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Abstract

The pressure to survive ever-changing pathogen exposure explains the frequent observation that immune genes are among 
the fastest evolving in the genomes of many taxa, but an intriguing proportion of immune genes also appear to be under 
purifying selection. Though variance in evolutionary signatures of immune genes is often attributed to differences in 
gene-specific interactions with microbes, this explanation neglects the possibility that immune genes participate in other bio
logical processes that could pleiotropically constrain adaptive selection. In this study, we analyzed available transcriptomic 
and genomic data from Drosophila melanogaster and related species to test the hypothesis that there is substantial pleiotrop
ic overlap in the developmental and immunological functions of genes involved in immune signaling and that pleiotropy 
would be associated with stronger signatures of evolutionary constraint. Our results suggest that pleiotropic immune genes 
do evolve more slowly than those having no known developmental functions and that signatures of constraint are particularly 
strong for pleiotropic immune genes that are broadly expressed across life stages. These results support the general yet un
tested hypothesis that pleiotropy can constrain immune system evolution, raising new fundamental questions about the ben
efits of maintaining pleiotropy in systems that need to rapidly adapt to changing pathogen pressures.
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Significance
Pleiotropy, where one gene affects multiple discrete traits, presents an interesting puzzle for evolutionary biologists be
cause mutations that are adaptive for one trait could antagonize the function of another. We hypothesized that plei
otropy in genes shared by immune and developmental signaling pathways could constrain rapid adaptation of 
immune systems. Our results suggest that pleiotropy can constrain immune system evolution in the fruit fly 
Drosophila melanogaster, raising new fundamental questions about the benefits of maintaining pleiotropy in systems 
that need to rapidly adapt to changing pathogen pressures.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Over evolutionary time, organisms have developed defense 
mechanisms against microbial pathogens and parasites 
which counter-adapt, in turn, to maintain successful infec
tion strategies. Host immune systems put selective pressure 
on microbes to evade host recognition, repel antimicrobial 

effectors, and even manipulate immune signaling compo
nents to dampen host defenses (Schmid-Hempel 2008; 
Heil 2016). Hosts that cannot circumvent these mechanisms 
could suffer massive fitness costs from infection. As a result, 
pressure from pathogens and parasites represents a major 
driving force in molecular evolution (Paterson et al. 2010).
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How should we expect selection to act on immune sys
tem genes? Host adaptation to microbial pressure should 
drive positive, directional selection or, in the face of co
evolutionary negative frequency dependence, balancing 
selection that maintains polymorphism in populations 
(Casals et al. 2011; Sackton 2019). Studies in species as di
verse as humans (Mukherjee et al. 2009; Casals et al. 2011), 
non-human mammals (Seabury et al. 2010; Areal et al. 
2011), and insects (Sackton et al. 2007; Obbard et al. 
2009; Rottschaefer et al. 2015) have found evidence for 
both positive and balancing selection in immune system 
recognition and effector genes (Unckless et al. 2016). For 
example, Obbard et al. (2009) found that Drosophila mela
nogaster immune genes, as a class, have higher rates of 
adaptive substitution than location-matched non-immune 
genes. However, these trends were driven by a few particu
larly rapidly evolving genes associated with a subset of im
mune signaling pathways, while purifying selection was 
surprisingly prevalent on immune genes in other pathways. 
If parasites frequently target or evade signaling compo
nents, why would not those targets show rapid 
adaptation?

The answer may depend on a crucial but underappre
ciated quality of immune systems. Genetic pleiotropy arises 
when a single gene product contributes to multiple discrete 
phenotypic traits, and many components of immune path
ways appear to be pleiotropic. Since the discovery of the 
Toll pathway, for example, numerous studies (and indeed 
Nobel prizes) have recognized its conserved dual role in de
velopment and innate immune system signaling (Lemaitre 
et al. 1997; DiAngelo et al. 2009; Anthoney et al. 2018) 
and proposed that this could impose constraints on im
mune system evolution (Obbard et al. 2009; Tan et al. 
2021). More broadly, a recent study estimated that ap
proximately 17% of human genes affect multiple discrete 
phenotypic traits, and functional enrichment analysis of 
this pleiotropic gene set revealed immune system functions 
to be among the most over-represented processes 
(Sivakumaran et al. 2011). When a pleiotropic mutation af
fects uncorrelated traits, opposing forces of selection on 
each trait can reduce the efficacy of selection and resist 
the fixation of adaptive substitutions (Fraïsse et al. 2018). 
Thus, the adaptive evolution of pleiotropic immune genes 
may be constrained by the deleterious effects of substitu
tions on other traits.

Pleiotropy between development and immunity is par
ticularly intriguing because a developmental program 
must be carried out faithfully for an organism to progress 
through its life cycle, resulting in purifying selection on 
genes involved in embryonic and early life development. 
Indeed, developmental pleiotropy (defined by the number 
of genetic interactions [Stark et al. 2006]) has been shown 
in D. melanogaster to constrain positive selection in 
early-expressed genes due to a higher number of functional 

interactions in those genes that render mutations deleteri
ous (Artieri et al. 2009). We hypothesize that developmen
tal pleiotropy could constrain immune gene evolution, 
particularly for genes involved in the most complex stages 
of development (Tian et al. 2013), leading to an under- 
representation of signatures of positive selection on im
mune genes relative to theoretical expectations.

Insects can serve as particularly valuable models for 
studying the evolutionary consequences of developmental 
and immunological pleiotropy due to their discrete life 
stages, a wealth of genomic resources, and availability of 
studies on immune gene function (i5K Consortium 2013; 
Palmer and Jiggins 2015; Viljakainen 2015). The canonical 
components of an insect innate immune response include 
microbial recognition, signal transduction to initiate cellular 
and humoral responses, and production of effector mole
cules for pathogen clearance (Lemaitre and Hoffmann 
2007). Many genes and signaling pathways previously 
identified as core participants in these processes are also 
broadly conserved among species (Waterhouse et al. 
2007), including two of the best studied pathways, Toll 
and Imd, which coordinate expression of antimicrobial pep
tides and other pathogen-clearing effectors (Ferrandon 
et al. 2007; Tanji et al. 2007). While the Toll pathway is 
the most recognized example of developmental and im
munological pleiotropy in insect immune systems, previous 
work has highlighted potential pleiotropy within other 
pathways (Tate and Graham 2015). For example, the 
same components of the melanization pathway responsible 
for tanning the insect cuticle after each larval molt are also 
used for melanizing parasitoid eggs and neutralizing patho
genic fungi, leading to allocation issues when an insect 
needs to accomplish both at once (McNeil et al. 2010; 
Parker et al. 2017). Thus, pleiotropy is likely to interfere 
with the deployment of immune responses if a host needs 
to use a gene product for both development and immunity 
in the same life stage. Even if these functions are segre
gated into different life stages, however, could pleiotropy 
still constrain immune system evolution?

