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Abstract

Introduction: Schizophrenia and Major Depressive Disorder (MDD) are highly burdensome 

mental disorders, with significant cost to both individuals and society. Despite these disorders 

representing distinct clinical categories, they are each heterogenous in their symptom profiles, 

with considerable transdiagnostic features. Although movement and sleep abnormalities exist 

in both disorders, little is known of the precise nature of these changes longitudinally. Passively-

collected longitudinal data from wearable sensors is well suited to characterize naturalistic features 

which may cross traditional diagnostic categories (e.g., highlighting behavioral markers not 

captured by self-report information).

Methods: The present analyses utilized raw minute-level actigraphy data from three diagnostic 

groups: individuals with schizophrenia (N = 23), individuals with depression (N = 22), and 

controls (N = 32), respectively, to interrogate naturalistic behavioral differences between 

groups. Subjects’ week-long actigraphy data was processed without diagnostic labels via 

unsupervised machine learning clustering methods, in order to investigate the natural bounds 
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of psychopathology. Further, actigraphic data was analyzed across time to determine timepoints 

influential in model outcomes.

Results: We find distinct actigraphic phenotypes, which differ between diagnostic groups, 

suggesting that unsupervised clustering of naturalistic data aligns with existing diagnostic 

constructs. Further, we found statistically significant inter-group differences, with depressed 

persons showing the highest behavioral variability.

Limitations: However, diagnostic group differences only consider biobehavioral trends captured 

by raw actigraphy information.

Conclusions: Passively-collected movement information combined with unsupervised deep 

learning algorithms shows promise in identifying naturalistic phenotypes in individuals with 

mental health disorders, specifically in discriminating between MDD and schizophrenia.
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1. Introduction

MDD and schizophrenia are highly debilitating and among the most common mental health 

disorders worldwide, with lifetime prevalences of 16.6 % and 1 %, respectively (Kahn et al., 

2015; Otte et al., 2016). Major depressive disorder (MDD) is characterized by low mood, 

diminished interest, impaired cognitive function, and vegetative symptoms (Otte et al., 

2016). Schizophrenia, a primary psychotic disorder, is characterized by positive symptoms 

such as hallucinations, delusions and disorganization (Kahn et al., 2015) and negative 
symptoms, including low motivation, low interest, and anhedonia. Left untreated, these 

disorders have profoundly negative consequences for individuals, their families, and society, 

including increased morbidity, disability, and mortality (Walker et al., 2015). Moreover, 

both schizophrenia and depression are highly heterogeneous disorders that result from 

complex interplay between genetic and environmental risk factors (Howes and Murray, 

2014; Buchanan and Carpenter, 1994; Buchsbaum and Haier, 1978; Lang et al., 2013; 

Carpenter and Kirkpatrick, 1988; Pine, 2019; Weissman, 1986). Therefore, it is critical to 

develop objective methods that are scalable and reliable to diagnose and treat MDD and 

schizophrenia.

Disturbances in movement have long been regarded as key diagnostic criteria in both MDD 

and schizophrenia. Psychomotor slowing is one of nine core symptoms of MDD, according 

to the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 

(American Psychiatric Association, 2013); similarly, altered postural control, instability, 

gait, and balance defects are well established clinical characteristics of schizophrenia 

(Buyukdura et al., 2011; Presta et al., 2021). Research has shown that depressed and 

schizophrenic patients differ from normal comparison groups with regard to objectively 

quantified parameters of motor activity (Christina and Harold, 1997). Moreover, these 

psychomotor symptoms have been shown to carry unique discriminative ability compared 

to other symptoms. For instance, studies have found that disturbances in motor activity 

can uniquely distinguish specific subtypes of MDD and schizophrenia, as well as predict 
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response to treatment (Walther et al., 2009a). Current methods of measuring motor activity 

in psychiatry, however, remain challenging, time-intensive, and largely limited to structured 

clinical observations, such as the AIMS test (Abnormal Involuntary Movement Scale), and 

interval self-report, such as PHQ-9 (Patient Health Questionnaire-9, Item 8) (Lane et al., 

1985; Kroenke et al., 2001). Ultimately, these methods remain inadequate to capture the 

dynamic range of motor behavior across time, evidenced by poor validity of expert ratings 

(Walther et al., 2009b).

