
Yin-Yang: Programming Abstractions for Cross-Domain Multi-
Acceleration

Joon Kyung Kim★, Byung Hoon Ahn★, Sean Kinzer★, Soroush Ghodrati★, Rohan
Mahapatra★, Brahmendra Yatham★, Shu-Ting Wang★, Dohee Kim†, Parisa Sarikhani‡,
Babak Mahmoudi‡, Divya Mahajan§, Jongse Park†, Hadi Esmaeilzadeh★

★ UC San Diego

† KAIST

‡ Emory University

§ Microsoft

Abstract

FPGA accelerators offer performance and efficiency gains by narrowing the scope of acceleration

to one algorithmic domain. However, real-life applications are often not limited to a single

domain, which naturally makes Cross-Domain Multi-Acceleration a crucial next step. The

challenge is, existing FPGA accelerators are built upon their specific vertically-specialized

stacks, which prevents utilizing multiple accelerators from different domains. To that end,

we propose a pair of dual abstractions, called Yin-Yang, which work in tandem and enable

programmers to develop cross-domain applications using multiple accelerators on a FPGA.

The Yin abstraction enables cross-domain algorithmic specification, while the Yang abstraction

captures the accelerator capabilities. We also develop a dataflow virtual machine, dubbed XLVM,

that transparently maps domain functions (Yin) to best-fit accelerator capabilities (Yang). With six

real-world cross-domain applications, our evaluations show that Yin-Yang unlocks 29.4× speedup,

while the best single-domain acceleration achieves 12.0×.

Keywords

Compilers; Runtime Environments; Hardware/Software Interfaces; Heterogeneous (Hybrid)
Systems; Reconfigurable Hardware

I. Introduction

FPGAs have emerged as a promising acceleration platform for diverse application domains

both at the edge and on the cloud (Amazon F1 instances [1] and Microsoft SmartNICs

[2]). Despite the benefits, the accelerators by definition limit the scope of acceleration

to an algorithmic domain, while real-life applications [3–5] often extend beyond a single

domain. It is evident that for such cross-domain applications, utilizing multiple accelerators–

even on a single FPGA–from different domains can unlock new capabilities and offer

HHS Public Access
Author manuscript
IEEE Micro. Author manuscript; available in PMC 2023 September 01.

Published in final edited form as:
IEEE Micro. 2022 ; 42(5): 89–98. doi:10.1109/mm.2022.3189416.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

higher performance and efficiency. However, each accelerator often comes with its own

vertically-specialized domain-specific stack, as illustrated in Figure 1(a), which by design is

difficult to conjugate with other stacks. Thus, there is a need for a horizontal programming
abstraction that enables programmers to develop end-to-end applications without delving

into the isolated accelerator stacks.

To that end, this paper sets out to devise such abstractions by building upon a collection of

programmer-transparent layers. We first devise a pair of dual abstractions, called Yin-Yang,

where 1) the Yin abstraction allows domain experts to concisely describe the capabilities of

each domain, and 2) the Yang abstraction enables hardware designers to abstractly denote

compute capabilities and data interfaces for their FPGA accelerators, henceforth referred

to as engines. The Yin abstraction also offers a lightweight programming interface that

allows programmers to aggregate Yin-defined cross-domain capabilities together as a single

program, while preserving the domain boundaries. Then, to enable the two abstractions to

work in tandem, we develop XLVM (Accelerator-Level Virtual Machine) and its execution

workflow is delineated in Figure 1(b). XLVM is a dataflow virtual machine that builds

and executes the program as a Queued-Fractalized Dataflow Graph (QF-DFG). In QF-DFG,

like fractals, each node is another QF-DFG but at a progressively finer granularity, until

a node is a primitive scalar operation. For given QF-DFG, the XLVM’s Engine Selector

chooses components of the application (i.e., nodes of QF-DFG) to appropriate engines,

using the engine specifications from Yang abstraction. XLVM also comes with Engine

Compiler that compiles the individual engines into runnable executables and links them as a

unified execution flow by automatically converting dependencies (i.e., edges of QF-DFG) to

inter-engine communication between FPGA accelerators.

We collect diverse real-world applications and offer it as an open-source benchmark suite

for cross-domain multi-acceleration. These applications range from deep brain stimulation,

geological exploration, film captioning, stock exchange, medical imaging, and surveillance.

Each of these benchmarks comprises algorithms from more than one domain where each

is accelerated across multiple domain-specific accelerators. Using this benchmark suite, we

evaluate the proposed abstractions and its concrete system implementation. By enabling

cross-domain multi-acceleration, our work improves speedup from 12.0× to 29.4× (i.e.,

145% extra benefits on average) compared to an end-to-end execution with a single FPGA

accelerator that offers the highest gain. These results suggest the effectiveness of the

Yin-Yang abstractions and their associated system framework in enabling cross-domain

multi-acceleration.

II. Yin Abstraction

A. Abstract Domain Description

The goal of Yin abstraction is to delineate the capabilities of each domain, without

any accelerator or application specific constructs. For every domain, a unique abstract

definition, called domain description, is provided independently by the domain experts to

pre-define domain’s common capabilities. As the objective is to allow multi-acceleration,

a domain description consists of a set of capabilities, each of which is a potential agent

for acceleration. However, note that the capabilities defined in domain descriptions are

Kim et al. Page 2

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

accelerator-agnostic and not linked to a specific accelerator. Yet, these capabilities can

be mapped to various accelerators through our virtual machine XLVM (Section IV). To

enable programmers to use the domain capabilities in their applications, we also provide

a set of lightweight programming model (Section II-B). Using the programming interface,

programmers can develop their applications by importing the domain descriptions and

instantiating the domain capabilities, while still preserving the domain specificity, interface,

and boundary of each instantiation.