We predict that immune genes that have a pleiotropic 
developmental function will be more likely to experience 
evolutionary constraint, as defined by slower rates of evolu
tion and a lower frequency of positive selection, than 
immune genes that have no known developmental func
tion. Further, we predict that pleiotropic genes that are cru
cial to multiple developmental stages will be the most 
constrained, relative to genes involved in more specific 
and less conserved developmental processes. To investigate 
these predictions, we combine transcriptional and func
tional genomics data from fruit flies (Drosophila spp.) to 
characterize the overall and immune pathway-specific de
gree of pleiotropy among immune and developmental 
genes. We then analyze the rates of evolution in immune 
genes using genomic data from 12 sequenced Drosophila 
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species; we also evaluate the 6 species in the melanogaster 
group separately. Empirical support for our predictions 
would raise the question of why evolution would maintain 
pleiotropy between development and immunity given the 
potential for conflict and constraint. On the other hand, if 
pleiotropic immune genes are not more constrained than 
non-pleiotropic ones, this study could inspire future investi
gations into compensatory evolution and the role of net
work architecture in minimizing evolutionary conflict.

Results

Extent of Developmental Pleiotropy in Immune Genes

To determine the prevalence of developmental pleiotropy 
among immune genes, we started by curating separate lists 
of immune and developmental genes in D. melanogaster. 
Previous studies have employed various methods to curate 
gene lists, ranging from using only Gene Ontology (GO) an
notations (Fraïsse et al. 2018) to compiling experimentally 
confirmed and/or computationally predicted immune 
gene orthologs (Early et al. 2017). Taking these different 
approaches into account, we employed several sources to 
assemble a comprehensive suite of genes that participate 
in immunity (table 1 and Materials and Methods). In total, 
we assembled a list of 808 immune genes, of which 551 
genes have known canonical roles in immunity and 107 
genes play a role in immune system development, as anno
tated by GO and previous studies (Early et al. 2017). The de
gree of overlap between different immune gene list sources 
can be found in supplementary figure S1, Supplementary 
Material online. The list of developmental genes contains 
3,346 genes, of which 262 genes are annotated specifically 
as “embryonic development” genes and 508 as “post- 
embryonic development.” Some embryonic development 
genes also participate in post-embryonic development 
(overlap visualized in supplementary fig. S2, 
Supplementary Material online).

Genes that appear in both the immune and develop
mental gene lists were labeled as “pleiotropic.” When con
sidering immune genes as those identified by all methods 
including manually curated, GO-annotated, and differen
tially expressed genes, we found 354 immune genes 

(43.8%) to be pleiotropic (table 1, row 1). When constrain
ing the definition of the immune gene to those that directly 
contribute to an immune response while excluding genes 
participating in the development of the immune system, 
299 (39.7%) genes are considered pleiotropic (table 1, 
row 2). Under the most conservative definition of develop
ment (only genes that directly participate in embryonic de
velopment or 7.8% (262/3,346) of all annotated 
developmental genes), 52 immune genes (6.9%) still 
meet the definition of pleiotropy (table 1, row 3). The 
full list of immune, developmental, and pleiotropic genes 
under different categorization methods is included in 
supplementary table S1, Supplementary Material online. 
Note that although we used several methods to compile a 
list of pleiotropic genes, the conclusions generated 
throughout this study are robust to different categorical de
finitions of immunity, development, and pleiotropy, as evi
denced by median dN/dS values (table 2). Therefore, from 
this point on, for simplicity, we refer to our immune gene 
group as those defined using the sources from table 1, 
row 2, which comprises Immune Response GO-annotated 
genes, immune genes employed in previous large-scale 
studies, and a core set of genes differentially expressed in 
ten bacterial infections (Troha et al. 2018).

Comparison of Pleiotropic and Non-Pleiotropic Immune 
Gene Characteristics

Immune genes can be categorized into different classes, 
such as recognition, signaling, and effector, depending 
on their canonical function in an immune response. We 
were curious whether certain classes of immune genes 
are more likely to have a pleiotropic status than others. 
We divided immune genes into major categories, relying 
on both annotation from previous studies (Sackton et al. 
2007; Early et al. 2017) and manual annotation based on 
gene description in FlyBase (supplementary table S2, 
Supplementary Material online). According to this classifi
cation system, the number of genes confirmed to each 
category includes 33 recognition genes, 123 signaling 
genes, and 27 effector genes (supplementary fig. S3, 
Supplementary Material online). As represented in figure 
1A, the signaling immune class contains the highest 

Table 1 
The Extent of Pleiotropy as Defined With Different Annotation Methods

Definition Pleiotropic Immune Non-pleiotropic Dev Non-pleiotropic

1 Immune = all Immune GO + previous citations. + DE (808) 354 (43.8%) dN/dS = 0.062 454 dN/dS = 0.085 2992 dN/dS = 0.063

Dev = all Dev GO
2 Immune = Immune Response GO + previous citations + DE (753) 299 (39.7%) dN/dS = 0.063 454 dN/dS = 0.085 3047 dN/dS = 0.063

Dev = all Dev GO
3 Immune = Immune Response GO + previous citations + DE (753) 52 (6.9%) dN/dS = 0.051 701 dN/dS = 0.077 210 dN/dS = 0.056

NOTE.—GO, Gene Ontology annotation terms; DE, differentially expressed via transcriptional analyses; Dev, developmental; Previous citations, genes or gene lists 
manually or computationally identified as having immune system functions in Drosophila. dN/dS, median dN/dS value of that class.
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proportion of pleiotropic genes (66.67%, n = 123), and the 
different groups contain a significantly different proportion 
of pleiotropic genes overall (χ2 = 37.94, P < 0.0001). 
Moreover, using the PANTHER pathway database, we found 
that pleiotropic genes are, on average, associated with more 
pathways than non-pleiotropic ones (supplementary table 
S3, Supplementary Material online).

We also wanted to know whether our curated immune- 
developmental pleiotropic genes exhibit characteristics asso
ciated with alternative definitions of pleiotropy, such as a 
high number of associated protein–protein interactions and 
gene–gene interactions that reflect activity at the molecular 
level. When comparing pleiotropic and non-pleiotropic im
mune genes (fig. 1B and C), we do find that pleiotropic genes 

Table 2 
Compiled Results for Statistical Values Across Primary and Downsampled Data Sets Using 12-Species and 6-Species Concatenated and Individual Gene 
Data

τ dN/dS values α ω_a ω_na

12-species 
Concat.

12-species Indiv. 
Genes

6-species 
Concat.

