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Abstract The influence of cellular metabolism on epigenetic pathways is well documented but misunderstood. Scientists have 
long known of the metabolic impact on epigenetic determinants. More often than not, that title role for DNA methy
lation was portrayed by the metabolite S-adenosylmethionine. Technically speaking, there are many other metabolites 
that drive epigenetic processes that instruct seemingly distant—yet highly connect pathways—and none more so than 
our understanding of the cancer epigenome. Recent studies have shown that available energy links the extracellular 
environment to influence cellular responses. This focused review examines the recent interest in epigenomics and casts 
cancer, metabolism, and immunity in unfamiliar roles—cooperating. There are not only language lessons from cancer 
research, we have come round to appreciate that reaching into areas previously thought of as too distinct are also 
object lessons in understanding health and disease. The Warburg effect is one such signature of how glycolysis influ
ences metabolic shift during oncogenesis. That shift in metabolism—now recognized as central to proliferation in can
cer biology—influences core enzymes that not only control gene expression but are also central to replication, 
condensation, and the repair of nucleic acid. These nuclear processes rely on metabolism, and with glucose at centre 
stage, the role of respiration and oxidative metabolism is now synonymous with the mitochondria as the powerhouses 
of metaboloepigenetics. The emerging evidence for metaboloepigenetics in trained innate immunity has revealed rec
ognizable signalling pathways with antecedent extracellular stimulation. With due consideration to immunometabo
lism, we discuss the striking signalling similarities influencing these core pathways. The immunometabolic-epigenetic 
axis in cardiovascular disease has deeply etched connections with inflammation, and we examine the chromatin tem
plate as a carrier of epigenetic indices that determine the expression of genes influencing atherosclerosis and vascular 
complications of diabetes.
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1. Introduction
More than 20 years have passed since the landmark publication of the 
human genome sequence.1 While researchers have benefited enor
mously from an improved understanding of the genetic sequence, 
many of the promises of the genetic revolution remain unfulfilled, 
particularly with regard to the complexity of phenotypic traits and the 
propensity to develop certain diseases.2,3 As researchers learned that 
humans have fewer genes than a banana,4 it was clear that genome 
size is unrelated to organism complexity. Instead, we have begun to ap
preciate that phenotypic traits can associate not only with nucleotide 

sequence but also with chemical modifications that occur on the 
DNA template and the proteins with which it interacts. Closely follow
ing this realization came a broader awareness of how cells with identical 
genetic content could exhibit different regulation of gene activity.

Modern interpretations of epigenetics have focused on the covalent 
chemical modifications of chromatin—the dynamic complex of DNA 
and proteins (mainly histones)—that support transcriptional regulation 
via structural adaptation.5 Collectively, these modifications are called 
epigenetic because they influence phenotypes without altering the gen
etic code and have been shown to be transmitted through cell division by 
various mechanisms.6–11 Three distinct yet functionally related 
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categories of epigenetic mechanisms have been described: (i) chemical 
modification of DNA bases, (ii) post-translational modification (PTM) 
of the tails of histone proteins, and (iii) the regulation of gene expression 
by non-coding RNA. Despite significant progress in the field, knowledge 
of how the main epigenetic players are regulated remains incomplete.

A substantial number of findings connecting energy metabolism with 
epigenetic control of gene expression support the recent emergence of 
what some in the field are calling ‘metaboloepigenetics’.12–14 Many en
zymes that write or erase modifications on the chromatin use metabo
lites as substrates or cofactors in their epigenetic reactions, connecting 
metabolic information with transcription.15 Changes in the concentra
tions of specific metabolites are therefore purported to provide signal
ling cues for the continual adjustment of gene expression by influencing 
chromatin dynamics. What is emerging is a complex interplay between 
intracellular metabolism and chromatin modifications, which is providing 
an extra dimension to our understanding of gene regulation in health and 
disease.

The current understanding of metaboloepigenetics has its origins in 
cancer, a disease characterized by the derangement of metabolic and 
epigenetic programmes.16,17 More recent findings have shed light on the 
changes in intracellular metabolic pathways that support the altered func
tion of immune cells via epigenetic reprogramming.18–20 Furthermore, re
searchers have begun to consider the impact of metaboloepigenetics on 
atherosclerosis and cardiovascular disease (CVD).21–23

2. Metabolism drives epigenetic 
processes: lessons from cancer
Gene expression is primarily regulated by the accessibility of DNA to 
transcription factors (TFs) and transcriptional machinery. Key to this 
regulation is chromatin, a dynamic assembly of DNA and regularly 
spaced nucleosomes (comprised of histone proteins) that controls tran
scription by structural adaptation and genome compartmentalization.15

Compacted chromatin impedes binding of the transcriptional machinery 
to the DNA by occluding its access to regulatory elements such as pro
moters and enhancers. On the other hand, an open chromatin structure 
facilitates the loading of transcriptional machinery. Supporting the 
gene-regulating functions of TFs is a multitude of PTMs to the 
N-terminal tails of histones as well as modifications to DNA bases. 
Some of these modifications have direct effects on chromatin structure 
by altering charge states of histones and their affinity for DNA. Others 
provide docking sites for the recruitment of multi-protein chromatin re
modelling complexes. For a comprehensive discussion of the enzymes 
that write, erase, and interpret chromatin modifications, we recom
mend a recent review article by Zhao et al.5

At the most basic level, a specific chromatin modification is dependent 
on the relative expression, stability, and competing activities of epigen
etic writers and erasers. In recent years, cellular metabolism has 
emerged as an important determinant of many epigenetic reactions, pri
marily because numerous epigenetic enzymes require specific metabo
lites or products from metabolic pathways as cofactors to perform 
their chromatin modifying functions. Several different metabolic path
ways are used by cells to generate adequate energy for survival and to 
produce biosynthetic intermediates that support cellular growth and 
proliferation. These distinct metabolic pathways are closely connected 
by the use of common fuel inputs and a reliance on products from 
one pathway to feed into alternative pathways as synthetic precursors.24

