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Abstract

Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor 

cells, requires in most species formation of crossovers physically connecting homologous 

chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated 

when chromosomes begin to segregate; tension signals that chromosome movement is proceeding 

properly. But crossovers too close to each other might result in less sister chromatid cohesion 

and tension and thus failed meiosis. Interference describes the non-random distribution of 

crossovers, which occur farther apart than expected from independence. We discuss both genetic 

and cytological methods of assaying crossover interference and models for interference, whose 

molecular mechanism remains to be elucidated. We note marked differences among species.
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Introduction

Eukaryotes are typically generated by fusion of two special cells, one coming from each 

parent. Examples of these cells, called gametes, are eggs and sperm in mammals, eggs and 

pollen in flowering plants, and spores (or cells resulting from spore germination and growth) 

in fungi such as yeasts and molds. Gametes contain one copy of each chromosome and 

are thus haploids. Fusion of two gametes regenerates a diploid organism. The generation of 

haploid gametes from diploid precursors, called meiosis, requires the accurate segregation of 

the chromosomes, which in turn requires the pairing of the two copies of each chromosome 

(called homologs) and their segregation into separate cells. This process occurs with two 

sequential cell divisions but only one replication of the chromosomes, so that during meiosis 

diploids give rise to haploids (Figure 1).

Accurate chromosome segregation at the first meiotic division (MI) requires that the two 

homologs, one from each of the previous parents, find each other and move to opposite 

sides (poles) of the cell (Figure 1). First, each chromosome is replicated, forming sister 

chromatids. Then, the replicated chromosomes pair, forming a bivalent (four copies in all). 
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In many species this pairing occurs by homologous recombination between the two copies; 

there is extensive DNA sequence homology only between homologs, ensuring that each 

chromosome pairs with its proper partner. Recombination by reciprocal exchange generates 

a crossover (a cytological chiasma), which connects the two chromosome pairs. When the 

centromeres of one pair are pulled away from the centromeres of the other pair, tension 

is generated if there is at least one crossover connecting them and if the sister chromatids 

are held together by the cohesin complex. Tension appears to be the signal that homologs 

are properly moving to opposite poles (Nicklas, 1997). Thus, crossovers and cohesion are 

critical for proper segregation and gamete formation.

Crossovers can occur at most places along a chromosome, but some regions have crossovers 

much more frequently than others (reviewed in Nambiar et al., 2019). For example, 

crossovers are rare in or near centromeres, presumably because a crossover there interrupts 

proper attachment of the fibers (the spindle) to the centromere (via the kinetochore) 

or the proper pulling of the centromeres to opposite poles (e.g., Nambiar and Smith, 

2018). In addition, two crossovers too close together may leave too little cohesin between 

the crossovers to firmly hold the bivalent together to generate tension upon centromere 

movement.

This last feature – the placement of crossovers not too close together – is called crossover 

interference. This chapter discusses the occurrence of interference, ways it can be measured, 

and models for its action. Interference was first observed in the fruit fly Drosophila 
melanogaster (Sturtevant, 1915; Muller, 1916) and has been found in nearly all species 

examined (Perkins, 1962; Mortimer and Fogel, 1974; Barnes et al., 1995; Anderson et al., 

2001; Copenhaver et al., 2002; Meneely et al., 2002; de Boer et al., 2006; Baudat and de 

Massy, 2007; Fowler et al., 2018). The molecular mechanism of interference is still a matter 

of speculation, although many gene products required for interference have been identified. 

We first describe methods for assaying interference and discuss complications in interpreting 

the data, especially given differences among species. We then present proteins required for 

interference and finally discuss various models for interference.

Methods for measuring crossover interference

Genetic analysis

Two genetic methods to measure crossover interference use either random gametes (spores 

or next generation progeny) or complete meiotic tetrads. The former has been used with 

essentially all species investigated, and tetrad analysis is common with fungi. Recently, 

tetrad analysis has been done in other species, including Arabidopsis thaliana (see below) 

(Francis et al., 2006), Zea maize (Li et al., 2015), and Mus musculus (Cole et al., 2014). 

It is generally easier to get more data from random gametes than from tetrads, but in 

tetrads chromatid relations can be assessed and crossovers can be distinguished from gene 

conversions (transfer of a genetic marker from one homolog to the other with or without 

formation of an associated crossover). Tetrads with fewer than four viable spores are 

often excluded from the analyses; this bias may overlook important events associated with 

crossovers that, when disrupted, lead to spore death.
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Using random gametes, the coefficient of coincidence (CoC) compares the observed 

frequency of double crossovers with that expected from independent crossovers. First used 

in D. melanogaster (Sturtevant, 1915; Muller, 1916) and subsequently in many species, 

it assumes recombinant chromosomes reflect crossovers and not gene conversion and it 

assumes no chromatid interference (i.e., that 2-, 3-, and 4-strand double crossovers occur 

1:2:1; Figure 2A). CoC using three linked markers is given by the formula

CoC S3 = observed double crossover frequency
expected double crossover frequency = RAB and BC

RAB × RBC

where R values are the frequencies of single (RAB and RBC) and double (RAB and BC) crossovers 

from a cross of this form:

A variation uses a fourth marker to allow comparisons with the two intervals assayed for 

crossovers (A-B and C-D) to be kept nearly constant in size but moved farther and farther 

apart.