6-species Indiv. 
Genes

Full data sets
Non-pleiotropic immune 0.731 0.098 0.085 0.1 0.077 0.647 0.16 0.091
Pleiotropic 0.67 0.077 0.063 0.089 0.06 0.774 0.178 0.052
Non-pleiotropic 
developmental

0.691 0.078 0.063 0.078 0.057 0.714 0.152 0.062

Downsampled data sets
Non-pleiotropic immune 0.732 0.085 0.078 0.635 0.161 0.092
Pleiotropic 0.67 0.063 0.061 0.778 0.182 0.052
Non-pleiotropic 
developmental

0.692 0.064 0.058 0.722 0.156 0.06

NOTE.—Values for each statistic are medians for each category.

A B C

FIG. 1.—Overall characterization of pleiotropic and non-pleiotropic immune genes. Each immune gene was assigned a “gene class” (A) depending on 
their canonical function in an immune response. For each class, the percentage of pleiotropic (those with developmental roles; bottom bars) and non- 
pleiotropic genes (top bars) was determined (big number: proportion; number in parentheses: number of genes in that category). The number of known 
protein–protein interactions (ppi; B) and number of known gene–gene interactions (ggi; C) were also calculated for genes annotated as immune non- 
pleiotropic, pleiotropic for development and immunity, or developmental non-pleiotropic, represented on a log-scale and statistically analyzed using 
Kruskal–Wallis tests for overall significance followed by post hoc pairwise Dunn tests (Benjamini–Hochberg–adjusted P values on figure).
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have significantly more protein–protein interactions (Kruskal– 
Wallis w/Dunn post hoc test, P.adj = 3.8e−05) and more 
gene–gene interactions (Kruskal–Wallis w/Dunn post hoc 
test, P.adj = 6.3e−07). Moreover, pleiotropic genes are 
associated with more Biological Processes (Wilcoxon test, 
P < 2e−16) and Molecular Functions (Wilcoxon test, P < 2e−16) 
GO terms than non-pleiotropic genes (supplementary fig. S4, 
Supplementary Material online).

Expression Specificity Across Stages and Tissues 
Between Pleiotropic and Non-Pleiotropic Genes

To investigate the hypothesis that broadly expressed pleio
tropic genes are under stronger evolutionary constraint 
than specific ones, we determined gene expression specifi
city across life stages and tissues for pleiotropic and non- 
pleiotropic immune genes using the τ specificity index 
([Yanai et al. 2005], see Materials and Methods). A large τ 
value indicates specific expression while a small value indi
cates broad expression across stages or tissues. While we 
could not confidently determine whether any given gene 
plays only a developmental or immunological role or both 
at any given stage, genes involved in development at mul
tiple life stages may present a temporal as well as evolution
ary constraint on the immunological function of that gene.

We found that, in uninfected insects, there was a statistic
ally detectable difference between pleiotropic immune genes 
(median τ = 0.670) and non-pleiotropic immune genes 
(fig. 2A, median τ = 0.731; Kruskal–Wallis w/Dunn test, 
P.adj = 0.0009), but not between pleiotropic immune genes 
and non-pleiotropic developmental genes (median τ = 0.691; 
Kruskal–Wallis w/Dunn test, P.adj = 0.07). These results 
indicate broader expression across stages in the pleiotropic 
gene class relative to the non-pleiotropic gene classes (table 
2). The unbalanced size of each gene category did not affect 
the results, as confirmed by downsampling through bootstrap
ping (supplementary methods, Supplementary Material
online; supplementary fig. S5, Supplementary Material online).

We also found that the most stage-specific pleiotropic 
genes, determined by the top quartile in τ value, dispropor
tionately exhibit maximal expression during the embryonic 
stage (43% among specific pleiotropic genes vs. 3.6% 
among specific non-pleiotropic immune genes) while 
the most specific non-pleiotropic immune genes exhibit a 
relatively even distribution of maximal expression across 
subsequent stages (fig. 2B, supplementary table S4, 
Supplementary Material online). At the tissue level, pleio
tropic genes are also expressed more broadly than non- 
pleiotropic immune genes, and this trend is consistent 
throughout all life stages (fig. 2C). We found no significant 
differences in tissue expression specificity between devel
opmental genes and pleiotropic genes except in the adult 
stage (fig. 2C), where developmental genes showed more 
specific patterns of expression.

Evolutionary Rates Among Different Gene Categories

To address whether pleiotropic genes are more evolutionar
ily constrained than non-pleiotropic genes, we calculated 
dN/dS values using codeml site model M0 in PAML v4.9j 
(Yang 2007), which assigns a single dN/dS value to an entire 
tree (see Materials and Methods). We ran this PAML model 
for concatenations of genes in 12 Drosophila species 
(Drosophila ananassae, Drosophila erecta, Drosophila grim
shawi, Drosophila mojavensis, Drosophila persimilis, 
Drosophila pseudoobscura, Drosophila sechellia, 
Drosophila simulans, Drosophila virilis, Drosophila willisto
ni, and Drosophila yakuba; supplementary table S5, 
Supplementary Material online), where each concatenation 
represented one of three categories of genes: non- 
pleiotropic immune, pleiotropic, and non-pleiotropic devel
opmental. Genes for each concatenation were defined 
using table 1, row 2, and after quality control, these conca
tenations contained 356, 231, and 2,067 genes, respect
ively. We also ran codeml site model M0 on each 
individual gene included in the concatenations; these mod
el runs were successful for 348 non-pleiotropic immune 
genes, 227 pleiotropic genes, and 2,037 non-pleiotropic 
developmental genes (see Materials and Methods).

The model runs on the concatenated gene lists yielded 
dN/dS estimates of 0.098 for non-pleiotropic immune 
genes, 0.077 for pleiotropic genes, and 0.078 for non- 
pleiotropic developmental genes (table 2). Meanwhile, 
model runs on individual genes yielded median dN/dS esti
mates (fig. 3A) of 0.085, 0.063, and 0.063 respectively, 
and these three categories exhibited significantly different 
dN/dS distributions based on a Kruskal–Wallis test (fig. 3A, 
χ2 = 66.53, P = 3.57e−15). Pairwise comparisons of distribu
tions of individual gene dN/dS values were calculated using 
post hoc Dunn tests adjusted for multiple comparisons. The 
comparison between pleiotropic genes and developmental 
non-pleiotropic genes does not show a statistically signifi
cant difference (P = 0.95), but non-pleiotropic immune 
genes have a significantly higher median dN/dS value than 
both non-pleiotropic developmental genes (P = 1.8e−15) 
and pleiotropic genes (P = 4.2e−08). The differences in sam
ple sizes between categories did not affect the results, as 
confirmed by downsampling through bootstrapping 
(supplementary methods, Supplementary Material online; 
supplementary fig. S6, Supplementary Material online). 
Within the pleiotropic gene set, we found that the most 
specifically stage-expressed genes (top τ quartile, e.g., fig. 
2B) had significantly lower dN/dS ratios than the most 
broadly expressed pleiotropic genes (bottom τ quartile; 
n = 41/quartile, Wilcoxon test, P = 0.023, fig. 3B).