While a certain degree of overlap exists between metabolic pathways in 

terms of the chromatin-regulating metabolites that they produce, indi
vidual pathways produce metabolites that intersect epigenetic pathways 
in specific ways. This means that large metabolic shifts can have pro
found effects on epigenetic regulation and gene expression profiles.25

Metabolic reprogramming has been recognized as a hallmark of can
cer transformation since Otto Warburg first described aerobic glycoly
sis in tumours almost a century ago.26 Human tumours harbour global 
epigenetic abnormalities27 and mutations in genes encoding epigenetic 
enzymes are increasingly recognized in cancer.28 Unsurprisingly, many 
of the known metaboloepigenetic connections were discovered in the 
metabolically deranged milieu of cancer,29 which spawned the concept 
of the oncometabolite—a metabolic intermediate whose abnormal ac
cumulation triggers oncogenic signalling and tumourigenesis.30

2.1 Metabolites modulate the methylome
Methylation of cytosine bases is the most well-characterized epigenetic 
mark.31 The addition of a methyl group to the fifth carbon of a cytosine 
base (5-methylcytosine, 5mC) is catalysed by DNA methyltransferase 
enzymes (DNMTs) primarily at cytosines adjacent to a guanines 
(cytosine-phosphate-guanine, CpG). The vast majority of CpG dinucleo
tides in mammalian genomes are maintained in a methylated state with 
the exception of regions of high CpG density called CpG islands located 
close to gene promoters. A more recent discovery is the mechanism of 
cytosine demethylation by ten-eleven translocation (TET) dioxygenases 
that oxidize the methyl group of 5mC to yield 5-hydroxymethylcytosine 
(5 hmC) and other oxidized methylcytosines.32–34 DNA methylation is 
primarily associated with gene silencing by two main mechanisms: (i) the 
occlusion of DNA binding proteins such as TFs that act as transcriptional 
activators, and (ii) by providing a recognition site for methyl-binding 
proteins such as methyl-CpG binding protein 2, which recruit transcrip
tional corepressor complexes that reconfigure the chromatin landscape, 
rendering it inaccessible to the transcriptional machinery.35 DNA methy
lation has a dual role in cancer: hypermethylation inhibits tumour suppres
sor genes, whereas hypomethylation activates oncogene expression. In 
general, cancer cells display a global loss of CpG methylation juxtaposed 
against locus-specific hypermethylation at CpG islands.36 Paradoxically, 
under some circumstances, DNA hypermethylation has also been shown 
to enhance gene expression in cancer and recently reviewed.37

When assigned to the tails of histones, the methyl modification 
provides a greater degree of flexibility with regard to its impact on gene 
expression. Both lysine and arginine residues are sites of histone methyla
tion: arginine residues can be mono-methylated or di-methylated and 
lysine residues can be mono-, di-, or tri-methylated. This is important be
cause variably methylated histones are differentially distributed across 
chromatin to distinguish gene regulatory elements. For example, H3 
histones tri-methylated at lysine 4 (H3K4me3) are enriched at promoters 
of transcribed genes, whereas H3 histones mono-methylated at lysine 
4 (H3K4me1) are predominantly enriched at distal enhancers.38,39

However, the key determinant of the effect of histone methylation on 
chromatin structure is the position of the modified residue within the ami
no sequence of the histone tail. In addition to the transcriptionally permis
sive methylated state of H3K4, other key sites of histone lysine 
methylation include lysine 9 and lysine 27 on H3 histones, which are asso
ciated with gene repression. Methyl modifications were considered more 
stable than other histone marks until the discovery of lysine-specific his
tone demethylase 1 (LSD1), which enzymatically removes methyl groups 
from H3K4. This led to the identification of the jumonji C (JmjC) domain 
as a key catalytic component of a broad catalogue of histone lysine de
methylase (KDM) enzymes.40 Thus, levels of histone lysine methylation 
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are determined in part by the relative expression and activity of lysine 
methyltransferases (KMTs) and KDMs. Like DNA methylation, histone 
methylation can also provide sites for the recruitment of effector protein 
complexes that recognize distinct methyl modifications via specialized 
domains.41

Most methyltransferases transfer a methyl group from 
S-adenosylmethionine (SAM), which is synthesized from adenosine tri
phosphate (ATP) and methionine. The methylation reaction generates 
another metabolite called S-adenosylhomocysteine (SAH), which is a 
potent inhibitor of methyltransferases. Therefore, the intracellular 
SAM:SAH ratio, which is regulated by methionine, threonine, and serine 
metabolism, as well as dietary intake of methyl-donating nutrients such 
as folate and vitamin B, is considered to be an indicator of cellular methy
lation potential.42,43 In addition, cells require one-carbon units for nu
cleotide synthesis and redox reactions. Because these pathways 
support the enhanced proliferation of cancer cells, drugs that target 
one-carbon metabolism such as the anti-folate methotrexate have 
long been used in cancer therapy.44 Glycine N-methyltransferase 
(GNMT) deficiency is a rare condition leading to SAM accumulation.45

Gnmt knockout mice exhibited a more than 40-fold increase in hepatic 
SAM,45 which led to DNA hypermethylation and transcriptional silen
cing of tumour suppressor genes and was associated with increased in
cidence of hepatocellular carcinoma.46 As a general hallmark of cancer, 
methionine addiction is targeted in cancer therapy by methionine re
striction, which results in the depletion of SAM47 and cell cycle arrest.48

Recent studies have begun to investigate the therapeutic potential of 
methionine restriction in combination with inhibitors of SAM synthesis 
and DNA methylation.49