CoC S4 = observed double crossover frequency
expected double crossover frequency = RAB and CD

RAB × RCD

In both cases, interference (I) = 1 – CoC. In D. melanogaster and Neurospora crassa S4 is 

lowest at short genetic distances and increases to near unity at ~40 – 50 centiMorgans (cM); 

in other words, in these species interference is strong at short distances and disappears at 

about the distance of one crossover per meiotic cell (50 cM) (Foss et al., 1993) (Figure 3).
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Fungi and some non-vascular plants allow convenient tetrad analysis, as does the flowering 

plant A. thaliana mutant qrt1, which retains the four pollen from one meiosis in a single cell 

(Rhee and Somerville, 1998; Francis et al., 2006). CoC analysis, as above, could be used 

with tetrad data, but a simpler alternative uses only two markers denoting the three tetrad 

classes (Figure 2B). The observed frequency of non-parental ditype (NPD) tetrads reflects 

4-strand double crossovers (Figure 2A). Assuming no chromatid interference, as is the case 

where tested (Emerson and Beadle, 1933; Mortimer and Fogel, 1974; Munz, 1994; Zhao et 

al., 1995; Stahl and Housworth, 2009; Miller et al., 2016), and no crossover interference, the 

expected frequency (f) of NPD, tetratypes (T; single crossover) and parental ditypes (PD; no 

crossover) can be calculated from the Haldane relation of genetic distance (in Morgans) and 

the observed recombinant frequency R.

Recombinant frequency(R) = fNPDobserved + 1
2fTobserved

genetic distance(X) = − 1
2ln(1 − 2R)

The NPD ratio = NPDobserved/NPDexpected, and I = 1 – NPD ratio.

Papazian (1952) used Haldane’s formula to calculate the expected NPD frequency from the 

observed T frequency.

fNPDexpected = 1
2[1 − fTobserved − (1 − 3

2fTobserved)
2/3

Stahl (2008) extended this analysis to include the expected frequencies of each of the three 

classes based on the observed recombinant frequency and Haldane’s equation.

fTexpected = 2
3 1 − e−3X

fNPDexpected = 1
2 1 − e−2X − fTexpected

fPexpected = 1 − fNPDexpected − fTexpected

Papazian’s analysis is not valid for T close to 2/3, but Stahl’s “better way” is valid for all 

values. In addition, Stahl’s analysis, based on all three tetrad classes, gives more reliable 

statistical analysis of the data than Papazian’s (Stahl, 2008).
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Two studies in yeasts (Munz, 1994; Shinohara et al., 2003) found similar degrees of 

interference using both random spore and tetrad (NPD; Papazian method) analyses, as 

expected.

Cytological analysis

A physical (cytological) method determines the position of fluorescent markers, seen as 

foci in a microscope, along a chromosome. Typically, the chromosomal axis is labeled 

uniformly, to allow distance measurements along the chromosome, and a chromosomal 

end is labeled uniquely, to identify an individual chromosome. A chromosome is divided 

into many equal-length intervals, and the frequencies of foci in each interval and the 

frequencies of two foci in each pair of intervals are determined. Interference is seen as 

foci being farther apart than expected from random positioning. Fung et al. (2004) found that 

synapsis initiation complex proteins (e.g., Saccharomyces cerevisiae Zip2 and Zip3) showed 

interference. Similar markers used are those thought to indicate “crossover designation,” for 

example Caenorhabditis elegans COSA-1, mouse MLH1, and A thaliana MLH1 (Anderson 

et al., 1999; Chelysheva et al., 2010; Yokoo et al., 2012). S. cerevisiae Zip3 promotes CO 

formation, is required for CO interference (Table 1), and has been proposed to bind to 

DSB sites after they are “designated” by an unknown factor for CO formation (Agarwal 

and Roeder, 2000; Serrentino et al., 2013). C. elegans COSA-1 and A. thaliana MLH1 

are located between bivalents at or near a chiasma (Chelysheva et al., 2010; Yokoo et al., 

2012). COSA-1 is also needed for CO formation (Yokoo et al., 2012). The chromosomal 

distribution of mouse and A. thaliana MLH1 foci reflect the number and distribution of 

crossovers (Anderson et al., 1999; Chelysheva et al., 2010). These observations support 

these foci being a valid proxy for crossovers.

Interference is measured as in CoC analysis: I = 1 – CoC, where

CoC = observed double focus frequency
expected double focus frequency = FAB

FA × FB

This cytological method does not require genetic markers and can be used in mutants that 

do not complete meiosis. But it requires spreading nuclei and high-resolution microscopy, 
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which may be difficult for large numbers of cells. In addition, distance is measured as 

physical distance along the chromosomal axis, which may not be proportional to genetic 

map or DNA length. In S. cerevisiae, however, cytological interference extends over ~0.45 

microns of axis, which corresponds to ~44 cM (Zhang et al., 2014), indicating equivalence 

of cytological and genetic interference. In A. thaliana and humans, the data are ~25 microns 

(~61 cM) and ~5 microns (~50 – 60 cM), respectively (Gruhn et al., 2013; White et al., 

2017; Capilla-Pérez et al., 2021). [See Table 2 for relations between DNA length (Mb), 

genetic distance (cM), and axis length (microns) in various species.] It should be noted that 

several S. cerevisiae mutants (e.g., zip1Δ, sgs1Δ, and msh4Δ) show cytological interference 

but not genetic interference (Sym and Roeder, 1994; Novak et al., 2001; Fung et al., 2004; 

Oh et al., 2007). Simple explanations are that a) S. cerevisiae strains from different genetic 

backgrounds were used to test the two methods and b) these proteins may be required at 

a stage of crossover formation after crossover “designation” (e.g., Zip3 binding) (De Muyt 

et al., 2012; Zakharyevich et al., 2012; Zhang et al., 2014b). Nevertheless, these mutants 

indicate some difference in cytological vs. genetic interference.