Sleep and circadian disturbances are also frequently observed in patients with MDD and 

schizophrenia (Wulff et al., 2010). Sleep disturbances are implicated in the neuropathologies 

of MDD and schizophrenia and often precede the onset of many psychiatric disorders (Wulff 

et al., 2010). Identification of sleep-based biomarkers may therefore prove to be useful in 

early detection and intervention of both psychiatric and neurodegenerative disorders (Wulff 

et al., 2010). Ransing et al. found that quantified parameters of sleep such as sleep efficiency 

were promising early prognostic biomarkers for schizophrenia and MDD (Ransing et al., 

2021). Further, Afonso et al. showed that poorer sleep in schizophrenic patients also 

negatively impacted quality of life and subsequent treatment, such as rehabilitation strategies 

(Afonso et al., 2011). Despite this, little is known of the precise diagnostic or prognostic 

value of sleep disturbances in patients with MDD and schizophrenia. This is further 

complicated by medications used in depression and schizophrenia, which may impact sleep 

(Winokur and Kamath, 2008; Wichniak et al., 2017).

The high degree of overlap in clinical presentation and comorbidity between MDD and 

schizophrenia highlights the challenges in using subjective measures to diagnose and 

monitor psychiatric diseases. The prevalence of depression in schizophrenia is reported to 

be as high as 60 % (Upthegrove et al., 2016). When investigated longitudinally, up to 80 % 

of patients with schizophrenia have experienced at least one depressive episode; symptoms 

such as anhedonia, concentration difficulties, and psychomotor abnormalities are nonspecific 

and common in both schizophrenia and MDD. Even in the absence of comorbidity, there 

is significant overlap in clinical findings in patients with solely MDD and schizophrenia 

(e.g., low mood, diminished interest, negative symptoms). This underscores the immense 

clinical challenge in accurately differentiating psychiatric disorders with highly overlapping 

presentations, and motivates the need for objective methods that can reliably distinguish 

these psychiatric disorders.

An emerging body of research has explored the use of actigraphy, a well-validated tool in 

sleep medicine (Smith et al., 2018), to characterize disturbances in movement and sleep 

patterns in both depression (Burton et al., 2013) and schizophrenia (Walther et al., 2009b). A 

study by Walther et al., for instance, found that objective movement parameters collected by 

wrist-worn device actigraphy information could reliably distinguish catatonic schizophrenia 

from paranoid and disorganized schizophrenia (Walther et al., 2009a). Previous work 

in our lab has also identified potential digital biomarkers that could predict diagnostic 

group status (i.e. mood disorder, control) with a high degree of accuracy (accuracy = 89 

%, kappa = 0.773) (Jacobson et al., 2019). However, relevant differences in movement 

patterns specifically between patients with mood disorders and schizophrenia, especially 

over extended periods of time, are poorly understood. In addition, the extent to which 
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naturalistic phenotypes map to DSM-defined categories has not been adequately considered. 

Following from this knowledge gap, our first aim (1) in this study was to determine 

whether unsupervised machine learning methods (using actigraphic data) would naturally 

differentiate MDD, schizophrenia, and non-disordered controls; in other words, would 

distinct actigraphic phenotypes map-on to existing diagnostic contrstucts? Our second aim 

if we found discriminant validity of the unsupervised approach in (1) was to characterize 

the distinct movement phenotypes associated with MDD, schizophrenia, and non-disordered 

controls. To accomplish these aims, we analyzed passively collected dense actigraphic 

data using an unsupervised machine learning approach. We utilized model introspection 

techniques to determine the respective time intervals of locomotion most important in 

informing our unsupervised clustering.