2.2 Mitochondria are the powerhouses 
of metaboloepigenetics
The removal of methyl groups from DNA and histones plays a critical 
role in shaping the epigenome. In recent years, the tricarboxylic acid 
(TCA) cycle has taken centre stage as a source of metabolites than influ
ence chromatin demethylation, primarily through its effects on the 
activity of JmjC KDMs and TETs (Figure 1). Both of these classes of 
dioxygenases are dependent on α-ketoglutarate (α-KG) as a cofactor 
in reactions that remove methyl groups from histones and DNA, re
spectively. This key TCA cycle intermediate is produced from isocitrate 
by isocitrate dehydrogenase or by anaplerotic synthesis from glutamate. 
Isocitrate dehydrogenase (IDH) genes IDH1 and IDH2 are the most fre
quently mutated metabolic genes identified in human cancers.50 In add
ition to losing normal catalytic activity for the production of α-KG, 
mutant IDH1 and IDH2 gain the function of catalysing the reduction 
of α-KG to produce 2-hydroxyglutarate (2-HG), which has been de
scribed as an oncometabolite capable of stimulating proliferation and 
suppressing differentiation.51–53 Due to structural similarity, 2-HG can 
bind to and function as a competitive inhibitor of α-KG-dependent 
KDMs and TETs.17 Interestingly, TET2 is also frequently mutated in acute 
myeloid leukaemia, in which IDH1/2 mutations are common.54 Similarly, 
aberrant DNA methylation profiles and gene expression patterns were 
observed in AML with either IDH1/2 or TET2 mutations, indicating that 
TET2 is a pathologically relevant target of 2-HG. Furthermore, glioma 
samples harbouring mutant IDH1 accumulate significantly lower 5hmc 
and significantly higher 5 mc than those containing wild-type IDH1, in 
accordance with reduced TET activity.17

Also within the TCA cycle, succinate dehydrogenase (SDH, com
prised of four subunits: SDHA, SDHB, SDHC and SDHD) catalyses 

the oxidation of succinate to fumarate and uses the electrons to reduce 
ubiquinone to ubiquinol in the electron transport chain. The next en
zyme in the TCA cycle, fumarate hydratase (FH), catalyses the reversible 
hydration of fumarate to malate. Succinate and fumarate are competitive 
inhibitors of α-KG-dependent dioxygenases. Knockdown of FH and 
SDH results in elevated intracellular levels of fumarate and succinate, re
spectively, both of which broadly inhibit the activity of α-KG-dependent 
dioxygenases.55 On the other hand, ectopic expression of tumour- 
derived FH and SDH mutants inhibits histone demethylation and hy
droxylation of 5 mC. Accordingly, SDH deficiency underlies pervasive 
DNA hypermethylation in both gastrointestinal stromal tumours and 
paraganglioma/pheochromocytoma tumours.56 This part of the TCA 
cycle can further influence histone methylation by modulating the activ
ity of another class of KDMs—the amine oxidases LSD1 and LSD2 that 
catalyse demethylation of mono- and di-methylated lysine residues using 
flavin adenine dinucleotide (FAD) as an essential cofactor.57 The conver
sion of succinate to fumarate by SDH reduces FAD to FADH2, thereby 
altering the cellular availability of FAD, which can have consequences for 
histone methylation.58

Very recently, Liu et al.59 identified a nonclassical TCA (nTCA) cycle in 
the nuclei of mouse and human cells. All components of the classical 
TCA cycle except for SDH are present in the nucleus, where they cata
lyse TCA cycle-related biochemical reactions. By functionally linking the 
nTCA cycle to epigenetic regulation, chromatin dynamics and gene 
expression, the authors propose that a self-sustaining nTCA cycle is im
plemented to supply and consume metabolites involved in the dynamics 
of DNA and histone modifications.59

2.3 Warburg metabolism: glycolysis 
and glutaminolysis
The Warburg effect is a signature of metabolic change in cancer. This 
metabolic rewiring is defined by increased glucose uptake and the fer
mentation of glucose to lactate, even in the presence of functioning 
mitochondria and oxygen, with a concomitant decrease in oxidative 
phosphorylation (OxPhos).26 While aerobic glycolysis generates much 
less ATP (2 molecules of ATP per unit of glucose) than does OxPhos 
(36 molecules of ATP per unit of glucose), switching to Warburg metab
olism allows cancer cells to (i) more rapidly meet the bioenergetic de
mands of proliferation (glycolysis can be ramped up by relatively few 
enzymes, whereas increased OxPhos most likely requires mitochondrial 
biogenesis), and (ii) convert nutrients more efficiently into the biomass 
(nucleotides, amino acids, and lipids) needed to produce a new cell.60

These changes are largely regulated by HIF1α, a key TF for the expres
sion of genes involved in glycolysis and the induction of pseudohypoxia in 
cancer cells,61 as well as mTOR signalling, which senses nutrients to 
support cell growth.62

The metabolic shift inexorably leads to the accumulation of methyl
gyoxyl (MGO), primarily through the fragmentation of triose phos
phate intermediates of glycolysis.63 This toxic and highly reactive 
dicarbonyl spontaneously glycates lipids and proteins and is a potent 
inducer of advanced glycation end-products. Accumulation of MGO 
is limited by the glutathione-dependent enzyme, Glyoxalase 1, which 
is overexpressed in many cancers as a defence strategy against MGO 
cytotoxicity.64,65 On the other hand, recent evidence 66,67 indicates a 
hormetic effect, in which low doses of MGO support an adaptive 
response in cancer cells while high doses cause apoptosis.68

In addition to many cellular proteins, MGO-derived adducts were 
recently found to occur abundantly on histone tails, particularly 
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arginine residues, under conditions of metabolic stress.69 These 
non-enzymatic modifications alter chromatin architecture by compet
ing with other histone modifications, disrupt nucleosome assembly and 
chromatin fibre compaction, and down-regulate transcription.70

Protein arginine deaminase 4 (PAD4) was found to antagonize histone 
MGO-glycation by removing glycation adducts from arginine residues, 
as well as by converting unmodified arginine to citrulline, thereby pro
tecting them from glycation. Indeed, PAD4 is overexpressed and citrul
line is upregulated in breast tumours.71 These findings suggest an 
additional mechanistic link between metabolism and cancer epigenet
ics that requires more research attention.

