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Abstract

FPGA accelerators offer performance and efficiency gains by narrowing the scope of acceleration 

to one algorithmic domain. However, real-life applications are often not limited to a single 

domain, which naturally makes Cross-Domain Multi-Acceleration a crucial next step. The 

challenge is, existing FPGA accelerators are built upon their specific vertically-specialized 

stacks, which prevents utilizing multiple accelerators from different domains. To that end, 

we propose a pair of dual abstractions, called Yin-Yang, which work in tandem and enable 

programmers to develop cross-domain applications using multiple accelerators on a FPGA. 

The Yin abstraction enables cross-domain algorithmic specification, while the Yang abstraction 

captures the accelerator capabilities. We also develop a dataflow virtual machine, dubbed XLVM, 

that transparently maps domain functions (Yin) to best-fit accelerator capabilities (Yang). With six 

real-world cross-domain applications, our evaluations show that Yin-Yang unlocks 29.4× speedup, 

while the best single-domain acceleration achieves 12.0×.
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I. Introduction

FPGAs have emerged as a promising acceleration platform for diverse application domains 

both at the edge and on the cloud (Amazon F1 instances [1] and Microsoft SmartNICs 

[2]). Despite the benefits, the accelerators by definition limit the scope of acceleration 

to an algorithmic domain, while real-life applications [3–5] often extend beyond a single 

domain. It is evident that for such cross-domain applications, utilizing multiple accelerators–

even on a single FPGA–from different domains can unlock new capabilities and offer 
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higher performance and efficiency. However, each accelerator often comes with its own 

vertically-specialized domain-specific stack, as illustrated in Figure 1(a), which by design is 

difficult to conjugate with other stacks. Thus, there is a need for a horizontal programming 
abstraction that enables programmers to develop end-to-end applications without delving 

into the isolated accelerator stacks.

To that end, this paper sets out to devise such abstractions by building upon a collection of 

programmer-transparent layers. We first devise a pair of dual abstractions, called Yin-Yang, 

where 1) the Yin abstraction allows domain experts to concisely describe the capabilities of 

each domain, and 2) the Yang abstraction enables hardware designers to abstractly denote 

compute capabilities and data interfaces for their FPGA accelerators, henceforth referred 

to as engines. The Yin abstraction also offers a lightweight programming interface that 

allows programmers to aggregate Yin-defined cross-domain capabilities together as a single 

program, while preserving the domain boundaries. Then, to enable the two abstractions to 

work in tandem, we develop XLVM (Accelerator-Level Virtual Machine) and its execution 

workflow is delineated in Figure 1(b). XLVM is a dataflow virtual machine that builds 

and executes the program as a Queued-Fractalized Dataflow Graph (QF-DFG). In QF-DFG, 

like fractals, each node is another QF-DFG but at a progressively finer granularity, until 

a node is a primitive scalar operation. For given QF-DFG, the XLVM’s Engine Selector 

chooses components of the application (i.e., nodes of QF-DFG) to appropriate engines, 

using the engine specifications from Yang abstraction. XLVM also comes with Engine 

Compiler that compiles the individual engines into runnable executables and links them as a 

unified execution flow by automatically converting dependencies (i.e., edges of QF-DFG) to 

inter-engine communication between FPGA accelerators.

We collect diverse real-world applications and offer it as an open-source benchmark suite 

for cross-domain multi-acceleration. These applications range from deep brain stimulation, 

geological exploration, film captioning, stock exchange, medical imaging, and surveillance. 

Each of these benchmarks comprises algorithms from more than one domain where each 

is accelerated across multiple domain-specific accelerators. Using this benchmark suite, we 

evaluate the proposed abstractions and its concrete system implementation. By enabling 

cross-domain multi-acceleration, our work improves speedup from 12.0× to 29.4× (i.e., 

145% extra benefits on average) compared to an end-to-end execution with a single FPGA 

accelerator that offers the highest gain. These results suggest the effectiveness of the 

Yin-Yang abstractions and their associated system framework in enabling cross-domain 

multi-acceleration.