Complications in interpreting interference data

While it is often said that this or that species has crossover interference, the reported 

strengths clearly differ among species and often across a given genome (Figure 3). 

Some, such as C. elegans, appear to have absolute interference – two crossovers on one 

chromosome do not appear (Barnes et al., 1995; Meneely et al., 2002). Extensive data show 

strong interference for short intervals (<10 cM) in D. melanogaster (~0.95) and in N. crassa 
(~0.8), gradually decreasing for longer intervals, and becoming negligible at ~40 -- 50 cM 

(Foss et al., 1993) (Figure 3). S. cerevisiae interference ranges from near 0 up to ~0.8, 

but among data analyzed in Figure 3 there is a less distinct trend with distance: intervals 

of similar genetic size can have different degrees of interference. According to the only 

report of which we are aware (Strickland, 1958), Aspergillus nidulans has no detectable 

crossover interference. Schizosaccharomyces pombe has statistically highly significant but 

weak crossover interference (0.26 ± 0.051) in the one pair of adjacent intervals assayed 

extensively (Fowler et al., 2018); other intervals may have no interference, but the data for 

most individual intervals reported are limited (Munz, 1994).

The ratio of genetic distance (cM) to DNA length (Mb) differs by a factor of >500 

among species (Table 2), indicating that a similar level of interference in two species may 

reflect vastly different DNA distances. In addition, each micron of cytological axis length 

corresponds to different lengths of DNA. A simple interpretation is that DNA loops of 

increasing size extend from the axis as the parameter (micron of axis length/Mb) decreases. 

Consequently, different genetic distances correspond to different axis lengths among species. 

In multicellular species the parameter (cM/micron of axis) ranges from about 2 to 10; in S. 
cerevisiae, the value is about 100 (Table 2).

Interpreting these data is complicated by additional considerations (see also Berchowitz 

and Copenhaver, 2010). Gene conversions, whose formation is closely related to that of 

crossovers, are often stated not to interfere with each other. Mortimer and Fogel (1974) and 

Foss and Stahl (1995) report CoC = 1.0 (95% confidence interval, or CI, = 0.75 – 1.45 or 
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wider) for gene conversions at the closely linked ARG4 and THR1 genes of S. cerevisiae. 

Because the number of double gene conversions is small (13 and 28, respectively), the data 

do not rule out weak interference, either positive or negative. Sequencing 980 chromatid 

arms from progeny of D. melanogaster hybrids, Miller et al. (2016) found 291 chromatid 

arms with one or more gene conversions and 33 with two or more gene conversions. 86 

doubles are expected from independence; thus, CoC = 0.38 (CI = 0.28 – 0.49), indicating 

highly significant positive interference of gene conversions. Using a different method of 

analysis, the authors, however, concluded that gene conversions do not show interference. 

Miller et al. (2016) found 541 crossovers and 52 double crossovers; CoC = 0.17 (CI = 0.13 

– 0.22), indicating strong crossover interference, as concluded by Miller et al. (2016) and 

others cited above for D. melanogaster. Similarly, for crossovers and non-crossovers (124 

such doubles observed), CoC = 0.77 (CI = 0.63 – 0.91), indicating weak but significant 

interference of these events. Some but not other classes of gene conversion (6:2, 5:3, or 

aberrant 4:4) with an associated crossover also interfere with a nearby crossover in another 

interval in some species but not in others (Kitani, 1978; Mancera et al., 2008; Getz et al., 

2008; Stahl and Foss, 2008). These results may reflect different relative activities of two 

pathways of recombination, one with and one without interference, as discussed in the next 

paragraph. Although the original definition of interference referred to genetic crossovers, 

more recently emphasis has been put on spatial interference of cytological markers along 

chromosomes, as described above. These foci are inferred to mark “designated” crossover 

sites, which may be closely related to, but not guaranteed to become, crossovers, as noted 

above. Thus, it is important to specify what is measured to indicate interference.