Under normal metabolic conditions, pyruvate is fed into the TCA cy
cle, which generates ATP by OxPhos while at the same time providing 
metabolic substrate as precursors for biosynthetic reactions. While 
the demand for mitochondrial ATP production is decreased in tumour 
cells, the requirement for biosynthetic precursors and reducing power 
in the form of nicotinamide adenine dinucleotide phosphate is enhanced. 
In order to maintain mitochondrial function under limited pyruvate avail
ability due to the increased rate of glycolysis, tumour cells often rely on 
increased glutaminolysis.72 Glutamine, the most abundant circulating 
amino acid,73 is transported into the cell and converted to glutamate 
and further to α-KG to replenish the TCA cycle. Indeed, strategies to 

Figure 1 Mitochondria are the powerhouses of metaboloepigenetics. Mitochondrial function, and particularly the TCA cycle, provides the intermediate 
metabolites essential to the generation and modification of epigenetic marks in the nucleus. Histone acetylation by histone acetyltransferases (HATs) is 
dependent on the availability of acetyl-CoA. On the other hand, histone acetylation can be removed by a class of NAD+-dependent histone deacetylases 
called sirtuins. LSD1 and LSD2 catalyse demethylation of mono- and di-methylated lysine residues using FAD as a cofactor. The availability of 
α-ketoglutarate (α-KG) influences histone and DNA demethylation by JmjC and TET enzymes respectively. Succinate, fumarate, and 2-hydroxyglutarate 
(2-HG) can also influence the epigenetic landscape by inhibiting α-KG-dependent histone and DNA demethylation. Ac, acetyl group; Me, methyl group.
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inhibit glutaminolysis have proven effective in slowing the proliferation 
of cancer cells.74 Addiction to glutamine is a prominent feature of 
Kirsten rat sarcoma virus, oncogene (KRAS)-mutant cancers.75,76 A re
cent study showed that mutant KRAS rewires glutamine metabolism to 
support succinate biosynthesis from α-KG in colorectal cancer cells, re
sulting in an overall reduction of 5 hmc and CpG hypermethylation, and 
the activation of Wingless-related integration site/β-catenin signalling.77

2.4 Cellular metabolism influences histone 
acetylation
More than 30 years passed between the first description of histone tail 
acetylation78 and the discovery of histone acetyltransferases (HATs) and 
histone deacetylases (HDACs) that add and remove this modification 
respectively.79,80 Histone acetylation almost exclusively marks chroma
tin for transcriptional competency by two main mechanisms: (i) by chan
ging the overall charge on the histone tail, which disrupts the binding of 
nucleosomal core components and renders the DNA accessible to tran
scriptional machinery and (ii) by acting as recruitment sites for various 
nucleosome remodelling proteins and transcription initiation factors 
that contain bromodomains—motifs that bind acetylated lysines.81

HATs transfer an acetyl group from acetyl-CoA to lysine residues on 
histone tails. Acetyl-CoA is produced by the oxidative decarboxylation 
of pyruvate from glycolysis by the pyruvate dehydrogenase complex 
(PDHC), the oxidation of long chain fatty acids, or the oxidative degrad
ation of certain amino acids. Therefore, its abundance is dependent on 
glucose availability, fatty acid oxidation, and mitochondrial respiratory 
function.82 While histone acetylation is highly regulated, often in a gene- 
selective manner the Michaelis constant (Km) of most HATs falls within 
the range of cellular acetyl-CoA concentrations.83 As a consequence, 
the availability of acetyl-CoA can restrict or promote global levels of his
tone acetylation. Therefore, changes to metabolic pathways that influ
ence acetyl-CoA levels potentiate large-scale changes in gene 
expression. And because glucose flux dose-dependently regulates his
tone acetylation,84 the acceleration of glycolysis in cancer is associated 
with global histone hyperacetylation.85 Accordingly, a glucose derivative 
that inhibits hexokinase and thereby blocks the first step of glycolysis, 
2-deoxyglucose, significantly lowered acetyl-CoA levels and suppressed 
the acetylation of all four core histones in multiple cancer cell lines. For a 
broader discussion of the various metabolic sources of acetyl-CoA that 
support histone acetylation, we recommend a recent article by Feron.86

Interestingly, functional PDHC is also detected in the nucleus where it 
locally supplies acetyl-CoA to histone acetylation reactions.87 Moreover, 
nuclear PDHC levels were shown to increase in a cell cycle-dependent 
manner and in response to serum, growth factors or mitochondrial 
stress. This was concomitant with a decreased mitochondrial PDHC le
vels, suggesting that PDHC translocates from mitochondria to the nu
cleus to link acetyl-CoA synthesis with epigenetic regulation.87,88

2.5 NAD+++++-dependent chromatin modifiers
The mammalian HDACs discovered so far are divided into four classes 
based on sequence homology and domain organization.89 The class III 
HDACs, which are homologous to the yeast silent information regulator 
2 (Sir2) and known as sirtuins in mammals, are most closely connected 
with metabolism. Sirtuins are a family of nicotinamide adenine dinucleo
tide NAD+-dependent deacetylases associated with longevity.90 In 
addition, there is evidence that some members of the sirtuin family 
can also catalyse the mono-adenosine diphosphate (ADP)-ribosylation 
of histones.91 While sirtuins play important roles in numerous biological 

processes including cellular metabolism,92 understanding their complex 
functions and dual characteristics as both promoters and suppressors of 
malignant characteristics in different cancers remains a significant 
challenge.93

The ADP-ribosyltransferases (ARTs), formerly known as poly 
ADP-ribose polymerases (PARPs), catalyse the transfer of one or 
more ADP-ribose groups from NAD+ to target proteins (at arginine, 
asparagine, cysteine, and histidine amino acids), including histones. 
ADP-ribosylation of histones and other nuclear proteins is predomin
antly associated with nucleosome remodelling in DNA repair.94–96 In re
sponse to extreme DNA damage, ADP-ribosylation can deplete NAD+

levels in the cell to the point where ATP production and other aspects of 
cellular metabolism are interrupted. Despite several recent studies 
indicating that ADP-ribosylated histones also have important roles in 
proliferation, replication, and transcription (recently reviewed97), 
knowledge of the chromatin-dependent function of this modification 
remains limited. Mono-ADP-ribosylation of H3 histones at arginine 
117 (H3R117) was recently characterized as a modification associated 
with the proliferation of colorectal cancer cells.98 Li et al.99 demon
strated that mono-ADP-ribosylation of H3R117 limited local 
poly-ADP-ribosylation of TET1 promoter in human colon adenocarcin
oma cells. This was associated with enrichment of 5 mc and depletion of 
H3K4me3 at the TET1 promoter, which culminated in a reduction of 
TET1 transcription. Moreover, this down-regulation of TET1 expression 
impaired TET1-dependent demethylation reactions to epigenetically 
silence the TFPI2 tumour suppressor gene.