2. Methods

2.1. Study sample

The present work used publicly available actigraphy data collected from individuals with 

schizophrenia, depression, and controls (Berle et al., 2010). Participants included (N = 77) 

adults (including 22 with schizophrenia (Jakobsen et al., 2020), 23 with depression (Garcia-

Ceja et al., 2018), and 32 healthy controls). The average age of the overall participant group 

was 42 years, with subgroup age averages of 46.2, 42.8, and 38.2 years for schizophrenia, 

depression, and control, respectively. The participants were 57 % male and 43 % female 

overall, with 86 %, 57 %, and 38 % men in the schizophrenia, depression, and control 

groups, respectively. Of those who were depressed, five participants were receiving inpatient 

care, while the others had outpatient care. Of those patients with schizophrenia, all were 

considered unable to live independently and were on antipsychotic medications, with eight 

participants (36 %) on clozapine to improve symptom control. The control participants 

comprised hospital employees (n = 23), students (n = 5), and outpatients without significant 

medical or psychiatric illness (n = 4) (Berle et al., 2010).

2.2. Data collection

Participants’ physical activity data was collected via an Actiwatch device, worn around the 

right wrist based on convenience for participants (King et al., 2005). Activity counts were 

recorded on minute intervals for two continuous weeks, and participants were requested 

to only remove the device when taking a shower (Berle et al., 2010). The original study 

protocol was approved by the local ethics committee (REK III, Health-West, Norway) (Berle 

et al., 2010).

2.3. Data preprocessing

Data handling, analysis, and visualization were completed using Python (v3.8.3) (Rossum 

et al., 2010). Individual participants’ raw actigraphy counts were subset to only include the 

first week of data collection and all participants’ were combined into a single data structure, 

with each row representing a given participants’ first week of raw minute-level actigraphy 

data (See Fig. 1A).
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2.4. Uniform manifold approximation and projection (UMAP)

Uniform Manifold ApproXimation and Projection (UMAP) is an unsupervised, nonlinear 

dimensionality reduction method capable of establishing and organizing informative clusters 

from high-dimensional data (McInnes et al., 2018). Further, UMAP is well-suited to 

handle outliers and is more effective in mapping groups compared to alternative clustering 

techniques (Ali et al., 2019). Thus, the resulting high-dimensional minute-level actigraphy 

data was reduced to two dimensions via UMAP (McInnes et al., 2018), in line with recent 

research suggesting UMAP as an effective approach for studying comorbidities within 

mental health research (Sánchez-Rico and Alvarado, 2019). The reduced actigraphy data 

was subsequently visualized and labeled based on diagnostic group to examine higher-order 

relationships between individuals weekly movement patterns, and diagnostic group-level 

movement trends (See Fig. 1B).

2.5. UMAP euclidean distance calculation

Although the scale corresponding to the UMAP projection (X and Y coordinates) cannot 

be directly interpreted, quantification of the relative distance between points can still 

be assessed, a method previously used to quantify gene pair interactions (Dorrity et al., 

2020). The euclidean distance between every point, representing an individual’s movement 

pattern, within a diagnostic group was calculated and averaged across the group. Average 

euclidean distance was compared across groups via Welch’s ANOVA (Delacre et al., 2019) 

followed by a Games-Howell post-hoc pairwise-comparison to directly assess diagnostic 

group differences (Table 1).

2.6. UMAP feature reduction

Coordinate pairs corresponding to the UMAP projection of individuals’ raw actigraphy 

data were further reduced to a single dimension (See Fig. 1C) to interrogate the relative 

influence of individual’s minute-level movement behavior on their overall (week-long) 

movement patterns using SHapley Additive exPlanation (SHAP) (Lundberg and Lee, 2017). 

To preserve the general relationship between diagnostic groups from the UMAP projection 

(e.g., individuals from the control and schizophrenia groups centralized, with individuals 

from the depression group on the periphery), a custom normalization equation was written to 

reduce the two-dimensional data accordingly (Eq. (1)).

| Xi − Y i × Xi + Y i − ∑ Xi − Y i × Xi + Y i

N | = Z (1)

In Eq. (1), individuals’ X and Y coordinates from the UMAP projection were transformed 

and subtracted from the total sample’s average to produce a single-dimension Z value (Fig. 