An added complication is the possibility of two or more types of meiotic recombination 

occurring in the same species. In S. cerevisiae, A. thaliana, and mice two pathways of 

crossover formation have been shown – one with and one without interference (e.g., Ross-

Macdonald and Roeder, 1994; Copenhaver et al., 2002; de los Santos et al., 2003; Argueso 

et al., 2004; Higgins et al., 2004; Stahl et al., 2004). Direct support for this view comes 

from studies of S. cerevisiae zip1 and msh5 mutants, in which the residual crossovers (20 – 

40% of wt frequency) show little if any interference (Sym and Roeder, 1994; de los Santos 

et al., 2003). In an mms4 mutant, defective in another postulated pathway, interference is 

not significantly different from that in wt (de los Santos et al., 2003). Some authors have 

proposed that the non-interfering pathway acts early, to establish chromosome pairing, and 

the interfering pathway acts late, to facilitate chromosome disjunction (de los Santos et al., 

2001; de los Santos et al., 2003; Getz et al., 2008). In some species, crossing over aids 

both events, but the degree to which the pathways differ is unclear. They could diverge 

at the beginning of the recombination pathway (before DSB formation) or at the end 

(resolution of Holliday junctions). For example, nicked Holliday junctions could arise in 

the “early” pathway and be resolved by Mus81-Mms4, while non-nicked (ligated) Holliday 

junctions could arise in the “late” pathway and be resolved by Msh4-Msh5 and Mlh1 and its 

partners (e.g., Getz et al., 2008; Berchowitz and Copenhaver, 2010). These pathways could 

act differentially in different genomic intervals, further complicating the interpretation of 

interference strength in a given species.

Important to keep in mind is that species differ. For example, Mus81-Eme1 is essential for 

Holliday junction resolution and >95% of crossover formation in S. pombe (Boddy et al., 
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2001; Smith et al., 2003; Cromie et al., 2006), but its homolog Mus81-Mms4 is required 

for only ~20% of crossovers in S. cerevisiae (de los Santos et al., 2003; Argueso et al., 

2004), although it is required for abundant viable spore-formation in both species. Some 

proteins essential for recombination in some species, such as Dmc1 DNA strand-exchange 

protein, are not apparent in other species. [Among tested species, those with Dmc1 require 

recombination for chromosome synapsis, but those without it do not (Stahl et al., 2004)]. 

We know of no species in different genera in which the same set of orthologous proteins 

is required for meiotic recombination, emphasizing that species differ. Thus, it is risky to 

use data from one species in interpreting data from another species. Rather, one should state 

the species under discussion and not dismiss a view proposed for one species because of 

counter data in another species. Observations and models of interference in any species are 

nevertheless important for thinking about the mechanism of interference in other species.

Proteins Required for Crossover Interference

Mutants with altered crossover interference have been identified in a variety of species. 

Table 1 groups the corresponding proteins according to their known functions in meiotic 

recombination and DNA metabolism. Homologs of some of these proteins are found 

in widely divergent species, suggesting some underlying similarity in interference. The 

molecular mechanisms by which these proteins impart interference remain largely unknown.

Models of Crossover Interference

Numerous models for crossover interference have been proposed. Many have led to 

mathematical models that account for existing data, such as the relation of interference and 

genetic or cytological distance, but few have specified a molecular mechanism, including 

roles for proteins required for interference (Table 1). Some models can be considered 

genetic, in the sense of having properties related to genetic distance, or physical, in the sense 

of measuring kb of DNA or microns of chromosome axis in fully condensed chromosomes. 

In both cases, however, the features of the models often account for interference allowing 

exactly one crossover in the genetic distance (50 cM) required by the definition of cM 

and over which interference acts, at least in D. melanogaster and N. crassa (Figure 3). (50 

cM, or 0.5 Morgan, is the genetic separation generated by one crossover in a bivalent, in 

which half the chromosomes are recombinant in the defined interval; Figure 2B). Here, we 

discuss models in several classes. Words or phrases in quotation marks below are from the 

references cited.

Trigger model

Fox (1973) postulated that a “chiasma determination mechanism passes along the 

chromosome at a constant rate” and is “triggered” to form a chiasma. It continues to 

move along the chromosome and “requires a fixed time to become recharged” to form 

another chiasma. The trigger was proposed to be “some feature of the secondary structure 

of the chromosome,” which is rare in chromosomal regions with few chiasmata, such 

as the heterochromatic centromeres. Although further descriptions and predictions of the 
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mechanism were not provided, this may be the first model postulating an entity moving 

along the chromosome to promote a limited number of crossovers in a given region.

Polymerization models

Egel (1978) proposed that “nodes” (required for the “establishment of an exchange 

possibility”) are formed only before chromosome synapsis and “serve as initiation centres at 

which synapsis is started.” One node, presumably activated at random, starts polymerization 

of the synaptonemal complex (SC). As the SC grows by polymerization, it inactivates 

additional nodes, thereby preventing further crossovers in the region over which there was 

SC polymerization.

King and Mortimer (1990) also proposed a model involving polymerization, but one in 

which the polymer (separate from the SC) both promotes and inhibits rather than simply 

inhibits crossover formation. In their model, “early structures” bind randomly along the 

already established SC and are held within it, thereby preventing interaction with another 

chromosome. Each structure initiates bidirectional polymerization and “give[s] rise to the 

late recombination nodules,” which initiate crossover formation. The growing polymer 

then prevents other early structures from binding or ejects those already bound but not 

yet polymerizing. The ejected structures can act on other SC regions without a structure-

induced polymer. This feature assures that all chromosomal regions have the opportunity for 

crossovers, provided there are enough structures present. The nature of the early structures, 

the ensuing polymer, and nodules was not specified.

Reaction-diffusion models

In this class of models, a factor, such as a protein, diffuses in one dimension along a 

chromosome or bivalent for a limited distance and affects crossover formation, either 

positively or negatively. This factor may be restricted by the SC from moving to another 

bivalent. Its effect is thus limited to the chromosome or bivalent it is on, as expected for 

imposition of interference along but not between chromosomes.