To account for possible saturation of dS across the 12 
species phylogeny and/or differences in selection across 
clades, we repeated the above PAML analyses for the 6 spe
cies in our data set that were part of the melanogaster 
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group (D. ananassae, D. erecta, D. melanogaster, D. sechel
lia, D. simulans, and D. yakuba). Model runs on this 
6-species data set yielded dN/dS estimates of 0.100 for 

non-pleiotropic immune genes, 0.089 for pleiotropic 
genes, and 0.078 for non-pleiotropic developmental genes 
using the concatenated alignments (table 2). The individual 

A

C

B

FIG. 2.—Comparison of relative life stage and tissue specificity of gene expression among immune, developmental, and pleiotropic genes. The stage 
specificity tau value, which varies from 0 (broadly expressed across all stages) to 1 (expressed in only one stage), was calculated for genes within each class 
(A). For the non-pleiotropic and pleiotropic immune gene group (B), the genes within the top 25th percentile of τ value were characterized as “specific genes,” 
and the stage with the highest expression for each gene was determined and tallied for the whole group. To compare tissue gene expression specificity be
tween pleiotropic and non-pleiotropic genes within each life stage (C), the tau value (tissue specificity level) was calculated for each gene across tissues. 
Differences among groups were statistically analyzed using Kruskal–Wallis tests for overall significance followed by post hoc pairwise Dunn tests 
(Benjamini–Hochberg–adjusted P values on figure; *** indicates P.adj < 0.001).
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gene model runs for the 6-species data set yielded median 
dN/dS estimates of 0.077, 0.060, and 0.057, respectively 
(supplementary fig. S7A, Supplementary Material online, 
table 2), and these three categories exhibited significantly 
different dN/dS distributions based on a Kruskal–Wallis 
test (supplementary fig. S7A, Supplementary Material

online, χ2 = 46.73, P = 7.12e−11). As with the 12-species 
data set, the comparison between pleiotropic genes and 
developmental non-pleiotropic genes does not show a 
statistically significant difference (P = 0.25), but non- 
pleiotropic immune genes once again have a significantly 
higher median dN/dS value than both non-pleiotropic 

A B

C D

FIG. 3.—Associations between genetic pleiotropy, stage specificity, and evolutionary statistics. dN/dS values (A) were compared among non-pleiotropic 
immune genes, genes with pleiotropic roles in development and immunity, and developmental genes with no known pleiotropic role in immunity. dN/dS values 
were also compared between pleiotropic genes that scored within the top and bottom quartiles of stage-specific expression (B), where non-specific pleiotropic 
genes are broadly expressed across life stages (tau ≤ 0.576) while the top quartile is specifically or maximally expressed in fewer stages (tau ≥ 0.767). The alpha 
values of genes in each category from the Raleigh (C) and Zambia (D) populations both illustrate higher proportions of adaptive substitutions within pleiotropic 
genes. Differences among groups were statistically analyzed using a Kruskal–Wallis test (A, C, D) followed by post hoc Dunn tests (P values BH-adjusted) or a 
Wilcoxon test (B). P values reproduced on the figure; n.s. = not significant (P.adj > 0.05).

Genome Biol. Evol. 15(3) https://doi.org/10.1093/gbe/evad044 Advance Access publication 13 March 2023                                      7

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad044#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad044#supplementary-data
https://doi.org/10.1093/gbe/evad044


Williams et al.                                                                                                                                                                  GBE

developmental genes (P < 2.2e−16) and pleiotropic genes 
(P < 2.2e−16). Downsampling via bootstrapping confirmed 
these results (supplementary methods, Supplementary 
Material online; supplementary fig. S7B, Supplementary 
Material online).

Evidence for Positive Selection Across Gene Categories

To determine whether there is evidence for positive selec
tion in any of the three gene categories, we ran codeml 
site models M7 and M8 in PAML v4.9j (Yang 2007) on 
each concatenation (see Materials and Methods). Model 
M7 splits the codons in the alignment into ten groups, 
where each group contains 10% of the full alignment 
and has a dN/dS value constrained to be less than one. 
Model M8 splits the alignment into 11 groups, where the 
proportion of the alignment represented by each group 
varies; the first 10 groups in M8 have dN/dS values 
constrained to be less than 1, while group 11 can have a 
dN/dS value greater than 1 (representing positive selection 
in that group of codons). These two models are compared 
using a likelihood ratio test with two degrees of freedom to 
determine whether a model allowing for positive selection 
is a better fit for the data than a model that does not.

A likelihood ratio test between the two models provided 
significant evidence for positive selection in a fraction of 
sites within the concatenated alignments of each of the 
three categories (P < 0.001 for all). In the case of the non- 
pleiotropic immune gene concatenation, the proportion 
of sites in the eleventh category was 0.007 with an omega 
value of 5.37. The proportion of sites in the eleventh cat
egory for the pleiotropic gene concatenation was 0.015 
with an omega value of 1.37. The non-pleiotropic develop
mental gene concatenation yielded a similar result as the 
pleiotropic one, with a proportion of 0.018 and omega va
lue of 1.29. The three proportions calculated by model M8 
were all statistically different from one another (χ2 =  
1034.6, P < 2.2e−16), and each pairwise comparison of pro
portions was statistically different even after Bonferroni 
correction (P < 2.2e−16 for all three). We also ran models 
M7 and M8 on concatenated sequences from the six- 
species data set; likelihood ratio tests for all three categories 
were significant for this data set as well (P < 0.001 for all). 
Based on all these results, we used MultiDFE to explore 
positive selection in more depth.

Evidence of Adaptive Evolution Across Gene Categories

The PAML results indicated that non-pleiotropic immune 
genes had higher dN/dS values than either pleiotropic genes 
or non-pleiotropic developmental genes; the latter two 
categories were not statistically different from one another 
(fig. 3A). To help determine whether this difference in dN/dS 

values was driven by adaptive evolution and/or relaxed se
lection, we used MultiDFE to calculate the proportion of 

substitutions that are adaptive (α), the rate of adaptive sub
stitution (ωa), and the rate of non-adaptive substitution 
(ωna) for 100 bootstrap replicates of each of the three cat
egories separately for the Raleigh population of D. melano
gaster (RAL). We obtained site frequency spectra (SFS) from 
PopFlyData in the iMKT package (Murga-Moreno et al. 
2019), and final values of α, ωa, and ωna were determined 
using a Jukes–Cantor correction (table 2).

We found that there were significant differences in α 
across categories (fig. 4A; P < 2.2e−16). Median values of 
α for the non-pleiotropic immune genes, pleiotropic genes, 
and non-pleiotropic developmental genes were 0.647, 
0.774, and 0.714, respectively. Post hoc Dunn tests re
vealed that there were significant differences in pairwise 
comparisons of α distributions even after Bonferroni correc
tion (P < 0.001 in all cases). For both populations, the me
dian α value was highest in the pleiotropic gene class, 
followed by the non-pleiotropic developmental gene class 
and then by the non-pleiotropic immune gene class.