II. Yin Abstraction

A. Abstract Domain Description

The goal of Yin abstraction is to delineate the capabilities of each domain, without 

any accelerator or application specific constructs. For every domain, a unique abstract 

definition, called domain description, is provided independently by the domain experts to 

pre-define domain’s common capabilities. As the objective is to allow multi-acceleration, 

a domain description consists of a set of capabilities, each of which is a potential agent 

for acceleration. However, note that the capabilities defined in domain descriptions are 
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accelerator-agnostic and not linked to a specific accelerator. Yet, these capabilities can 

be mapped to various accelerators through our virtual machine XLVM (Section IV). To 

enable programmers to use the domain capabilities in their applications, we also provide 

a set of lightweight programming model (Section II-B). Using the programming interface, 

programmers can develop their applications by importing the domain descriptions and 

instantiating the domain capabilities, while still preserving the domain specificity, interface, 

and boundary of each instantiation.

Example domain description for digital signal processing.—Figure 2(a) illustrates 

an example domain description for the digital signal processing domain. The domain 

descriptions are composed of the following: domain name, a set of capabilities with input/

output semantics, a default reference implementation, and a cost model. The domain name 

is specified using the keyword domain on line 1. On line 4–22, the domain capabilities and 

their input/output are specified. For instance, lines 16–22 define the convolution capability, 

a frequently used operation in digital signal processing and is often accelerated by DSP 

accelerators. The capability keyword denotes the computational capability supported in this 

domain, and is followed by a unique denotation. Each capability has required input (input) 
and output (output) specifications as the arguments to its definition. The input and output 

data type and dimensions form the interface to the computation capability. We also have 

the state keyword that semantically stores the state across multiple executions. State is 

necessary for domains that share a temporal component such as robotics, data analytics, 

and deep learning. The param keyword denotes data whose values remain constant across 

executions.

B. Component & Flow Programming Model

The domain descriptions define the capabilities of individual domains that constitute end-to-

end applications, but there is a need for programming interface that enables programmers to 

use the capabilities for application development without concerning the low-level hardware 

details. Due to the modular nature of the Yin abstraction, the Component and Flow 

programming model (CNF) is built upon lightweight annotations to create the linkage 

between domain description capabilities and end-to-end application kernels. Components 

and Flows in CNF represent the computation and dataflow in between, respectively. In 

particular, Component is a language construct that is explicitly used within the code, 

whereas the Flow is implicitly present in between.

Deep brain stimulation.—To demonstrate the use of CNF programming model, we take 

a cross-domain application, deep brain stimulation [5], as an example. This application 

takes and processes the electrophysiological response of the brain (DSP) to measure the 

biomarkers (Analytics), and generates a set of optical stimulations (Control) for memory 

enhancement in rats. In this setup, the electrophysiological activity of the brain is collected 

in real-time, and passed through Fast Fourier Transform (FFT) and a set of Band Pass 

Filters (BPF) of distinctive frequency bands (i.e., delta (0.5–4 Hz), theta (4–8 Hz), alpha 

(8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz)). Next, the pipeline uses Logistic 

Regression (LR) to decode and classify these brain waves to be used as biomarkers. Based 

on the classification output, a Model Predictive Control (MPC) process configures the 
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synthesized brain waves (i.e., amplitude, frequency, and duration). Offloading the major 

compute-heavy algorithms to the corresponding accelerators–FFT to DeCO [6], logistic 

regression to Tabla [7], and control optimization to RoboX [8]–will provide runtime 

performance improvements1.

Example CNF code for deep brain stimulation.—Figure 2(b) illustrates a CNF 

implementation of deep brain stimulation. First, lines 1–3 import domain descriptions 

into the application and bring the available pre-defined capabilities. Then, CNF enables 

programmers to express 1) the component boundaries, 2) its interfaces, and 3) the 

hierarchical structure. On line 5, the components are defined using the keyword Component 
along with its inputs (e.g. wave) and outputs (e.g. stimuli), which is followed by the code for 

its computation on lines 7–19. CNF also allows the programmer to express arbitrary levels 

of component hierarchy, where Components may be defined inside a Component. Once a 

component has been defined, the programmer can instantiate it as many times as needed to 

express the algorithm.