3. Immuno-metaboloepigenetics
Over the past decade, immunologists have increasingly developed an ap
preciation for metabolism.100 Highly sensitive techniques to measure 
flux through metabolic pathways, metabolomic approaches that show 
how metabolites are directly connected to immune cell function, and 
the application of new pharmacological tools to models of infection 
and inflammation have driven the emergence of the field of immunome
tabolism.24,100 Central to this burgeoning area of research is the 
observation that immune cells with different functions engage distinct 
metabolic pathways.

As described in the previous section, glycolysis is less efficient than 
OxPhos for generating ATP from glucose. However, immune cells 
that require rapid production of ATP will switch to glycolysis.24

Glycolysis is enhanced in adaptive immune cells (slow-acting, long-term 
defence) such as activated effector T cells101 and activated B cells,102 as 
well as innate immune cells (rapid, front-line defence) such as activated 
dendritic cells103 and activated natural killer cells.104 Macrophages are 
also particularly interesting innate immune cells in this respect, as glyco
lytic metabolism can distinguish macrophage polarization subsets in
duced by anti-inflammatory [interleukin (IL)-4]105 or pro-inflammatory 
[bacterial endotoxin lipopolysaccharide (LPS)] stimuli. Inflammation re
solving macrophages (M2 polarization state) are characterized by en
hanced fatty acid oxidation106 and a reliance on OxPhos.107 In 
contrast, enhanced glucose uptake and glycolysis are metabolic traits 
of pro-inflammatory (M1 polarization state) macrophages.108 Another 
key difference concerns the TCA cycle, which is coupled with 
OxPhos in M2 macrophages, but is broken in two places in M1 macro
phages. This leads to the accumulation of citrate and succinate and a 
down-regulation of OxPhos under aerobic conditions.108,109 The switch 
to Warburg metabolism is directly associated with pro-inflammatory 
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cytokine production through the inhibition of prolyl hydroxylases by 
succinate, which stabilizes HIF1α and sustains IL-1β production.109

Driven by this strong connection between metabolism and immune 
function, immunologists have begun to delineate the functional epigen
etic effects of these metabolic changes in macrophages. M2 macro
phages accumulate α-KG through increased glutaminolysis.108,110

Mechanistically, the accumulation of α-KG is important for 
JMJD3-dependent demethylation of H3K27me3 in M2 gene induc
tion.110 Furthermore, this study identified the importance of the 
α-KG/succinate ratio for the induction of distinct macrophage activation 
states: a high α-KG/succinate ratio promotes M2 activation, whereas a 
low α-KG/succinate ratio supports the pro-inflammatory phenotype 
of M1 macrophages. Although it is a relatively new area of research 
for which there is limited experimental evidence thus far, understanding 
how immune responses are orchestrated through metaboloepigenetic 
reprogramming offers novel insight into mechanisms supporting the 
broad spectrum of macrophage phenotypes. In this section, we discuss 
the current knowledge of metaboloepigenetic mechanisms associated 
with innate immune memory in macrophages.

3.1 Trained (innate) immunity
Contrasting the traditional dogma that memory is the proprietary of the 
adaptive immune system, the sensitivity of innate immune cells to 
Toll-like receptor (TLR) stimulation can be programmed by a phenom
enon called ‘trained immunity.’111 Trained immunity is best character
ized in monocyte-derived macrophages, although it has also been 
described in dendritic cells112 and natural killer cells.113 When primary 
monocytes are stimulated with certain microorganisms or microbial li
gands, they differentiate into trained macrophages that have the capacity 

to respond to TLR agonists or other pathogen-associated molecular 
patterns with heightened pro-inflammatory cytokine production 
(Figure 2). Importantly, the secondary stimuli can be entirely unrelated 
to the first. Therefore, the effects of trained immunity are considered 
to be non-specific.114

Trained immunity is exemplified by the augmented production of tu
mour necrosis factor (TNF) α and IL-6 induced by Candida albicans or its 
cell wall component β-glucan in human macrophages115,116 and mice 
that lack mature B and T cells.117 More recently, trained immunity in
duced by β-glucan was shown to be protective against infections by 
Leishmania braziliensis118 and Mycobacterium tuberculosis.119 Similarly, 
the induction of trained immunity by the Bacille Calmette–Guérin vac
cine (BCG) is the most likely explanation for its heterologous protection 
against experimental yellow fever.120 In the clinic, trained immunity is the 
proposed mechanism through which BCG exerts its protective effects 
against a wide range of infections in newborns,121 as well as its anti- 
tumour properties in the treatment of bladder cancer.122 On the other 
hand, monocytes exposed to a low concentration of LPS differentiate 
into tolerant macrophages that are refractory to TLR restimulation. 
Also a type of trained immunity, endotoxin tolerance is a major cause 
of immunosuppression induced by Gram-negative sepsis.123

3.1.1 Epigenetic rewiring in trained immunity
Much of what we know about trained immunity has been learned from 
studying a standard cellular model that involves the training of human 
peripheral monocytes, in which these cells are exposed to a stimulus 
for a short period of time (usually 24 h). The cells are then incubated 
for 5–7 days during which they differentiate into macrophages. At this 
point, trained macrophages exhibit a heightened response to 

Figure 2 Trained immunity is dependent on metabolic and epigenetic changes. Innate immune cells, such as monocytes, can be functionally repro
grammed in response to exogenous or endogenous stimuli, leading to an altered immune response to a second, unrelated challenge after the return to 
a non-activated state. Primary stimulation with β-glucan, BCG vaccine or oxLDL induces a de facto memory that is revealed by secondary stimulation 
with agonists of TLR 2 and 4. Trained immunity is characterized by upregulation of glycolysis and OxPhos, as well as the accumulation of fumarate. 
The augmented cytokine production is abolished by the global methyltransferase inhibitor 5′-deoxy-5′-MTA and specific inhibition of Set7. Inhibition of 
G9a enhances the trained phenotype.