There were also significant differences in ωa across cat
egories (fig. 4B; P = 3.202e−13). Median values of ωa for 
non-pleiotropic immune genes, pleiotropic genes, and non- 
pleiotropic developmental genes were 0.160, 0.178, and 
0.152, respectively. Post hoc Dunn tests found that all pair
wise comparisons of ωa distributions were significant after 
Bonferroni correction (P < 0.001 in all cases), where ωa was 
the highest for the pleiotropic category.

Additionally, there were significant differences in ωna 

across categories in both categories (fig. 4C). Median values 
of ωna for non-pleiotropic immune genes, pleiotropic 
genes, and non-pleiotropic developmental genes were 
0.091, 0.052, and 0.062, respectively. Post hoc Dunn tests 
found that all pairwise comparisons of ωna distributions 
were significant after Bonferroni correction (P < 0.001 in 
all cases), where ωna was lowest in the pleiotropic category 
and highest for the non-pleiotropic immune category.

For all three values (α, ωa, and ωna), the unbalanced size 
of each gene category did not affect the results, as con
firmed by re-running the MultiDFE analyses by summing 
the same number of SFS per category (supplementary
methods, Supplementary Material online; supplementary 
fig. S8, Supplementary Material online).

Evidence of Positive Selection in Immune Signaling 
Pathways

The high overall frequency of pleiotropy among immune 
signaling genes (fig. 1A) prompted us to examine the distri
bution of dN/dS along the three major insect immune signal
ing pathways (fig. 5: Imd, Toll, and Jak/STAT) to further 
investigate whether there are certain components that 
tend to be pleiotropic or show discernable patterns of ω va
lues. We also ran codeml site models M7 and M8 in PAML 
on these individual pathway components across the 
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12-species data set to determine whether any harbored 
strong evidence of positive selection.

As illustrated in figure 5, extracellular signaling compo
nents tend to be non-pleiotropic, while intracellular signal
ing components are consistently pleiotropic. The 
exceptions are immune-specific adapters within the IMD 
signaling pathway (e.g., Tab2 and Kenny) that interact 
with pleiotropic proteins. There were no clear patterns 
with regard to overall dN/dS distribution along these path
ways, as both the intracellular and extracellular compart
ments contain proteins with relatively low and high dN/dS 

values. While any estimate of positive selection for individ
ual genes through comparison of model M7 and M8 out
puts will be underpowered and thus overly conservative 
because of the small number of sites, our analysis did still 
identify several genes in these pathways that contain sites 
undergoing positive selection (fig. 5 gold stars). Most of 
these genes are extracellular (ModSP, Sphinx1/2, Upd3) or 
involved in pathogen recognition (e.g., PGRP-LC and 
PGRP-LA) and thus conform to the typical profile for im
mune genes experiencing rapid evolution. However, we 
also found that the pleiotropic intracellular caspase Dredd 
exhibited statistical evidence of positive selection (model 
8: 5.7% of sites with average ω = 1.22, P = 0.0006), pro
viding a salient candidate for future studies of pleiotropy.

Discussion
Researchers have long recognized that some immune 
genes, such as those in the Toll pathway, play double 
duty in development (Lemaitre et al. 1996) and proposed 
that it might constrain immune system evolution (Obbard 
et al. 2009). Pleiotropy seems like it would be a liability 

for a host, for multiple reasons—what if a gene product 
cannot be deployed to fight a parasite because it is already 
being fully allocated to development? Should not purifying 
selection on developmental genes constrain the rate of 
adaptation against parasite pressure, putting the host at a 
disadvantage during coevolution with rapidly evolving 
parasites? In this study, we investigated the relationship be
tween immunity-development pleiotropy and signatures of 
molecular evolution in D. melanogaster immune genes. Our 
results provide clear quantitative evidence for the notion 
that pleiotropy between development and immunity is ac
tually quite common (Tate and Graham 2015). Moreover, 
immune genes involved in development exhibit stronger 
signatures of evolutionary constraint than non-pleiotropic 
immune genes, particularly if they are broadly expressed 
across life stages, consistent with our hypothesis of evolu
tionary constraint.

In terms of dN/dS values, the highest median value was 
for the non-pleiotropic immune gene class, while the pleio
tropic and non-pleiotropic developmental gene classes had 
more similar medians relative to one another. Interestingly, 
in most comparisons, these latter two classes had medians 
that did not statistically differ from one another (fig. 3A, 
supplementary figs. S6 and S7A, Supplementary Material
online) in either the 12-species or 6-species data set. This 
observation suggests that genes with both immune and de
velopmental functions are similar to developmental-only 
genes rather than immune-only genes (or an intermediate 
between the two groups) in terms of evolutionary con
straint. We also found that among the three gene categor
ies, pleiotropic immune genes had the highest α and ωa 

values and the lowest ωna values (fig. 4, supplementary 
fig. S8, Supplementary Material online), suggesting that 

A B C

FIG. 4.—Distributions in the D. melanogaster Raleigh (RAL) population of (A) α values, (B) ωa values, and (C) ωna values. α, ωa, and ωna values were cal
culated using MultiDFE on 100 bootstrap replicates of summed site frequency spectra (SFS) for each gene category. Distributions were compared using a 
Kruskal–Wallis test followed by post hoc Dunn tests in R.
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increased dN/dS values in the non-pleiotropic immune cat
egory are at least partially due to an increase in relaxed 
selection relative to the pleiotropic category. A higher 
proportion of adaptive substitutions driven by both a 
higher rate of adaptive substitution and a lower rate of 
non-adaptive substitution in the pleiotropic category is 
consistent with stronger purifying selection in those genes 
compared to non-pleiotropic immune genes.

Our systematic curation of transcriptional data, GO 
terms, and functional evidence from D. melanogaster 
revealed that about 40–44% of immune genes are 
pleiotropic with development. This estimate aligns with 
a phenotypic screening study in mammals that more 

generally classified approximately 65% of screened alleles 
as pleiotropic across a range of phenotypes (De Angelis 
et al. 2015) [18–21]. Upon analyzing the different immune 
gene classes for their prevalence of pleiotropy (fig. 1A), we 
found that immune signaling genes are most likely to par
ticipate in developmental functions. This is expected since 
a signaling pathway is capable of activating the transcrip
tion of multiple genes, as opposed to, for example, effector 
genes which likely only interact with microbial pathogens 
or have specific immune functions. Further, genes anno
tated as pleiotropic through our classification method 
also exhibited significantly higher values of molecular para
meters associated with pleiotropy (Alvarez-Ponce et al. 