III. Yang Abstraction

A. Abstract Engine Specification

To manage various accelerators and to allow flexible additions of newly developed 

accelerators, we devise the Yang abstraction, as the counterpart to the Yin abstraction. The 

Yang abstraction offers a means for the accelerator developers to abstractly describe the 

accelerator specifications. In this paper, an engine denotes an abstract compute platform, 

which exclusively supports a single domain and is able to serve a subset of the capabilities 

defined in the corresponding domain description. Thus, Yang abstraction allows the engine 

developers to specify the provided capabilities and communication interfaces of an engine as 

a structured specification, called engine specification.

Example engine specification describing an digital signal processing 
accelerator.—Figure 2(c) illustrates an example engine specification of DeCO [6] using 

our engine specification language. To provide a flexible abstraction that can be used by a 

variety of engines, but also to ensure multi-acceleration, an engine specification needs to 

express 1) its own capabilities, and 2) the interface it exposes to connect with different 

engines. Line 3 shows that the engine name is specified using the keyword engine and 

domain (digital_signal_processing). On Line 4–7, how the engine communicates its input 

and output with the outside world is specified using the keyword interface. The engine 

specification provides pre-defined interfaces such as FIFO, SRAM, or BRAM, etc. Also, its 

capabilities (i.e., fft and band_pass_filter) and their semantics for input, output, weight, and 

configuration memory are specified in lines 9–19.

B. Hints for Engine Selection

Our Yang abstraction also offers two keywords, fusion and cost, to allow the engine 

developers to provide engine-specific information, which can be used as hints for the 

1The original work [8] proposed RoboX as an ASIC but it is straightforward to develop the architecture as an FPGA accelerator.
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engine selection process later in XLVM. The keyword, fusion, denotes a set of capabilities 

that can be sequentially executed internally in an engine, while avoiding external data 

communication with the host or other engines. For instance, line 21 illustrates that the 

fft capability can be fused with the band_pass_filter capability, while band_pass_filter 

cannot be fused with any other capabilities on DeCO. The cost construct lets engine 

developers specify a means to estimate the latency of capabilities. This can be mapped 

to a cycle-accurate simulator, hard-coded metric, or a machine learning-based cost models as 

in AutoTVM.

IV. Accelerator-Level Virtual Machine

The Yin-Yang abstractions need to be realized as a unified execution flow so that the 

application is executed efficiently and the maximal gains can be achieved from cross-domain 

multi-acceleration. To accomplish this objective, we devise Accelerator-Level Dataflow 

Virtual Machine (XLVM), which is at the confluence of the Yin-Yang abstractions. XLVM 

preserves and translates the CNF program as a queued-fractalized dataflow graph (QF-

DFG) intermediate representation (IR). Then, we develop Engine Selector that selects 

the engines for the application, maximizing acceleration gains. Finally, we also develop 

Engine Compiler, which compiles the individual engines into the corresponding runnable 

executables and links them as a unified execution flow.

A. Queued-Fractalized Dataflow Graph (QF-DFG)

For effective engine selection and runtime orchestration, it is crucial to have an intermediate 

representation (IR) that 1) preserves the program and domain semantics (input, output, 

interface, and hierarchy of components), and 2) is flexible to support any granularity 

required for multi-acceleration. As such, we devise queued-fractalized dataflow graph (QF-

DFG), which is designed to capture the details of the program such as dependency (order of 

execution), functionality (operation), and compositionality (hierarchy) of the CNF programs. 

In QF-DFG, each edge denotes a dataflow and node denotes an operation of multiple levels 

of granularity, progressing from coarse granular nodes to finer nodes until primitive scalar 

operations are reached. Figure 2(d) shows a snippet of the QF-DFG IR, which corresponds 

to the CNF program in Figure 2(b).

B. Engine Selector

QF-DFG is a target-independent IR which, when created from CNF, is oblivious to the target 

engines for execution, similar to target-independent IR stages of the traditional compilers. 