Holliday (1977) proposed that an activating factor, limited in amount, converts an unstable 

crossover into a stable chiasma. The factor is proposed to be a protein that binds DNA 

cooperatively and forms a complex with the crossover to stabilize it. It does not interact with 

a non-crossover structure. Diffusion of the protein along the chromosome to the crossover 

site depletes the surrounding region and prevents formation of a second stable chiasma in 

that region. Although not stated in the model, presumably the factor is initially randomly 

distributed along the chromosome. Organisms that lack interference, such as A. nidulans 
(Strickland, 1958), are proposed to have an unusually high level of the activating protein. 

To account for interference not extending across centromeres in some species, Holliday 

proposed that the centromere is a barrier to diffusion of the protein.

Fujitani et al. (2002) proposed that “random walkers” are randomly distributed along 

chromosomes; each diffuses randomly in one dimension and with a set rate “becomes 

immobilized and matures into a crossover point.” Collision of two random walkers 

inactivates both; collision of a moving walker with an immobilized walker inactivates the 
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moving one. This model, like those above, generates exactly one crossover in an interval of 

50 cM. Mathematical models built on two parameters (the initial density of walkers and the 

rate at which a walker becomes immobilized) account for data in D. melanogaster and N. 
crassa. As in other models above, the nature of the walkers and the means by which they 

mature into crossovers were not stated.

Rog et al. (2017) found that proteins of the C. elegans SC behave as though they are in liquid 

crystals – they are sensitive to 1,6-hexanediol, which disrupts such structures, and quickly 

diffuse from the surrounding area into a particular region (as observed after localized 

irradiation of a photoconvertible derivative of the SC protein SYP-3). The latter property of 

liquid crystals is similar to that of lipid membranes, in which proteins can readily diffuse 

within, but not out of, the membrane. This property would allow a protein to diffuse along 

the chromosome and interact with sites on that chromosome but not with those on another 

chromosome, as demanded for crossover interference. Thus, Zhang et al. (2018) propose 

that SC proteins, including ZHP-3, diffuse in one dimension and a combination of positive 

and negative effects allows only limited numbers of crossovers (one for C. elegans) to form 

along a chromosome. Additional proteins required for interference include the SC protein 

SYP-1, the condensin subunit DPY-28, and the protein kinase RTEL-1 (Table 1). Homologs 

of SYP-1 and RTEL-1 are also required for interference in other species, suggesting that the 

C. elegans mechanism may be widespread.

Morgan et al. (2021) showed that the HEI10 protein of A. thaliana behaves as predicted 

by a reaction-diffusion model for an activator of crossover formation. HEI10 is initially 

nearly uniformly distributed along each bivalent and then condenses into several small foci 

and eventually into one to three foci, approximating the number of genetic crossovers per 

bivalent in other experiments. How HEI10, a putative ubiquitin E3 ligase and Zip3 homolog, 

promotes crossovers is unclear.

Counting models

Foss et al. (1993), like previous authors, pointed out that interference in D. melanogaster 
and N. crassa is strong for short genetic intervals but diminishes to nearly zero for 

intervals ~40 – 50 cM or greater (Figure 3). Note that 50 cM corresponds to about 20 

Mb in D. melanogaster but only 2 – 3 Mb in N. crassa (Table 2). Foss et al. (1993) 

therefore sought an interference mechanism that measures genetic, not physical, distance. 

In their model “recombination-initiation events” are randomly placed along chromosomes. 

By unstated mechanisms, one is matured into a crossover, the next m events in one 

direction along the chromosome are matured into non-crossovers (gene conversions or sister 

chromatid interaction), and the next event is matured into a crossover. The authors developed 

mathematical equations with the variable m and found that data for D. melanogaster and N. 
crassa were fit well with m = 4 and 2, respectively. Mortimer and Fogel (1974) proposed that 

“recombinogenic events are distributed along the chromosome in an independent fashion” 

but with alternating crossovers and non-crossovers; this model is equivalent to the counting 

model of Foss et al. (2003) with m = 1.
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The counting model predicts that between two neighboring crossovers there should be 

m non-crossovers. Short intervals between two crossovers should be enriched for non-

crossovers relative to the same intervals on chromosomes without flanking crossovers. Foss 

and Stahl (1995) tested this prediction in S. cerevisiae and found it did not hold. Rather, 

there were fewer non-crossovers (gene conversions) in the short interval in tetrads with 

flanking crossovers compared to those without flanking crossovers, suggesting interference 

between crossovers and non-crossovers, as noted above.

Mechanical models

Interference might result from a purely mechanical, rather than biochemical, property of a 

chromosome. Muller (1916) proposed that a chromosome is too stiff to bend near an existing 

crossover and thus allow formation of another crossover nearby. Kleckner et al. (2004) 

compared a chromosome to a stiff beam coated with a brittle ceramic film. Bending the 

beam would put increasing stress on the film until it cracked and relieved the surrounding 

stress in the film. By analogy, they proposed that formation (or designation) of a crossover 

requires stress (the opposite of Muller’s proposal) resulting from chromosome expansion 

and that stress in turn is relieved by crossover formation. Thus, a crossover would not form 

until stress built up, but once a crossover formed, there would be no stress nearby to allow 

formation of a second crossover. Stress would monotonically increase with distance from the 

first crossover, thus allowing, with increasing probability, another crossover some distance 

away. Support for this model comes from the partial reduction of interference, measured as 

inter-focus distance between Zip3 foci, in a top2 mutant deficient in DNA topoisomerase II, 

which relaxes supercoiled DNA (Zhang et al., 2014b).