364                                                                                                                                                                                S.T. Keating and A. El-Osta

heterologous secondary stimuli (Figure 2).116 β-glucan-trained, naïve, 
and tolerant macrophages are distinguished by strikingly divergent 
genome-wide H3K4me1, H3K4me3 and H3K27ac.124,125 Many of these 
epigenetic changes are established early in the programme of training or 
tolerance and persistent H3K4me1 and H3K4me3 marks are considered 
central to the transcriptional memory.124,125

Co-incubation with the non-specific methyltransferase inhibitor 
5′-deoxy-5′-methylthioadenosine (MTA) during the first 24 h of in vitro 
training completely nullifies the augmented cytokine response mediated 
by BCG117 and β-glucan.116,119,126 A proportion of these methyl events 
are regulated by the H3K4me1 writer Set7, which exhibits increased ex
pression and activity in response to β-glucan.116 Co-administration of 
specific Set7 inhibitors prevented the induction of trained immunity 
by β-glucan and BCG in human macrophages. Furthermore, Set7 knock
out mice were unable to mount β-glucan-mediated trained immunity 
against endotoxin challenge.116 In contrast, expression of G9a, a KMT 
that writes the repressive H3K9me2 modification, is decreased in cells 
trained with β-glucan. Specific inhibition of G9a reduced H3K9me2 at 
promoters of genes involved in trained immunity and simultaneously 
amplified trained immunity responses.127

3.2 The immunometabolic-epigenetic axis 
of trained immunity
Altered metabolism could partly account for wide-spread changes in his
tone acetylation in trained immunity.124,125 A key metabolic hallmark of 
trained cells is enhanced glycolysis via activation of the 
Akt-mTOR-HIF1α pathway.115 The trained phenotype is dependent 
on this glycolytic metabolism insofar as the augmented cytokine re
sponse is nullified by pharmacological inhibition of key enzymes involved 
in glycolysis.18,115,128 While concentrations of acetyl-CoA were un
altered in trained immunity,18 changes to the NAD+/NADH ratio115 in
dicated that sirtuins could be involved in establishing histone acetylation 
patterns in trained cells. So far, only one study has investigated this link, 
recently demonstrating that SIRT1 has a minor and perhaps redundant 
role in trained immunity.129 Another source of NAD+ is the breakdown 
of pyruvate to lactate that occurs in aerobic glycolysis and is consequent
ly observed in trained immunity.116 Intersection of metabolome and 
transcriptome data and subsequent pharmacological studies revealed 
that the cholesterol synthesis pathway is also indispensable for trained 
immunity induced by β-glucan and BCG.19,130

Initial characterization of β-glucan-induced trained immunity revealed a 
metabolic shift towards glycolysis at the expense of OxPhos.27 However, 
recent studies show that macrophages trained with a lower concentration 
of β-glucan (1 ug/mL instead of 10 ug/mL) maintain a functioning TCA cy
cle that generates increased amounts of ATP by OxPhos while also pro
viding metabolites that potentially modulate inflammatory functions.116

Genetic variation in TCA cycle genes such as IDH and SDH, as well as 
the NADH dehydrogenase subunit of complex I of the electron transport 
chain NDUFB7, is associated with variation in β-glucan-trained cytokine 
production. The reasons why different β-glucan concentrations induce 
opposite effects on OxPhos remain unclear, however the up-regulation 
of both glycolysis and OxPhos is consistent with the metabolic 
phenotypes of macrophages trained with BCG18 or endogenous training 
stimuli128,131,132 (discussed later in the Review).

Chief among the altered TCA cycle metabolites in trained immunity is 
fumarate, which accumulates in cells trained with β-glucan and integrates 
epigenetic, immune and metabolic circuits by inhibiting the KDM5 family 
of H3K4 demethylases.19 This could partly account for the enrichment of 

H3K4me3 observed in trained immunity throughout the genome and par
ticularly at the promoters of TNF and IL6. Perhaps most convincing how
ever is the observation that fumarate itself can induce trained immunity 
and partially recapitulate the enrichment of H3K4me3 induced by 
β-glucan at the TNF and IL6 promoters and other key regulatory sites. 
In addition to fumarate, the concentrations of 2-HG and succinate, which 
similarly antagonize α-KG-dependent KDMs, was also increased in 
β-glucan-trained macrophages.19,116 This was paralleled by increased ex
pression of SDH genes, which can account for the enhanced conversion of 
succinate to fumarate. Fumarate-dependent inhibition of KDM5 activity 
was restored by the addition of α-KG, which also partially counteracted 
the training effect of fumarate on cytokine production.19

3.3 The chromatin is SET for metabolic 
rewiring in trained immunity
The accumulation of fumarate and malate, as well as the up-regulation of 
SDHB in β-glucan-trained macrophages is abolished by pharmacological 
inhibition of Set7 during the first 24 h of training in vitro. Mechanistically, 
this effect is partly explained by Set7-dependent H3K4me1 enrichment 
at distal enhancers that topologically associate with the SDHB pro
moter.116 Considering the metaboloepigenetic effects of fumarate in 
trained immunity,19 this study identifies a potential mechanism by which 
Set7 influences H3K4 methylation not only through its own methyl
transferase activity, but also by indirectly inhibiting histone demethyla
tion. SDH is unique in its participation in both the TCA cycle and the 
mitochondrial electron transport chain. Accordingly, the increase in 
OxPhos induced by β-glucan training was abolished by Set7 inhibition.116

This crucial role of Set7 early in the induction of trained immunity is con
sistent with its role as an epigenetic writer of metabolic memory in cul
tured vascular endothelial cells133,134 and peripheral blood mononuclear 
cells from patients with type 2 diabetes mellitus (T2DM).135

4. Metaboloepigenetics in CVD
Infectious diseases have been replaced by CVD as the leading cause of 
death globally over the last 20 years, with atherosclerosis the main 
underlying cause.105 The development and progression of atheroscler
osis, which involves the metabolically driven activation and remodelling 
of vascular and immune cells,136 is increasingly explored in an epigenetic 
context.137,138 The acceleration and increased incidence of atheroscler
osis in diabetes points further towards the involvement of metaboloepi
genetic processes in atherosclerotic CVD.