Unlike traditional compilation processes where the target platform is explicitly known, the 

duality of domains and engines provided by Yin-Yang opens a new avenue for optimal 

target engine determinations as it exhibits the following properties: 1) a domain possibly has 

multiple engines that can support different subsets of its capabilities; and 2) every engine, 

even within the same domain, has different performance energy tradeoffs. Thus, to choose 

an optimal combination of engines for a given QF-DFG and a set of engine specifications, 

XLVM is equipped with Engine Selector, which exploits 1) a simple cost model as a proxy 

to estimate the performance of engine assignment, and 2) an optimized objective function.
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Algorithm 1

Engine selection algorithm for QF-DFG

1: Input: QF-DFG G(N,E)

2: Output: Engine Selection S

3: candidates ← Ø, cost ← {}

4: while new_candidate_exists() do

5:  candidates ← candidates ∪ {(n, e) | ∀ n ∈ N,∃ e ∈ n.domain.engines}

6: end while

7: for c in candidates do

8:  cost[c] ← 0

9:  for (n, e) in c do

10:   cost[c] cost[c] + T(n, e)
11:   for (n_child, e_child) in children((n, e)) do

12:    cost[c] cost[c] + C e, e_child + D e,e_child 
13:   end for

14:  end for

15: end for

16: S ← find_engine_selection_with_minimum_cost(cost)

17: returnS

Cost model and objective function.—We model the execution time of end-to-end 

multi-acceleration applications using three cost functions: 1) computation latency T , 2) 

data copy overhead C , and 3) data format conversion cost D . To simplify the design, we 

model the overall cost for the given QF-DFG as a sum of these functions, which does not 

consider the dynamic runtime factors such as pipelined execution and bandwidth contention 

with other applications. Using this cost model, we formulate the objective function of 

Engine Selector as a combination of engines S for the QF-DFG from the candidate engine 

set E, that minimizes total execution latency:

argmin
S ⊂ E

Cost = ∑
i

Ti + ∑
ij

Cij + ∑
ij

Dij, for i, j ∈ S

Algorithm 1 illustrates the engine selection process, which takes a QF-DFG and maps the 

graph nodes to a set of available engines that minimize the expected latency by optimizing 

the cost function. Engine Selector conducts a brute-force search of all possible engine 

assignment combinations to the QF-DFG and formulates the candidate set for the engine 

selections (Line 4–6). Then, Engine Selector evaluates the cost function per each candidate 

selection and chooses the candidate that imposes the minimum latency cost (Line 7–16). 

The selection results are augmented to the QF-DFG as metadata. While we demonstrated 

the engine selection process optimizing for the execution time, the objective function can be 

updated for other objectives such as energy efficiency or SLO.
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C. Engine Compiler

Once every node has been assigned to an engine, Engine Compiler individually invokes the 

engine-specific compiler to obtain the engine executable. The canonical set of operations in 

engine executables constitutes loading the input data to engines, setting the configuration 

registers, triggering the computation, observing the runtime status, and receiving the output 

data. The underlying implementations of these operations for accelerators are all disparate, 

which makes the runtime orchestration difficult. To unify the interfaces, XLVM abstracts the 

engines as files that can perform computation and formalizes the engine interfaces as a set of 

file management APIs. Similar to the Unix I/O, these APIs include (1) open a new engine, 

(2) read data back from the engine, (3) write data to the engine, (4) initiate compute of 

a capability, and (5) close the engine. Thus, to link this computational file abstraction with 

the low-level hardware interfaces, the engine developers are asked to provide engine-specific 

device drivers.

V. Evaluation

A. Experimental Setup

Benchmarks.—Cross-domain multi-acceleration is an emerging field and there is a lack of 

established workloads that span multiple domains. We take real-life applications comprising 

well known algorithms to create a benchmark suite that can evaluate cross-domain multi-

acceleration. Table I(a) summarizes these benchmarks, the domains they contain, and the 

accelerated kernels: (1) memory-enhance is the deep brain stimulation introduced in Section 

II-B; (2) robot-explorer is a four-wheeled robot equipped with a Kinect sensor to find its 

way through a cave and requires a KinectFusion (KF) algorithm to reconstruct a 3D map 

of the cave and MPC algorithm to navigate through the cave; (3) video-sync synchronizes 

subtitles with speech segments for video files, and requires MPEG-decoding and FFT to 

boost the speech-text pattern matching process; (4) stock-market predicts the call option 

price in the stock market, and requires sentiment analysis using LR on news articles to 

extract market signals with Black-Scholes model to predict call option pricing; (5) leukocyte 

detects leukocytes from video microscopy of blood vessels, and uses Gradient Inverse 

Coefficient of Variation (GICOV) score to perform detection in the frame and Motion 

Gradient Vector Flow (MGVF) matrix to track the leukocytes; (6) security-camera detects 

suspicious objects from its input video stream by decoding the MPEG encoded video stream 

using MPEG-Decoding and performing an object detection using deep learning (Tiny-Yolo-

v2).