3). Please see Supplementary Analysis for methods and results of implementing a machine 

learning approach using the X and Y coordinates from the UMAP projection and the 

single-dimension Z value as input features diagnostic group detection.
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2.7. Data explainability

SHAP was implemented to aid in behavioral pattern interpretability by evaluating the most 

influential times of day in a participants weekly movement pattern. Intuitively, SHAP allows 

for model introspection by iteratively perturbing the input data and assessing how this 

affects the output (Lundberg and Lee, 2017). In the present analyses, SHAP values represent 

how the model establishes the latent features that define cluster membership. By expressing 

the variation of the two-dimensional space in one-dimension, we were able to construct 

single shap values per person per feature (minute-level actigraphy data) to represent how 

the model informed the latent space. These values were visualized in averaged two-hour 

intervals against the individual’s raw actigraphy data to map the influential features to the 

corresponding movement patterns.

3. Results

We present descriptive findings from our observations of the following: (1) the 

UMAP projection plot, which displays dimensionally reduced raw actigraphy data, and 

corresponding euclidean distance metrics (2) the non-reduced raw actigraphy plots. 

Additionally, the performance of a supervised machine learning approach using the 

movement-derived clustering coordinates (X, Y, and Z values) to detect an individual’s 

diagnostic group is provided in Supplementary Analysis: Modeling Results.

3.1. General UMAP trends

UMAP displays each subject in a dimensionally reduced feature space, with each subject 

displayed as a single point in two-dimensional space. Thus, each subject’s position (Xi, 

Yi) in the two-dimensional space is representative of that subject’s raw movement over 

one week. It follows that subjects whose points are closer together in the two-dimensional 

space have movement that is more similar. With such a reduction, we make possible 

detection of relative similarities between subjects, with unbiased clustering of movement-

similar participants, regardless of their respective diagnoses. Notably, we find that subjects 

with a common diagnosis do, in fact, tend to cluster. Specifically, participants with 

schizophrenia and controls tend to cluster together, centrally in the two-dimensional 

space (Fig. 2). Depressed participants (both inpatient and outpatient) tend to occupy the 

periphery, encircling the schizophrenic patients and controls. Controls and schizophrenic 

patients are quite difficult to disentangle, visually, though can be distinguished positionally 

from depressed patients. To quantify the coordinate dispersion between diagnostic groups, 

euclidean distance between points within a diagnostic group was assessed (Table 1). 

Confirming qualitative assessment of the UMAP projections, the average distance between 

any two individuals within the same diagnostic group was greatest in the depression group. 

Notably, pairwise comparisons found a statistically significant difference between average 

distance in every group (Table 1).

3.2. General actigraphy plot trends

To visualize daily behavioral patterns influential in characterizing overall movement, three 

representative individuals from each diagnostic group were chosen to allow for qualitative 
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interpretation of the general daily movement patterns and influential time periods identified 

via SHAP (Fig. 4).

3.2.1. Control group—Unique to the control group, a consistent diurnal pattern was 

observed, with daily movement between 8:00 AM to 10:00 PM, and routine sleep. 

Interestingly, due to the structured movement patterns of individuals in the control group 

across the week, SHAP values were generally low, suggesting that no time windows were of 

notable influence in characterizing the daily movement patterns (Fig. 4).

3.2.2. Schizophrenia group—Compared to the control group, SHAP suggested more 

influential behavioral trends evidenced of decreased diurnal regularity, most notably short 

instances of activity observed in early morning hours (12:00 AM - 6:00 AM). Further, the 

overall amplitude of the representative actigraphy output is notably lower compared to the 

representative control group (Fig. 4).

3.2.3. Depression group—As evidenced by the representative individual’s actigraphy 

patterns, participants diagnosed with major depressive disorder display highly erratic daily 

movement, many of which are determined by SHAP as influential to the individual’s 

overall activity pattern. Relative to the control and schizophrenia groups, participants 

with depression exhibited much less regularity and routine in their activity and displayed 

very little interdaily or intradaily stability. Further, sleep patterns appeared volatile, with 

inconsistent ‘wake up’ times, as determined by notable increase in actigraphy amplitude. 