In an expansion of the beam-film model (Zhang et al., 2014a), certain “precursors” are 

“designate[d] to eventually mature as a crossover.” Thus, the act of designation imposes 

interference. “The precursors for CO patterning are generally assumed to be the total 

array of double strand break (DSB)-initiated interactions between homologs,” and “yeast 

DSBs are evenly spaced.” DSBs become “designated” to become crossovers by an unstated 

mechanism but are reflected by the distribution of Zip3 foci (see Cytological analysis 

above). The probability (frequency) curve resembles that of CoC vs. cM in D. melanogaster 
(Figure 3). In S. cerevisiae, the distance at which adjacent Zip3 foci occur at the frequency 

expected for independence is roughly 100 kb or about 50 cM. Kleckner et al. (2004) 

emphasize, however, that crossover designation (interference) measures axis length, not kb 

of DNA or cM of genetic map length.

The beam-film model has been used to formulate mathematical models for interference 

(Zhang et al., 2014a). These models use multiple parameters reflecting such features as 

the average number of precursors per chromosome, their distribution along chromosomes 

(random or even or intermediate), and the “designation driving force.” Data from various 

species fit the model when appropriate values for these parameters are chosen. With nine 

adjustable parameters, the model fits the data from various species (Zhang et al., 2014a).

Because few molecular (biochemical) features of the beam-film model are specified, 

it is hard to test this model genetically. The presumed even spacing, by an unstated 
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mechanism, of precursors (DSBs) in yeast would seem to be interference itself, perhaps 

one of several factors leading to crossover interference. In addition, it seems counterintuitive 

that crossovers rather than DSBs would relieve stress in a chromosome. The model does, 

however, offer a different way of thinking about the problem of crossover interference.

Chromosome oscillatory movement model

Hultén (2011) viewed chromosomes as long flexible entities that move with wave-like 

motions. Chromosome ends (telomeres, attached to the nuclear membrane) and centromeres 

(attached to the kinetochore and spindle apparatus) move vigorously as the homologs pair. 

These movements create waves along each chromosome (univalent). When the “nodes” 

(crests) of two waves on homologs meet, they engage and form a crossover. Because the 

adjacent chromosome regions are not juxtaposed, no crossovers occur there. This model 

accounts for chromosomal translocations and other large rearrangements, such as deletions 

and inversions, blocking recombination and interference in the flanking regions.

Clustering models

Most of the models above do not specify the proteins involved in interference. The clustering 

model proposed by Fowler et al. (2018) specifies particular proteins involved in several 

steps. This model is based on their finding that S. pombe linear element proteins (LinE 

proteins; Rec25, Rec27, and Mug20), in conjunction with another linear element protein 

Rec10, bind to DSB hotspots with high specificity and are required for DSB formation at 

most hotspots (Fowler et al., 2013). Rec10 is more uniformly distributed and is required for 

all DSB formation. Loading of LinE proteins onto chromosomes is promoted by cohesins 

containing meiosis-specific subunits Rec8 and Rec11. These six proteins are required for 

full levels of recombination. A type of Hi-C analysis showed that Rec27-bound DSB 

hotspots form 3D clusters over ~200 kb (Fowler et al., 2018). A DSB at one hotspot 

interferes with DSB formation at surrounding hotspots; this DSB interference, like hotspot 

clustering, is strongest for nearby hotspots and decreases to an undetectable level at ~200 

kb, corresponding to ~35 cM (Fowler et al., 2018) (Table 2). DSB interference also occurs 

in S. cerevisiae, extending ~20 – 50 kb, corresponding to ~7 – 20 cM (Garcia et al., 2015). 

Fowler et al. (2018) proposed that DSB interference gives rise to crossover interference, just 

as DSBs give rise to crossovers.

In the model of Fowler et al. (2018) a protein complex, such as condensin or cohesin or 

both, binds to a site on a chromosome and, while remaining bound to that site, moves 

unidirectionally along the chromosome and forms an ever-growing loop (Hyppa et al., 

2021). Upon encountering a potential DSB hotspot in the chromosome (or pair of sister 

chromatids or pair of homologs) being moved along, the protein complex loads a LinE 

complex onto the hotspot(s), holds onto that site, and continues moving. Upon encountering 

the next potential hotspot, it loads another LinE complex with a probability proportional 

to the strength of that hotspot. After it has loaded a set number of LinE complexes at 

hotspots, perhaps only two, it ceases loading. A DSB formed at random in the cluster 

of hotspot-LinE complexes activates the Tel1 protein kinase, which blocks further DSB 

formation in that cluster by phosphorylating a member of the DSB-forming complex 
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(Rec12 and its half dozen essential partners). The DSB is repaired to a crossover. Because 

additional DSB formation in the surrounding area (the chromosomal region in the loop) is 

blocked, so is crossover formation. Formation of clusters encompassing only one homolog 

(paired chromatids) would allow independent DSBs on the other homolog, and interference 

would be limited to 0.5, but clusters encompassing both homologs would allow complete 

interference (I = 1). Formation of clusters over different regions in individual cells would 

make a gradient, from complete interference to none, in the population of cells, as typically 

used for assessing crossover interference genetically.