FIG. 5.—Examining the pleiotropy status and dN/dS levels for genes participating in major insect immune signaling pathways. The color indicates whether it 
has pleiotropic roles in development and immunity (blue) or functions exclusively in immunity (orange). Each color is shaded according to the dN/dS level of each 
gene, with the darker shade representing a higher ω value within the gene’s respective pleiotropic or non-pleiotropic group. Pathway components reflect 
annotated genes from KEGG. Components for which no pleiotropy status available (e.g., JNKK and Spirit) are shown in gray. Yellow stars indicate genes 
that have a positively selected fraction of sites (dN/dS > 1) as determined by comparison of PAML models M7 and M8 outputs (see Materials and Methods).
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2017), as they have more protein–protein and gene–gene 
interactions (fig. 1B and C) and are expressed more broadly 
across life stages and tissues (fig. 2B and C). Although these 
interactions may not directly reflect immune or develop
mental activities, it suggests that the pleiotropic genes 
might participate in different processes by interacting 
with more molecular partners. The broader expression of 
pleiotropic genes across stages compared to non- 
pleiotropic genes suggests that one or both of the immune 
and developmental functions are required throughout 
ontogeny. Finally, among the most specifically expressed 
immune genes (fig. 2B), pleiotropic genes were dispropor
tionately expressed in embryos and pupae—key develop
mental stages—while the maximum expression of 
non-pleiotropic genes was more evenly distributed among 
post-embryonic life stages. This may reflect decoupling of 
immunological regulation across life stages, which could al
low the different life stages to independently optimize im
mune responses over evolutionary time as they are exposed 
to different parasites and ecological conditions (Fellous and 
Lazzaro 2011; Critchlow et al. 2019; Rolff et al. 2019). In 
the future, it would be interesting to clarify the extent to 
which pleiotropic genes exhibit temporal segregation of de
velopmental processes and immune roles in different life 
stages, as opposed to simultaneous participation in both 
functions in one or more stages.

Our results suggest a significant association between 
pleiotropy status and the rate of molecular evolution in im
mune system genes. Other studies that have considered the 
general relationship between signatures of molecular evo
lution and molecular pleiotropy have reached contrasting 
conclusions. In some cases, pleiotropy, as defined by con
nectivity in protein–protein or gene co-expression net
works, is negatively correlated with molecular evolution 
rates (Alvarez-Ponce et al. 2017; Masalia et al. 2017) as 
we observe in our study. Meanwhile, others have detected 
very minimal or no correlation (Hahn et al. 2004; Fraïsse 
et al. 2018). The variance in these results could be attribu
ted to differences in study organisms, different experimen
tal contexts, and the inherent differences in the various 
definitions of pleiotropy. For example, our definition of plei
otropy focused on two primary traits rather than consider
ing the entire constellation of traits that might push 
estimates of pleiotropy in immune systems even higher. 
The two traits we chose, however, cover the extreme 
ends of evolutionary rate predictions, as development is 
thought to be one of the most conserved processes 
(Artieri et al. 2009), while immunity is consistently identi
fied as one of the most rapidly evolving systems across stud
ied taxa (Obbard et al. 2006; Areal et al. 2011).

We found that α values, which represent that the pro
portion of substitutions drive by positive selection, were 
significantly higher in pleiotropic genes than in the other 
two categories, driven by both higher rates of adaptive 

substitution and lower rates of non-adaptive substitution. 
These results reflect key conclusions from a recent study dem
onstrating that virus-interacting proteins that participate in 
diverse cellular processes, which are otherwise more evolu
tionarily constrained, also showed higher rates of adaptation 
relative to those that are not known to interact with viruses 
(Enard et al. 2016). We speculate that when mutations occur 
in pleiotropic proteins that have antagonistic effects on im
munity or development, compensatory substitutions could 
arise to resolve this conflict. For example, a previous study 
suggested that the presence of a non-synonymous mutation 
greatly increases the chance of finding other substitutions 
nearby, possibly reflecting the correlated evolution of codons 
within a protein module (Callahan et al. 2011). Because our 
analyses are not domain specific, we cannot parse signatures 
of selection on regions within a pleiotropic gene that might 
provide specific immune or developmental functions or that 
could be closely associated with compensatory mutations. 
Although such analysis would require very specific knowl
edge of the effect of each mutation on immune and develop
ment phenotypes, future analyses could focus on a subset 
of genes with well-defined protein domain structures and 
protein–protein interaction data to refine the functional 
and evolutionary significance of pleiotropic activity. Our ana
lysis suggests that Dredd and Jak (fig. 5, gold stars) would be 
good candidates for such an analysis, while previous studies 
have identified evidence of positive selection in Dnr1 (Han 
et al. 2013) and other signaling proteins in D. melanogaster 
(Jiggins and Kim 2007) and related species (Begun and 
Whitley 2000) that would also provide powerful options for 
connecting selection at specific sites to the function of pleio
tropic proteins.

Across immune pathways, intracellular components are 
disproportionately pleiotropic compared to extracellular 
components (fig. 5). Interestingly, however, we observed 
that many pleiotropic intracellular signaling components 
associate with non-pleiotropic adapters or interact with 
proteins that exhibit higher rates of adaptation, which 
could provide a way to modify pleiotropic protein function 
in specific immunological contexts to relieve antagonism 
(Kinsler et al. 2020). This analysis raises new questions for 
future investigation: how can a signaling pathway balance 
its role in multiple biological processes? What are the key 
players and their characteristics that affect how a pathway 
is used across several contexts or life stages?

Overall, our study serves as the first one to systematically 
quantify the degree of pleiotropy in a specific biological 
context and investigate correlations between pleiotropy 
and rates of molecular evolution in immune systems. 
These results lay the groundwork for future work to tease 
apart the mechanistic framework of these pleiotropic pat
terns to understand how genetic architecture shapes the 
mode and tempo of immune system evolution and their in
fluence on immune phenotypes.
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Materials and Methods

Immune and Developmental Gene List Curation

We curated a comprehensive list of genes representing im
munity by combining several resources, starting with a 
manually curated list from previous immune studies 
(Lemaitre and Hoffmann 2007; Early et al. 2017), which in
clude most experimentally validated “canonical” immune 
genes. Separately, we appended GO-annotated genes under 
the term “immune system process” (GO:0002376) to the 
list. We further sub-divided genes under this GO term into 
either “Immune Response” or “Immune Development” 
genes to differentiate between genes that play direct roles 
in mounting an immune response and genes contributing 
to the development and maturation of the immune system. 
Finally, we added to our list a core set of immune genes from 
(Troha et al. 2018), which comprises 252 genes that show 
differential expression across infection with ten different 
bacterial species of variable virulence.