Compute platforms.—Table I(b) summarizes the domains used in the benchmarks, the 

accelerated capabilities, the used engines, and their platforms. Our system is equipped with 

a host CPU, Intel Xeon E3 (3.50 GHz). For fair comparison, we use optimized software 

libraries to obtain the best performance, including Intel MKL 2020, OpenBlas v0.3, and 

OpenCV 3.4.2. For FPGA, we use Xilinx KCU1500 with open-source hardware accelerators 

[7, 9]. Accelerators are attached to the host via a PCIe interconnect.

Runtime measurements.—We run the experiments for ten times and attain the average 

to report. When open-source RTL implementations of existing FPGA accelerators are 

Kim et al. Page 7

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unavailable, we use the author-provided simulators to measure the performance. Using the 

kernel execution time on the platforms, we estimate the end-to-end application runtime.

Energy measurements.—To measure the energy consumption, we use the Intel Running 

Average Power Limit (RAPL) for CPU and use the simulators for the FPGA accelerators.

Programming effort.—Accurately measuring human effort is impossible, yet similar to 

prior works, FlexJava and EnerJ, we count the number of lines of code (LoC) and the 

number of annotations to quantify the human effort.

B. Experimental Results

1) Performance Improvement—Figure 3(a) shows the speedup gains as the number 

of accelerator engines increases compared to the CPU-only baseline. All the benchmarks 

provide benefits even from a single-engine acceleration, which yields a 12.0× speedup 

when the best-performing engine is used for accelerating the benchmarks. However, the 

results show that the speedup increases to 29.4× on average when leveraging more engines, 

which amounts to a 145% extra speedup. Thus, there is untapped potential in accelerating 

multiple kernels, which is unleashed by our dual abstractions and XLVM. The rightmost bar 

(“Manual Program”) also shows the speedup when the maximal number of accelerators are 

enabled manually by programmers, which represent the ideal speedup that Yin-Yang would 

be able to achieve. The results show that Yin-Yang almost reaches this ideal speedup, while 

requiring less programming effort (see Section V-B(3)). Overall, our system attests to the 

common wisdom that “the more accelerators, the better”.

2) Performance-per-Joule Improvement—Figure 3(b) illustrates the performance-

per-Joule improvement of multi-acceleration over the CPU baseline. As the figure shows, 

acceleration using a single engine achieves an overall Performance-per-Joule improvement 

of 7.0× against the baseline. By leveraging more engines through the Yin-Yang abstractions, 

we can achieve higher performance-per-Joule improvements of 12.2×, which is translated 

to 74.2% extra efficiency. Similar to Section V-B(1), we also report the manual multi-

acceleration result, which shows that Yin-Yang closely reaches to the ideal efficiency gain, 

only leaving a marginal room for improvement.

3) Programmability—Figure 3(c) shows Lines of Code (LoC) improvements of the dual 

abstractions when compared to manual programming. The bar on the left represents LoC 

that programmers write, while the stacked bar on the right delineates the summated LoC that 

programmers, domain experts, and engine developers should write in aggregate. The results 

show that Yin-Yang effectively reduces the LoC by 33.1% on average while obtaining the 

same functionality and performance. The human efforts needed for domain descriptions 

and engine specifications is imposed only once when registering the domains and engines. 

From the programmers perspective, the LoC is reduced from 383 to 137, which increases 

the reduction rate to 64.2%. These results suggest that the proposed dual abstractions allow 

domain experts and engine developers to take part in enabling multi-acceleration with 

minimum effort, and CNF emancipates application programmers from the onerous task of 

hardware development and low-level programming for orchestrating multiple accelerators.
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VI. Related Work

Abstractions for heterogenous platforms.