Overall, representative participants from the depression group exhibit low levels of 

routineness and intensity in their movement patterns, and are most differentiated from the 

control group.

4. Discussion

4.1. Overview

Our aim in the present analysis was to better understand distinct movement patterns 

in patients with depression and schizophrenia. To do this, we used passively collected 

movement data with an unsupervised machine learning algorithm to detect differences in 

movement between controls, patients with depression, and patients with schizophrenia. We 

began with descriptive pattern analysis of all participants’ raw activity data over one week’s 

duration, looking specifically for differences between depression, schizophrenia, and control 

groups. Though we observed differences, this was a difficult task due to the size of the 

feature space (recall a total of 10,080 values for each participant’s 7-day activity record), 

the number of participants, and the variability between participants, even in the same group. 

To address this challenge and to further explicate similarities and differences in the activity 

data across groups, we used an unsupervised machine learning algorithm to reduce the 

feature space from 10,080 values, to two values, which we plotted on a two-dimensional 

cartesian coordinate system. In order to better understand the relative feature importances of 

the raw actigraphy data, we leveraged SHAP (detailed in methods) to determine the effect of 

micro-perturbations of a single activity point on a final normalized Z-score.
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4.2. Raw actigraphy

On qualitative analysis of raw activity records, control participants were more likely to 

have regular sleep and wake times, consistent daily activity patterns, and stable activity 

amplitudes throughout the day. Depressed patients, in contrast, had more irregular daily 

schedules, more erratic sleep, often later bedtimes and later wake times in the morning. 

Perhaps counterintuitively, schizophrenic patients had more regular sleep and wake times, 

more similar to control participants than depressed patients; however, these findings align 

with the original work which identified a more structural behavioral pattern in schizophrenia 

than in depression (Berle et al., 2010). Furthermore, these findings are consistent with 

sleep disturbance, a core diagnostic feature of MDD (American Psychiatric Association, 

2013), which may include insomnia, hypersomnia, or some combination. Similarly, lower 

amplitude activity observed in schizophrenic patients is consistent with known movement 

abnormalities (e.g., catatonic behavior, psychomotor slowing) associated with schizophrenia 

(American Psychiatric Association, 2013; Morrens et al., 2007) and its treatment (Miller et 

al., 2008). More regular nighttime sleep and lower activity amplitude in the schizophrenic 

group (compared to the depression group) may be tied to antipsychotics (recall 36 % on 

clozapine and all on some antipsychotic), many of which, including clozapine, have sedating 

effects (Miller, 2004).

4.3. Discussion of UMAP coordinate reduction

Upon UMAP reduction of the participant’s raw actigraphy data, we found that participants 

with like pathologies clustered together (Fig. 2). Schizophrenic participants and control 

participants clustered near each other, centrally, on the cartesian coordinate system. 

Depressed participants, in contrast, tended to cluster more peripherally, positionally distinct 

from both the schizophrenic and control groups. The significance of this separation should 

not be underestimated, in particular because it occurred by an unsupervised method, 

agnostic to disorder labels. In other words, the separation we observe reflects naturalistic 

patterns in the raw movement data, which happen to align with DSM-based pathology 

labels. We hypothesize that the pattern of clustering (e.g., controls and individuals with 

schizophrenia appearing more similar to each other and distinct from depression group) is 

due to the greater regularity of sleep-wake cycles in controls and schizophrenic patients, 

compared to depressed patients.

4.4. Dimension reduction explainability and introspection

In order to better understand the most influential time points in UMAP feature reduction, 

we utilized SHAP. The results of the SHAP analysis for all participants are included as a 

supplement to the present work (Supplemental Files 1–4). Across all groups, overnight and 

morning events seemed to have high importance for the unsupervised algorithm. Among 

controls, we noticed a characteristic short double-peak activity burst within the first hour 

of waking (e.g., prominent in Fig. 4), delineating sleep from wakefulness. This was not 

generally present in depressed or schizophrenic participants, who showed more irregular or 

attenuated sleep wake boundaries, heavily detected by SHAP. This may be reflective of more 

irregular sleep, slowed wake times, and reduced morning activity.
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4.5. Implications and importance