4.1 Maladaptive trained immunity in 
atherosclerosis
While clearly beneficial for fighting infections, trained immunity is a 
double-edged sword when it comes to inflammatory diseases where in
nate immune cells are the proponents of tissue injury. Monocytes iso
lated from patients with an increased risk for atherosclerotic CVD 
due to elevated LDL-cholesterol levels139 and patients with severe cor
onary atherosclerosis140 exhibit augmented cytokine production cap
acity ex vivo. Furthermore, several endogenous compounds that 
accelerate atherosclerosis, including oxidized LDL (oxLDL),128,141 lipo
protein(a),142 aldosterone,143 epinephrine, and norepinephrine131 in
duce trained immunity in human macrophages. Apart from 
aldosterone, each of these stimuli induce a metabolic phenotype like 
BCG and β-glucan training: concurrent up-regulation of glycolysis and 
OxPhos. In the case of oxLDL, pharmacological inhibition of glycolysis 
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prevented the induction of trained immunity and prevented H3K4me3 
enrichment at the TNF and IL6 promoters.128 Precisely, how glycolysis 
influences histone lysine methylation events in trained immunity remains 
untested. One potential mechanism is that the glycolytic production of 
acetyl-CoA stimulates H3K14 acetylation,84 which can inhibit 
LSD1-mediated demethylation of H3K4me3.144

Atherosclerosis is characterized by chronic, low-grade sterile inflam
mation. This implies a long-term activation of the innate immune system 
despite the short lives of circulating innate immune cells. Feeding a high 
cholesterol Western diet (WD) for 4 weeks to atherosclerosis-prone 
Ldlr− /− mice induced trained immunity that persisted when the mice 
were switched back to a chow diet for 4 weeks.145 This metabolic mem
ory occurred in the bone marrow niche and was dependent on the 
skewing of haematopoietic stem cells (HSCs) towards myelopoiesis. 
Indeed, hypercholesterolemia is linked to the reprogramming of 
HSCs146 and an increase in circulating monocytes correlates with car
diovascular events.147 Moreover, inflammatory monocytes that derive 
from activated haematopoietic precursors during WD feeding differen
tiate into atherogenic macrophages.148 The induction of trained immun
ity in the WD-fed Ldlr− /− mice was dependent on activation of the 
NLRP3 inflammasome. This is important because similar induction of 
trained immunity and myelopoiesis in the bone marrow of wild-type 
mice administered β-glucan was associated with increased IL-1β pro
duction, a key inflammasome-mediated product.149 Together, these 
findings underscore IL-1β as a central endogenous mediator of trained 
immunity in vivo. Indeed, the Canakinumab Antiinflammatory 
Thrombosis Outcome Study trial demonstrated the clinical benefit of 
IL-1β blockade for cardiovascular risk.150 Interestingly, increased ex
pression of Il1b in the bone marrow of mice trained with β-glucan 
was significantly reduced in animals lacking Set7, suggesting a role for 
this KMT in the long-term activation of trained immunity.116 Further ex
ploration of metaboloepigenetic changes in endogenous trained immun
ity could yield novel approaches to interfere with the development and 
progression of atherosclerosis.

4.2 Metaboloepigenetics in vascular 
complications of diabetes
Vascular complications are the major cause of the clinical, social and eco
nomic burden of type 1 diabetes mellitus (T1DM) and T2DM.151,152

Diabetes accelerates atherosclerosis and more than doubles the risk 
of CVD, which further increases with worsening glycemic control.153

Hyperglycemia can alter the epigenetic landscape of the microvascula
ture and the macrovasculature in diabetes, which may precede cardio
vascular complications.154 The metabolic perturbations of the diabetic 
milieu are fertile ground for the discovery of metaboloepigenetic con
nections to atherosclerosis.

Hyperglycemia is associated with changes in histone acetylation in vas
cular cells. Genome-wide analysis of monocytes isolated from T1DM pa
tients revealed elevated levels of H3K9ac enriched at gene promoters 
related to NFκB signalling and diabetes complications.155 Importantly, 
H3K9ac was significantly associated with mean levels of glycated haemo
globin—a marker of recent blood glucose levels. High glucose (HG) in
duced genome-wide histone hyperacetylation in human aortic 
endothelial cells and the specific induction of genes and pathways asso
ciated with endothelial dysfunction through the enrichment of H3K9/ 
K14ac.156 Genome-wide histone hyperacetylation requires a substantial 
amount of acetyl-CoA as substrate for HATs in the nucleus. In micro
vascular cells of the kidney, HG induces the expression and activity of 

ATP-citrate lyase (ACL),157 which catalyses the synthesis of 
acetyl-CoA and oxaloacetate from citrate.158 Moreover, HG promotes 
the nuclear translocation of ACL to support the increased demand for 
acetyl-CoA for histone hyperacetylation.159 The increased demand for 
acetyl-CoA requires an increased supply of citrate, which comes from 
enhanced glycolysis driven by HG.157

Hyperglycemic memory is a phenomenon that has received consider
able research attention. Prior exposure to HG can induce gene expres
sion changes that persist even after the restoration of normal glucose 
conditions.15 Hyperglycemic memory occurs in human vascular endo
thelial cells133,134 as well as mouse bone marrow-derived macrophages 
(BMDMs), where it promotes M1-type responses and suppresses 
M2-type responses.160 Bone marrow obtained from diabetic mice and 
transplanted into normoglycemic atherosclerosis-prone mice retained 
a memory of its previous hyperglycemic environment to drive acceler
ated atherosclerosis and increase plaque macrophage content.161

