
http://www.ncbi.nlm.nih.gov/pubmed/9698599
https://doi.org/10.1073/pnas.1402637111
http://www.ncbi.nlm.nih.gov/pubmed/25136128
https://doi.org/10.1007/s00018-021-03766-1
http://www.ncbi.nlm.nih.gov/pubmed/33555391
https://doi.org/10.1128/IAI.01204-08
http://www.ncbi.nlm.nih.gov/pubmed/19237519
https://doi.org/10.1258/0022215054516313
http://www.ncbi.nlm.nih.gov/pubmed/16102212
https://doi.org/10.1016/j.bbamcr.2017.04.005
https://doi.org/10.1016/j.bbamcr.2017.04.005
http://www.ncbi.nlm.nih.gov/pubmed/28428058
https://doi.org/10.1371/journal.ppat.1011221


137. Mikolajczyk K, Sikora M, Hanus C, Kaczmarek R, Czerwinski M. One of the two N-glycans on the

human Gb3/CD77 synthase is essential for its activity and allosterically regulates its function. Biochem

Biophys Res Commun. 2022; 617:36–41. https://doi.org/10.1016/j.bbrc.2022.05.085 PMID: 35671609

138. Bucior I, Mostov K, Engel JN. Pseudomonas aeruginosa-Mediated Damage Requires Distinct Recep-

tors at the Apical and Basolateral Surfaces of the Polarized Epithelium. Infect Immun. 2010; 78:939–

953. https://doi.org/10.1128/IAI.01215-09 PMID: 20008530

139. Dorscheid DR, Wojcik KR, Yule K, White SR. Role of cell surface glycosylation in mediating repair of

human airway epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol. 2001; 281:L982–L992.

https://doi.org/10.1152/ajplung.2001.281.4.L982 PMID: 11557602

140. Schroeder TH, Lee MM, Yacono PW, Cannon CL, Gerçeker AA, Golan DE, et al. CFTR is a pattern
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