For each immune gene, we also assigned an immune 
gene class—recognition, signaling, or effector—based on 
the gene’s known function in the immune system. If a 
gene has not been assigned a class in previous studies, 
we manually assign it a class based on the gene description 
from FlyBase. For a detailed description of each gene class 
definition, see supplementary methods, Supplementary 
Material online.

Separately, we created a list of GO-annotated develop
mental genes by querying the term “Developmental 
Process” (GO:0032502), while separately annotating genes 
belonging to the child term “embryonic morphogenesis” 
(GO:0048698). All GO annotation queries were conducted 
through FlyBase (Thurmond et al. 2019). A full list of genes 
in each group is included in supplementary table S1, 
Supplementary Material online, and visualization of the 
degree of overlap between different resources is in 
supplementary figure S1, Supplementary Material online.

Pleiotropy Categorization

Pleiotropy refers to the phenomenon where a single gene 
influences multiple traits. However, the definition of “trait” 
can be ambiguous across different biological contexts, and 
thus, pleiotropy can manifest at different levels and be de
tected by various methods (Paaby and Rockman 2013; Tyler 
et al. 2016). At the molecular level, pleiotropy can refer to 
the multiple biochemical roles that a gene can have and is 
frequently measured as the number of physical interacting 
partners (Hahn et al. 2004). At the developmental or 
phenotypic level, pleiotropy can involve genes affecting dis
tinct phenotypes or biological processes, as measured 
by the number of stage or tissues in which such genes 
are expressed (Artieri et al. 2009). Lastly, under an evolu
tionary perspective, pleiotropy can refer to the separate 

components of fitness that a gene might modulate, a well- 
known example being the antagonistic pleiotropy model 
for the evolution of aging (Williams 1957). Though many 
interpretations of pleiotropy exist, in this study, we are spe
cifically concerned about pleiotropic genes at the pheno
typic level. In particular, we focused on genes annotated 
to play roles in both immune and developmental processes. 
As such, if a gene is annotated as functioning in both im
munity and development from the lists curated from the 
method described above, it was considered pleiotropic. A 
full list of pleiotropic genes is included in supplementary 
table S1, Supplementary Material online.

For comparison purposes, we also calculated molecular 
metrics of pleiotropy for each gene in the genome regard
less of annotated function in immunity or development. 
These measurements include expression stage specificity 
(described below), number of associated Biological 
Processes GO terms, number of associated Molecular 
Functions GO terms, number of protein–protein interac
tions, and number of gene–gene interactions. All raw 
data files were obtained through the FlyBase ftp server, 
and the latest version of each file was downloaded 
(March 2020, supplementary methods, Supplementary 
Material online).

Categorization of Stage and Tissue Specificity

Genes with functions limited to specific tissues or life stages 
(and particularly later life stages) may have less pervasive ef
fects on organismal fitness (Cutter and Ward 2005; Artieri 
et al. 2009), possibly buffering evolutionary constraint from 
pleiotropy. To calculate expression specificity, we applied 
the following equation (Yanai et al. 2005) to expression le
vel data of all D. melanogaster genes in all stages (embryo, 
larva, pupa, and adult) and tissues (supplementary meth
ods, Supplementary Material online):

τ =
􏽐n

j=1 1 − log(Aj)/log(Amax)

n − 1
.

In this equation, n is the number of stages or tissues. Aj 

is the expression level at stage/tissue j, and Amax is the 
maximum expression level of stages/tissues. Lower tau 
(τ) values signify specific expression in a certain stage/ 
tissue, while a higher one indicates broad expression 
across all stages/tissues (Fraïsse et al. 2018). Tau values 
for all of the genes used in the analysis are provided in 
supplementary table S6, Supplementary Material online. 
In addition to plotting all tau values, we also used boot
strapping to plot the same number of tau values per 
gene class (we used the lowest number of genes, which 
was 162 for the pleiotropic class) to account for variation 
in sample size (supplementary methods, Supplementary 
Material online).
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Pathway Annotation

We used the PANTHER database to annotate our gene lists 
to pathway, if available. In short, all genes are compiled into 
a list of IDs, which is then used as a query in PANTHER 
(http://pantherdb.org/). We then downloaded the annota
tions and computed the total number of unique pathways 
associated with each gene group (pleiotropic vs. 
non-pleiotropic).

Compiling Sequences for PAML Analyses

Genes included in our analyses were chosen using the 
table 1, row 2, inclusion criteria for non-pleiotropic im
mune (454 genes), pleiotropic (299 genes), and non- 
pleiotropic developmental (3,047 genes) lists. We used 
the FlyBase gene IDs to download coding sequences 
(CDSs) using the FlyBase Sequence Downloader tool 
(FB2021_05, released October 15, 2021) for D. melanoga
ster (Thurmond et al. 2019). We then obtained a list 
of orthologs from FlyBase for all 12 sequenced 
Drosophila species. Using custom scripts (https://github. 
com/alissawilliams/pleiotropy_Drosophila/tree/main/ 
scripts), we parsed out FlyBase sequence IDs for 11 other 
Drosophila species (D. ananassae, D. erecta, D. grimshawi, 
D. mojavensis, D. persimilis, D. pseudoobscura, D. sechel
lia, D. simulans, D. virilis, D. willistoni, and D. yakuba) for 
the genes of interest using the D. melanogaster IDs. We 
used the Sequence Downloader tool from an archived ver
sion of FlyBase (FB2017_05, released October 25, 2017) to 
download CDSs for each gene of interest for each of the 
other 11 species.

We used another set of custom scripts to compile one se
quence file for each gene of interest within each pleiotropy 
category. These scripts added one CDS per species to each 
file; in cases where more than one CDS was obtained 
for a single gene ID, the first CDS in the file of downloaded 
sequences was used. In cases of paralogy (i.e., where 
one species had multiple gene identifiers within a single 
orthogroup), the species with gene duplicates were ex
cluded from the sequence file. After this step, 400, 294, 
and 2,549 sequence files contained at least two sequences 
for the non-pleiotropic immune, pleiotropic, and non- 
pleiotropic developmental groups, respectively.

Next, sequence files containing at least two sequences 
were aligned in codon space with the “einsi” option 
in MAFFT v7.310 (Katoh and Standley 2013) using a cus
tom script (https://github.com/dbsloan/perl_modules). 
Successful alignment occurred for 356 non-pleiotropic im
mune genes, 231 pleiotropic genes, and 2,067 non- 
pleiotropic developmental genes. These alignment files 
were trimmed in codon space using Gblocks v0.91b 
(Castresana 2000) with parameters −t = c and −b5 = h. 
These trimmed files were used in downstream PAML 
analyses.