BMDMs from diabetic mice exhibited a trained immunity phenotype, 
with enhanced Il6 and M1-associated gene expression following stimula
tion with LPS and IFN-γ. Hyperglycemia-induced trained immunity in 
HSCs was driven by epigenetic reprogramming of H3K4me3 and 
H3K27ac, which was likely to be downstream of metabolic changes, 
however a causal link was not established. HG exacerbates the training 
effect of oxLDL in terms of pro-inflammatory cytokine production cap
acity,128 which could be associated with the acceleration of atheroscler
osis in diabetes.162 Indeed, exposure of peripheral monocytes to HG 
enhances the polarization of macrophages towards an M1-like phenotype, 
which correlates with increased succinate production and its potential to 
interfere with epigenetic reactions.161 To this end, Green and Brewer163

recently suggested that dysregulation of α-KG-dependent dioxygenases 
by hyperglycemia could link diabetes with vascular disease.

5. Future directions: metabolites 
impact the posttranslational 
regulation of TFs and epigenetic 
enzymes
So far, we have focused on the role that metabolites play in the modifi
cation of DNA and histones. However, many non-histone proteins are 
also post-translationally modified by the same machinery. In this section, 
we briefly describe some important considerations for interpreting the 
effects of metabolism on gene expression. The significance to the overall 
discussion is that metabolic changes could have a major impact on gene 
expression by modulating the transcriptional machinery in addition to 
chromatinized proteins.

Whenever there is a discussion of epigenetics, the elephant in the 
room is invariably the TF. Their power to activate or repress tran
scription is demonstrated by numerous cell-reprogramming experi
ments,164 best exemplified by a set of experiments showing that 
the forced expression of four specific TFs can reprogramme 
fibroblasts to stem cells.165 Several enzymes that mediate PTMs 
have dual roles modifying histones and non-histone proteins, and 
every modification that can occur on histones can also be written 
to non-histone proteins. Thousands of these modification sites 
have been identified across the proteome, and many have been 
shown to modulate protein function and stability.

Owing to advances in affinity enrichment methods and mass- 
spectrometry-based proteomics,166,167 methylation has emerged as a 
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critical regulator of non-histone protein function.168 Numerous KMTs 
and KDMs target TFs with comparable affinity to their histone sub
strates, making the transcriptional events regulated by these enzymes 
difficult to interpret. Set7 has the most non-histone substrates identified 
so far,169 with the search for new substrates based on the presence of 
motifs commonly flanking targeted lysines.170,171 HIF1α is methylated at 
K32 by Set7, resulting in the modulation of HIF1α occupancy 
of target gene promoters in fibroblasts.172 In response to IL-6, 
STAT3-dependent SOCS3 expression in colon cancer cells is regulated 
by Set7-mediated methylation of STAT3 at K140, and the methyl groups 
are removed by LSD1.173 The gene-regulating activity of the p65 subunit 
of NFκB, which has roles in cancer, immune regulation and CVD,174 is 
modulated by lysine methylation mediated by Set7175,176 and the 
H3K36 methyltransferase NSD1, with the latter being antagonized by 
KDM2A.177 From these examples, it is not difficult to imagine how 
large-scale metabolic changes, such as changes to SAM/SAH ratios, 
FAD+ availability, or α-KG/succinate ratios could influence the activity 
of TFs. Similar metabolome-PTM crosstalk potentially influences TF 
acetylation, which has also been shown to regulate TF activity and 
stability,178 through changes in acetyl-CoA and NAD+/NADH ratios.

Also important to transcription is the intricate system of 
functional PTMs written (and erased) by epigenetic enzymes to other 
epigenetic enzymes. Again, the prototypical example is Set7. The 
transcriptionally-repressive HMT activity of SUV39H1, a H3K9 
methyltransferase associated with heterochromatin formation, is 
down-regulated when SUV39H1 is methylated at K105 and K123 
by Set7.179 Set7 can also support transcriptional activation by direct
ing the lysine methyl-dependent degradation of DNMT1180 and by 
methylating the PCAF HAT at multiple sites.181 Furthermore, 
Set7-dependent methylation of ARTD1 (formerly PARP1) stimulates 
the synthesis of poly-ADP-ribose in response to oxidative stress.182

And like Set7, ARTD1 itself can maintain transcriptionally permissive 
chromatin structure by (i) modulating DNMT1 activity through 
ADP-ribose polymers and by (ii) preventing KDM5B-dependent de
methylation of H3K4me3.183 Similar epigenetic enzyme modulating 
events are also associated with lysine acetylation. For example, auto
acetylation by the p300 is important for stimulating its HAT activ
ity.184 We previously described how pharmacological HDAC 
inhibition shows a complex pattern of gene expression changes 
that were associated with histone acetylation and histone deacetyla
tion events, suggesting that HDAC inhibition could interfere with 
PTM of HATs and/or other HDACs.15,185

6. Concluding remarks
This Review is designed to stimulate interest in this emerging field 
of metaboloepigenetic mechanisms of gene regulation. The growing 
literature on the influence of intracellular metabolites on epigenetic 
reactions in cancer cells continues to provide new insights into me
chanisms of gene regulation relevant to other diseases and biological 
processes. The metabolic profiles of M1-like macrophages and 
trained macrophages bear some resemblance to cancer cells, particu
larly with regard to the up-regulation of glycolysis and glutaminolysis. 
The metaboloepigenetic effects of these and other pathways can po
tentially be exploited for the improvement of vaccine strategies. On 
the other hand, a similar strategy could be employed to attenuate 
atherogenic innate immune cells. A deeper knowledge of the ways 
that metabolic changes reverberate through TF and chromatin- 

modifying networks to reprogramme gene expression is anticipated 
to significantly advance our understanding of metaboloepigenetics 
in health and disease.
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