In mitotic S. pombe cells, condensin forms topologically associated domains (TADs) over 

chromosomal regions of ~300 kb; cohesin forms TADs over ~80 kb (Kim et al., 2016). 

These distances are about the distance over which DSB interference is observed (~200 kb, 

as noted above). An S. pombe meiotic cell forms about 60 DSBs over its 13 Mb genome, 

or 1 DSB per ~200 kb (Fowler et al., 2014). Thus, these numbers are consistent with the 

model. In a tel1Δ mutant, both DSB interference and crossover interference become negative 

(Fowler et al., 2018), indicating that Tel1 is required for interference. Negative interference 

may arise from two or more DSBs being formed in a cluster when Tel1 is not present to 

inactivate the DSB-forming complex. The result is coordinated action of the DSB-forming 

complex within a cluster and coordinated crossover formation (negative interference). This 

model predicts interference between gene conversions, which to our knowledge has not 

been reported in S. pombe. In the one report of which we are aware, noted above, gene 

conversions do not show interference in S. cerevisiae (Foss and Stahl, 1995), but the data do 

not exclude low level interference (i.e., CoC = 1.0 ± 0.3).

Stahl et al. (2004) proposed that “neighboring intermediates (-to-be) [also called “attempts”] 

are gathered into clusters of more or less fixed size” and that exactly one member of this 

cluster is converted into a crossover. These clusters were proposed to be foci of Zip2-Zip3 

or “late nodules” observed by electron microscopy on the SC in D. melanogaster (Carpenter, 

2003). The mode of clustering and the molecular mechanism limiting crossovers to one per 

cluster were not specified.

Conclusions and future research

Crossover interference has been well documented in many species and to require a variety 

of proteins. The molecular mechanism remains to be determined in any species. Given the 

differences in interference strength (Figure 3) and protein requirements (Table 1) in various 

species, it seems likely that there are multiple mechanisms. Interference strength is clearly 

distance-dependent in D. melanogaster but less so in S. cerevisiae and C. elegans (Figure 

3), suggesting that the mechanisms of interference may be quite different. Determining 

the mechanisms is a challenge requiring a combination of methods, including genetic and 

biochemical as well as cytological analyses.
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Fig. 1. 
Crossovers are needed for proper chromosome segregation in meiosis. Red and blue lines 

indicate replicated homologs from each parent. Each line indicates a double-stranded DNA 

of one chromatid. Green dots represent centromeres. After replication, sister chromatids 

are held together by cohesins (orange circles). Gray arrows indicate the direction of 

homologous centromere separation at the first meiotic division (MI). (Left panel) No tension 

is generated between homologs when no CO is formed. (Middle two panels) Tension is 

formed between homologs when one CO or two well-separated COs arise. (Right panel) 

Two COs too close to each other may have too little sister chromatid cohesion between the 

crossovers to produce tension between homologs to aid segregation. The tension ensures 

homologous centromeres segregate properly in MI. Crossovers also generate recombinant 

haploid gametes after the second meiotic division (MII).
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Fig. 2. 
Characterizing crossovers in meiotic tetrads with genetic markers. (A) Three-marker tetrad 

analysis can identify two-, three-, or four-strand (chromatid) double crossovers. (B) Three 

types of tetrads in two-marker tetrad analysis. PD, parental di-type; TT, tetra-type; NPD, 

non-parental di-type. The genotypes of the four gametes are indicated below each panel.
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Fig. 3. 
Correlation between crossover interference and genetic distance in D. melanogaster, S. 

cerevisiae and C. elegans. D. melanogaster CoC (S4) data (Foss et al., 1993; Morgan, 

Bridges, & Schultz, 1935), S. cerevisiae NPD ratio data (Argueso et al., 2003; Argueso, 

Wanat, Gemici, & Alani, 2004; Chua and Roeder, 1997; He et al., 2020; Novak, Ross-

Macdonald, & Roeder, 2001; Oh et al., 2007; Shinohara, Sakai, Shinohara, & Bishop, 2003; 

Stahl et al., 2004; Sym & Roeder, 1994; Tsubouchi, Zhao, & Roeder, 2006; Zanders & 

Alani, 2009) and the genetic distance of each interval are plotted. C. elegans makes only 

one crossover per chromosome (Barnes et al., 1995; Meneely et al., 2002), indicating it 

has complete interference up to 50 cM, the genetic length of each chromosome. Most S. 

cerevisiae data were analyzed in the SK1 background (red circles), and eight data points 

were analyzed in other strain backgrounds (red triangles). N. crassa data are similar to those 

of D. melanogaster (Foss et al., 1993). D. melanogaster data with < 5 double recombinants 

and S. cerevisiae data with < 5 expected and < 5 observed NPD tetrads were not included. 

S. cerevisiae data were re-analyzed using the “better way” of Stahl (2008). The blue and 

orange lines, respectively, show the linear regression analysis of data from D. melanogaster 

(y = 0.025x − 0.053; r2 = 0.72) and S. cerevisiae (y = 0.0064x + 0.17; r2 = 0.17); for this 

analysis, data with > 50 cM and S. cerevisiae data with NPD ratio > 1 were omitted.
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Table 1.