Calculating Gene-wide dN/dS Values Using PAML

The trimmed sequence files were individually run through 
codeml site model M0 in PAML v4.9j (Yang 2007) to obtain 
dN/dS values for each gene. The codeml command was run 
using “seqtype = 1,” “CodonFreq = 2,” “model = 0,” 
“NSsites = 0,” and “cleandata = 0.” Constraint trees for 
each gene were built by starting with the known species 
tree for the 12 Drosophila species on FlyBase and eliminat
ing any species not present in the particular sequence file. 
The site model M0 runs were successful for 348 of the 
356 non-pleiotropic immune genes, 227 of the 231 pleio
tropic genes, and 2,037 of the 2,067 non-pleiotropic devel
opmental genes. dN/dS values across the three gene 
categories were compared using a Kruskal–Wallis test fol
lowed by post hoc Dunn tests in R (R Core Team 2012). 
We also used downsampling to account for different sam
ple sizes in the different gene categories (supplementary
methods, Supplementary Material online).

Detection of Positive Selection Using PAML Site Models

To detect positive selection in genes of the three categories, 
we used codeml site models M7 and M8 in PAML. The 
trimmed files for each category were concatenated 
into single alignments and run through codeml with para
meters “seqtype = 1,” “CodonFreq = 2,” “model = 0,” 
“NSsites = 78,” and “cleandata = 0.” A constraint tree 
for the 12 Drosophila species was built based on the phyl
ogeny provided on FlyBase (Thurmond et al. 2019). 
Within each class of genes, models M7 and M8 were com
pared using likelihood ratio tests (df = 2). Site model M0 
(“model = 0,” “NSsites = 0”) was also run for each of the 
three concatenated gene sets using the same parameters 
as described in the previous section.

In addition to the concatenated sequences, we ran co
deml site models M7 and M8 on individual pleiotropic 
and non-pleiotropic immune genes from the three 
KEGG-annotated immune signaling pathways (fig. 5).

PAML Analyses on the Melanogaster Group

In addition to using the “12-species data set” described 
above, we also conducted PAML tests on the melanogaster 
group (using 6 representatives: D. ananassae, D. erecta, 
D. melanogaster, D. sechellia, D. simulans, and D. yakuba) 
to account for possible dS saturation and/or differences in 
selection across clades (6-species data set). We used the 
set of 400 non-pleiotropic immune, 294 pleiotropic, and 
2,549 non-pleiotropic developmental genes described 
above (those that had at least 2 sequences out of the 12 ori
ginal species after filtering) to identify genes for which 
there were at least 2 sequences out of the 6 melanogaster 
group species. After this initial filtering, there were 385 
non-pleiotropic immune, 291 pleiotropic, and 2,520 
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non-pleiotropic developmental genes represented. Of these, 
362, 257, and 2,239, respectively, successfully aligned using 
the “einsi” option in MAFFT v7.310 as described above. We 
trimmed each of these individual alignments using the 
GBlocks parameters detailed above and ran them through 
PAML codeml site model M0 again, of which 360, 257, 
and 2,236 were successful, respectively. We also concate
nated the trimmed, aligned files into a single alignment 
for each class of genes and ran these concatenations 
though PAML codeml site models M0, M7, and M8 as we 
did before. Finally, we also conducted downsampling via 
boostrapping for this data set to account for differences 
in sample size (supplementary methods, Supplementary 
Material online).

Calculation of α, ωa, and ωna Using MultiDFE

To calculate the proportion of substitutions driven by posi
tive selection (α), the rate of adaptive substitutions (ωa), and 
the rate of non-adaptive substitutions (ωna), we used PopFly 
data from the Raleigh (RAL) population of D. melanogaster 
(Hervas et al. 2017) in the iMKT package in R 
(Murga-Moreno et al. 2019) as input to the software pack
age MultiDFE (https://github.com/kousathanas/MultiDFE). 
The MultiDFE input was in the form of SFS. The PopFly 
data was obtained from the file dsimDmelSites.tab pro
vided by Jesús Murga-Moreno (Murga-Moreno et al. 
2019). Of the 356 non-pleiotropic immune genes, 231 
pleiotropic genes, and 2,067 non-pleiotropic developmen
tal genes included in the concatenated alignments, the 
dsimDmelSites.tab contained 317, 207, and 1,757, re
spectively. We modified the code in the iMKT Jupyter note
book (https://nbviewer.org/github/jmurga/iMKTData/blob/ 
master/notebooks/dmelProteins.ipynb, accessed June 1, 
2022) to obtain raw counts of variants for each gene in 
each population. We then used bootstrapping to create 
100 samples for each gene class in each population by sum
ming variant counts as well as pi, p0, di, d0, mi, and m0 
from the iMKT PopFlyData table, where pi = the number 
of non-synonymous polymorphisms, p0 = the number of 
synonymous polymorphisms, di = the number of non- 
synonymous divergences, d0 = the number of synonymous 
divergences, mi = the total number of putatively selected 
sites, and m0 = the total number of putatively neutral 
(Murga-Moreno et al. 2019). Divergence was measured 
by comparing the D. melanogaster population to D. simu
lans. We calculated the 0th column of each SFS (i.e., the 
number of sites with no observed variants) using the equa
tions mi − pi and m0 − p0 for non-synonymous and syn
onymous sites, respectively. Scripts used for this process 
are provided at https://github.com/alissawilliams/ 
pleiotropy_Drosophila/tree/main/scripts.

We ran MultiDFE with the recommended parameters 
“-conpop 0,” “-sfsfold,” “1 -selmode 4,” “-nspikes 0,” 

and “-ranrep 1” (Kousathanas and Keightley 2013) for 
each bootstrapped SFS file (https://github.com/kousathanas/ 
MultiDFE, downloaded April 14, 2022). We then extracted 
the average fixation probability (fix_prob) for each bootstrap 
replicate from its respective.sfs.MAXL.out output file. 
Following Galtier (2016) (eqs. 15 and 16), fix_prob is equiva
lent to ωna. We also calculated α and ωa by plugging fix_prob 
from MultiDFE and the summed di and d0 from PopFlyData 
into equations (10) and (11) from (Kousathanas and 
Keightley 2013). Values of di and d0 were corrected using 
the Jukes–Cantor correction function provided on the 
MultiDFE GitHub page (https://github.com/kousathanas/ 
MultiDFE, accessed April 14, 2022). Distributions of α, ωa, 
and ωna values were compared using a Kruskal–Wallis test fol
lowed by post hoc Dunn tests in R (R Core Team 2012) in 
cases where the Kruskal–Wallis test produced a significant re
sult. To account for differences in sample size, we summed 
the same number of genes per class and re-ran MultiDFE 
(supplementary methods, Supplementary Material online).

Statistical Analysis

All statistical analyses were conducted in R (4.1.0). We used 
Shapiro tests to assess distribution normality in data sets. 
For comparison between multiple groups, we conducted 
Kruskal–Wallis tests followed by pairwise Dunn tests (in 
which all possible sets of two categories were compared) 
with Benjamini–Hochberg correction in cases where there 
was a significant difference between groups.

Supplementary material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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