Although various general purpose abstractions for accelerators such as OpenCL exist, they 

do not incorporate the algorithmic domain knowledge. Intel oneAPI [10] provides libraries 

and compilation tools that can target multiple accelerators. The libraries of oneAPI contain 

fine-grained constructs that allow programmers to focus on their domain of interest and 

optimize it. SysML [11] is a system architecture modeling tool built upon Unified Modeling 

Language (UML). While SysML has a similarity to our CNF programming model, it offers 

a general-purpose and unified abstraction that lacks the notion of domains. In contrast, 

this work provides cross-domain programming abstractions and necessary mechanisms to 

make it easy for programmers to harmoniously combine existing accelerators from different 

domains together to develop a single application.

Domain-specific abstractions.

There are a plethora of one-sided acceleration solutions [6, 8] for a single domain, which 

is either algorithm-centric or hardware-centric. Our approach differs from these works 

in providing dual abstractions that move away from one-sided representation of a single 

domain and links multiple domains. This enables us to utilize disjointly pre-designed 

accelerators to be used in tandem for cross-domain applications.

FPGA acceleration.

High-Level Synthesis (HLS) is an effective tool that allows programmers to use a high-

level language for accelerator development. While HLS improves programmability, its 

performance gains are usually lower than the custom-designed accelerators, as shown in 

prior works [12]. In contrary, Yin-Yang is an alternative programming tool that offers three 

different abstractions for three parties–(1) domain experts, (2) engine developers, and (3) 

application programmers, which allow them to collaboratively enable multi-acceleration for 

cross-domain applications.

VII. Conclusion

Cross-domain multi-acceleration can unlock new capabilities. For this emerging direction, 

we uniquely provide dual abstractions which preserve domain knowledge while linking 

algorithmic representations to hardware capabilities. As a mechanism to provide this 

linkage, we develop XLVM, which represents the program as QF-DFG and determines 

efficient engine-to-capability mappings. Experimental results using a real-life benchmark 

suite show significant improvements in performance and energy when multiple accelerators 

from different domain are used. This paper also provides an open-source benchmark suite 

for the emerging area of cross-domain multi-acceleration, which is available at https://

github.com/he-actlab/cross-domain-benchmarks.
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Fig. 1: 
Overview of Yin-Yang.
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Fig. 2: 
Example Yin-Yang code and its QF-DFG IR.
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Fig. 3: 
Experimental results that show the acceleration gains by Yin-Yang, in comparison with 

the baselines. We use the CPU-only execution as the baseline for performance and 

energy-efficiency results. The baseline for Lines-of-Code results is the case of manual 

programming.
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TABLE I:

(a) Cross-domain benchmark suite, and (b) domains and engines used in the benchmarks.

(a)

Name Description Domains Used
Capabilities

memory-enhance Deep Brain Stimulation closed-loop control pipeline to optimize stimulation 
signals for memory enhancement

DSP FFT

Data Analytics LR

Optimized Control MPC

robot-explorer KinectFusion for 3D map generation with model predictive control for cave 
exploration

Robotics KF

Computer Vision MPC

video-sync Calculate correct offset to sync a movie and subtitle file
DSP MPEG-Decode

FFT

stock-market Text sentiment classification on stock market news articles to estimate call option 
price

Data Analytics LR

Finance Black-Scholes

leukocyte Detect and tracks rolling leukocytes (white blood cells) in a microscopy of blood 
vessels vivo video

Computer Vision GICOV

MGVF

security-camera Real-time object detection system which decodes MPEG encoded video

Deep Learning Tiny-Yolo-v2

DSP MPEG-Decode

(b)

Domain Capabilities Engine* Platform

DSP FFT, MPEG-Decode

FFTW CPU

ffmpeg CPU

DeCO FPGA

LogiCore FPGA

Data Analytics LR

MLPack CPU

InAccel FPGA

Tabla FPGA

Robotics MPC
ACADO CPU

RoboX FPGA

Computer Vision GICOV, MGVF, KF

OpenCV CPU

SLAMBench FPGA

Iron FPGA

Finance Black-Scholes QuantLib CPU
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HyperStreams FPGA

Deep Learning Tiny-Yolo-v2

TensorFlow CPU

TVM CPU

DnnWeaver FPGA

*
We omit the references due to the number of reference limit for submission.
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