This study is the first of its kind to utilize naturalistic, passively collected movement 

data with an unsupervised machine learning approach to better understand multi-disorder 

motor differences. Our choice of an unsupervised algorithm in this study was driven 

by our exploratory aim, that is, to understand disorder movement patterns and whether 

these movement patterns “map on” to existing disorder classifications. An exploratory, 

unsupervised approach such as this allows for naturalistic clustering, agnostic to disorder 

labels (i.e., schizophrenia, depression, control). In doing so, we can discover naturalistic 

patterns in the data, unbiased by existing disorder labels. Our results indicate that naturalistic 

patterns do, in fact, partially map on to disorder labels. Perhaps counterintuitively, 

we observe severely ill schizophrenic patients bare greater activity-based likeness to 

healthy controls, than to depressed patients. Collectively, our approach aims to explore 

the movement-related dimension of psychopathology, specifically, the degree to which 

movement patterns may detect or distinguish categorical psychiatric disorders. This, in 

effect, serves to empirically validate traditional mental health nosology against naturalistic 

and highly dimensional passively-collected movement information. We see practical 

importance in this validation for two reasons. First, such work is a necessary step toward 

a dimensional understanding of psychopathology, which accounts for the complexity and 

heterogeneity across and within diagnostic categories. Second, such research forms the 

empirical basis for automated and scalable technologies, with the potential to provide greater 

public access to improved mental health assessment. Though additional research is needed, 

our results are promising and do suggest the exploratory utility of passive time series with 

ML methods to (1) further characterize behavioral patterns with high temporal resolution 

and (2) to understand the degree to which naturalistic behaviors map to existing disease 

classifications.

4.6. Limitations

We present several important limitations to our work, which include (1) a small sample, 

drawn from a single institution, which limits generalizability of our results; (2) within group 

and between-group differences may be confounded by demographic characteristics such 

as age, medication, disorder type, and gender; (3) as noted by the authors of the original 

paper, the depression and schizophrenia sample severity used in the study likely deviate 

from that of their representative diagnostic groups (i.e., depressed patients in the study likely 

have lower than average disorder severity, while schizophrenic patients likely have higher 

than average disorder severity) (Berle et al., 2010). Comparison of the present approach 

in an independent participant population, or a larger study using more heterogenous and 

representative subgroups capable of being matched by disorder-related characteristics such 

as disorder severity, duration of illness, and medication use are needed to produce more 

generalizable results. A final limitation inherent in the exploratory unsupervised machine 

learning approach is the difficulty in identifying those features most predictive of a 

particular category. While we may make inferences based on the unsupervised clustering, we 

cannot determine with certainty which features are most predictive of a particular disorder.
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4.7. Conclusion

The present work demonstrates the potential for unsupervised deep learning methods 

combined with passively collected data to identify naturalistic behavioral phenotypes of 

mental health pathology. The work is exploratory in that it investigates the likeness 

of these empirically derived behavioral phenotypes to traditional diagnostic constructs 

(e.g., MDD and schizophrenia). Our findings suggest that diagnostic constructs do have 

distinguishable naturalistic phenotypes, and our unsupervised methods allow the data to 

“speak for themselves,” unbiased by these construct labels. Our findings show promise for 

future research aimed at more fully understanding behavioral dimensions of psychiatric 

pathology through dense longitudinal data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Raw actigraphy data processing and dimensionality reduction

(A) Panel A displays in schematic form raw actigraphy records for each of the 77 

participants. Each participant has activity data over one week, with 10,080 min-intervals. 

(B) Using an unsupervised dimensionality reduction algorithm (UMAP), we reduced the 

10,080 data points for each participant to two coordinates, which were plotted together on 

a two-dimensional cartesian coordinate plane. (C) After UMAP two-dimensional reduction, 

we further reduced the two-dimensional coordinates to a one-dimensional normalization 

score, in essence representing the participant’s 10,080 time series movement points as a 

single value.
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Fig. 2. 
UMAP representation of raw actigraphy data by group

(A) UMAP representation of all participants raw actigraphy data, color-coded by group (B) 

UMAP representation of raw actigraphy data separated and color-coded by group.
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Fig. 3. 
One-dimensional representation of UMAP coordinates

UMAP coordinates reduced to a single dimension for all participants raw actigraphy data, 

color-coded by group.
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Fig. 4. 
Representative group activity patterns with corresponding SHAP values

Representative participants picked from the control, schizophrenia, and depression group(s). 