Proteins with diverse functions are required for crossover interference

Protein Species Function Interference assay Reference

Synaptonemal complex (SC)

 Zip1 S. cerevisiae Transverse filament of the SC NPD ratio Sym and Roeder, 1994

  SYP-1 C. elegans Cytology Libuda et al., 2013

  Zyp1 A. thaliana Cytology Capilla-Pérez et al., 2021

  Asy1 A. thaliana Cytology Lambing et al. 2020

  Zep1 O. sativa Cytology Wang et al., 2010

  Sycp1 M. musculus Cytology de Boer et al., 2006

DPY-28 C. elegans Condensin I subunit; chromosomal axis 
formation

Cytology Tsai et al., 2008

Regulating CO formation

 Msh4-Msh5 S. cerevisiae Binds Holliday junctions; facilitates CO 
formation

NPD ratio Novak et al., 2001; Argueso et 
al,. 2004; Getz et al., 2008

 NPD ratio and 
CoC

Nishant et al., 2010

 CoC Anderson et al., 2015

 Zip3 S. cerevisiae SUMO E3 ligase; required for SC formation 
and CO formation

CoC Anderson et al., 2015

 Mlh1-Mlh3 S. cerevisiae Endonuclease; binds and resolves Holliday 
junctions

NPD ratio Argueso et al,. 2003

 Slx4 S. cerevisiae Endonuclease; resolves Holliday junctions NPD ratio Higashide and Shinohara, 2016

 Sgs1 S. cerevisiae DNA helicase; chromosome synapsis; 
meiotic joint molecule and CO formation

NPD ratio Oh et al., 2007

CoC Anderson et al., 2015

Blm D. melanogaster CoC Hatkevich et al., 2017

Mer3 S. cerevisiae DNA helicase; promotes CO formation NPD ratio Nakagawa and Ogawa, 1999

Spo16 S. cerevisiae Facilitates SC and CO formation NPD ratio Shinohara et al., 2008

Spo22 (Zip4) S. cerevisiae TPR-like repeat protein; facilitates SC 
formation and CO formation

NPD ratio Tsubouchi et al., 2006; 
Shinohara et al., 2008

Pch2 S. cerevisiae Regulating chromosome synapsis and CO 
formation

NPD ratio Joshi et al., 2009; Zanders and 
Alani, 2009

Pch2 A. thaliana CoC Lambing et al., 2015

RTEL-1 C. elegans CO formation Cytology Youds et al., 2010

DNA damage check point

Tel1 S. cerevisiae Protein kinase regulating DNA double-
strand-break response

CoC Anderson et al., 2015

Tel1 S. pombe CoC Fowler et al., 2018

ATM M. musculus Cytology Barchi et al., 2008

Topoisomerase II and SUMOylation

Top2 S. cerevisiae DNA topoisomerase; binds axial cores Cytology Zhang et al., 2014b

Ndj1 S. cerevisiae Regulating meiotic SPB cohesion and 
telomere clustering

NPD ratio Chua and Roeder, 1997

Slx5/8 S. cerevisiae SUMO-targeted ubiquitin ligase (STUbL) Cytology Zhang et al., 2014b
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Protein Species Function Interference assay Reference

Sir2 S. cerevisiae Activation of STUbL activity of Slx5/8 Cytology Zhang et al., 2014b
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Table 2.

Ratio of genetic distance to physical distance varies >500-fold among species

Species Genetic map 
length (cM)

Physical map 
length (Mb)

Axis length 

(μm)
§

Genetic 
length/ 

physical 
length 

(cM/Mb)

Axis length/
physical length 

(μm/Mb)

Genetic length/
axis length 
(cM/μm)

S. cerevisiae
4206

a
12

a
43

b 350 3.6 98

S. pombe
2100

c
13.8

d -- 150 -- --

N. crassa
1075

e
43

f -- 25 -- --

A. thaliana
597

g
135

h
240

i 4.4 1.8 2.5

D. melanogaster
287

j
180

k -- 1.6 -- --

D. melanogaster Chr X
65.3

j
24

k
15

l 2.8 0.63 4.4

C. elegans 300 103
m

29
n 2.9 0.28 10

Humans
3630

o
3019

o -- 1.2 -- --

Human autosomes
3451

o
2740

o
260 –320

p 1.3 0.09 – 0.12 11 – 13

M. musculus
1373

o
2577

o -- 0.53 -- --

M. musculus autosomes
1316

o
2320

o
150 – 162

q 0.56 0.06 – 0.07 8.1 – 8.8

§
Axis length was measured by light microscopy of formaldehyde-fixed samples.

a
Cherry et al. (1997); Mortimer et al. (1992)

b
 Song et al. (2021) 

c
 Egel (2004) 

d
Wood et al. (2003)

e
 Perkins and Barry (1977) 

f
 Galagan et al. (2003) 

g
Lister and Dean (1993),

h
The Arabidopsis Genome Initiative (2000)

I
 Morgan et al. (2021) 

j
 Comeron et al. (2012) 

k
 Adams et al. (2000) 

l
 Page et al. (2001) 

m
 C. elegans Sequencing Consortium. (1998) 

n
Lascarez, Lagunas and Colaiácovo, unpublished data

o
 Jensen-Seaman et al. (2004) 
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p
 Codina-Pascual et al. (2006) 

q
 Vranis et al. (2010) 
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