Participants were selected from the central regions of their cluster on the UMAP to avoid 

outliers.

Price et al. Page 16

J Affect Disord. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Price et al. Page 17

Ta
b

le
 1

A
ve

ra
ge

 e
uc

lid
ea

n 
di

st
an

ce
 o

f 
m

en
ta

l h
ea

lth
 p

ar
tic

ip
an

ts
 c

om
pa

re
d 

to
 c

on
tr

ol
s.

G
ro

up
 A

G
ro

up
 B

G
ro

up
 A

 e
uc

lid
ea

n 
di

st
an

ce
 (

m
ea

n 
± 

sd
)

G
ro

up
 B

 e
uc

lid
ea

n 
di

st
an

ce
 (

m
ea

n 
± 

sd
)

G
am

es
-H

ow
el

l (
p-

va
lu

e)

C
on

tr
ol

 p
ar

tic
ip

an
ts

D
ep

re
ss

iv
e 

pa
rt

ic
ip

an
ts

1.
41

 ±
 0

.7
0

2.
03

 ±
 1

.0
2

0.
00

1*

C
on

tr
ol

 p
ar

tic
ip

an
ts

Sc
hi

zo
ph

re
ni

c 
pa

rt
ic

ip
an

ts
1.

41
 ±

 0
.7

0
1.

56
 ±

 0
.8

3
0.

04
7*

D
ep

re
ss

iv
e 

pa
rt

ic
ip

an
ts

Sc
hi

zo
ph

re
ni

c 
pa

rt
ic

ip
an

ts
1.

56
 ±

 0
.8

3
2.

03
 ±

 1
.0

2
0.

00
1*

E
uc

lid
ea

n 
di

st
an

ce
 b

et
w

ee
n 

al
l p

oi
nt

s 
(c

or
re

sp
on

di
ng

 to
 a

n 
in

di
vi

du
al

’s
 U

M
A

P 
co

or
di

na
te

s)
 w

ith
in

 a
 g

ro
up

 w
er

e 
ca

lc
ul

at
ed

, a
nd

 w
ith

in
-g

ro
up

 a
ve

ra
ge

 a
nd

 s
ta

nd
ar

d 
de

vi
at

io
n 

di
st

an
ce

 q
ua

nt
if

ie
d.

 E
uc

lid
ea

n 
di

st
an

ce
s 

ac
ro

ss
 g

ro
up

s 
w

as
 c

om
pa

re
d 

vi
a 

W
el

ch
’s

 A
N

O
V

A
 a

nd
 f

ol
lo

w
ed

 b
y 

G
am

es
-H

ow
el

l p
os

t-
ho

c 
pa

ir
w

is
e-

co
m

pa
ri

so
n 

to
 d

ir
ec

tly
 a

ss
es

s 
di

ff
er

en
ce

 in
 a

ve
ra

ge
 d

is
ta

nc
e 

be
tw

ee
n 

th
e 

th
re

e 
gr

ou
ps

.

* p 
≤ 

0.
05

.

J Affect Disord. Author manuscript; available in PMC 2023 November 01.


	Abstract
	Introduction
	Methods
	Study sample
	Data collection
	Data preprocessing
	Uniform manifold approximation and projection UMAP
	UMAP euclidean distance calculation
	UMAP feature reduction
	Data explainability

	Results
	General UMAP trends
	General actigraphy plot trends
	Control group
	Schizophrenia group
	Depression group


	Discussion
	Overview
	Raw actigraphy
	Discussion of UMAP coordinate reduction
	Dimension reduction explainability and introspection
	Implications and importance
	Limitations
	Conclusion

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1