Example domain description for digital signal processing.—Figure 2(a) illustrates

an example domain description for the digital signal processing domain. The domain

descriptions are composed of the following: domain name, a set of capabilities with input/

output semantics, a default reference implementation, and a cost model. The domain name

is specified using the keyword domain on line 1. On line 4–22, the domain capabilities and

their input/output are specified. For instance, lines 16–22 define the convolution capability,

a frequently used operation in digital signal processing and is often accelerated by DSP

accelerators. The capability keyword denotes the computational capability supported in this

domain, and is followed by a unique denotation. Each capability has required input (input)
and output (output) specifications as the arguments to its definition. The input and output

data type and dimensions form the interface to the computation capability. We also have

the state keyword that semantically stores the state across multiple executions. State is

necessary for domains that share a temporal component such as robotics, data analytics,

and deep learning. The param keyword denotes data whose values remain constant across

executions.

B. Component & Flow Programming Model

The domain descriptions define the capabilities of individual domains that constitute end-to-

end applications, but there is a need for programming interface that enables programmers to

use the capabilities for application development without concerning the low-level hardware

details. Due to the modular nature of the Yin abstraction, the Component and Flow

programming model (CNF) is built upon lightweight annotations to create the linkage

between domain description capabilities and end-to-end application kernels. Components

and Flows in CNF represent the computation and dataflow in between, respectively. In

particular, Component is a language construct that is explicitly used within the code,

whereas the Flow is implicitly present in between.

Deep brain stimulation.—To demonstrate the use of CNF programming model, we take

a cross-domain application, deep brain stimulation [5], as an example. This application

takes and processes the electrophysiological response of the brain (DSP) to measure the

biomarkers (Analytics), and generates a set of optical stimulations (Control) for memory

enhancement in rats. In this setup, the electrophysiological activity of the brain is collected

in real-time, and passed through Fast Fourier Transform (FFT) and a set of Band Pass

Filters (BPF) of distinctive frequency bands (i.e., delta (0.5–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz)). Next, the pipeline uses Logistic

Regression (LR) to decode and classify these brain waves to be used as biomarkers. Based

on the classification output, a Model Predictive Control (MPC) process configures the

Kim et al. Page 3

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

synthesized brain waves (i.e., amplitude, frequency, and duration). Offloading the major

compute-heavy algorithms to the corresponding accelerators–FFT to DeCO [6], logistic

regression to Tabla [7], and control optimization to RoboX [8]–will provide runtime

performance improvements1.

Example CNF code for deep brain stimulation.—Figure 2(b) illustrates a CNF

implementation of deep brain stimulation. First, lines 1–3 import domain descriptions

into the application and bring the available pre-defined capabilities. Then, CNF enables

programmers to express 1) the component boundaries, 2) its interfaces, and 3) the

hierarchical structure. On line 5, the components are defined using the keyword Component
along with its inputs (e.g. wave) and outputs (e.g. stimuli), which is followed by the code for

its computation on lines 7–19. CNF also allows the programmer to express arbitrary levels

of component hierarchy, where Components may be defined inside a Component. Once a

component has been defined, the programmer can instantiate it as many times as needed to

express the algorithm.

III. Yang Abstraction

A. Abstract Engine Specification

To manage various accelerators and to allow flexible additions of newly developed

accelerators, we devise the Yang abstraction, as the counterpart to the Yin abstraction. The

Yang abstraction offers a means for the accelerator developers to abstractly describe the

accelerator specifications. In this paper, an engine denotes an abstract compute platform,

which exclusively supports a single domain and is able to serve a subset of the capabilities

defined in the corresponding domain description. Thus, Yang abstraction allows the engine

developers to specify the provided capabilities and communication interfaces of an engine as

a structured specification, called engine specification.

Example engine specification describing an digital signal processing
accelerator.—Figure 2(c) illustrates an example engine specification of DeCO [6] using

our engine specification language. To provide a flexible abstraction that can be used by a

variety of engines, but also to ensure multi-acceleration, an engine specification needs to

express 1) its own capabilities, and 2) the interface it exposes to connect with different

engines. Line 3 shows that the engine name is specified using the keyword engine and

domain (digital_signal_processing). On Line 4–7, how the engine communicates its input

and output with the outside world is specified using the keyword interface. The engine

specification provides pre-defined interfaces such as FIFO, SRAM, or BRAM, etc. Also, its

capabilities (i.e., fft and band_pass_filter) and their semantics for input, output, weight, and

configuration memory are specified in lines 9–19.

B. Hints for Engine Selection

Our Yang abstraction also offers two keywords, fusion and cost, to allow the engine

developers to provide engine-specific information, which can be used as hints for the

1The original work [8] proposed RoboX as an ASIC but it is straightforward to develop the architecture as an FPGA accelerator.

Kim et al. Page 4

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

engine selection process later in XLVM. The keyword, fusion, denotes a set of capabilities

that can be sequentially executed internally in an engine, while avoiding external data

communication with the host or other engines. For instance, line 21 illustrates that the

fft capability can be fused with the band_pass_filter capability, while band_pass_filter

cannot be fused with any other capabilities on DeCO. The cost construct lets engine

developers specify a means to estimate the latency of capabilities. This can be mapped

to a cycle-accurate simulator, hard-coded metric, or a machine learning-based cost models as

in AutoTVM.

IV. Accelerator-Level Virtual Machine

The Yin-Yang abstractions need to be realized as a unified execution flow so that the

application is executed efficiently and the maximal gains can be achieved from cross-domain

multi-acceleration. To accomplish this objective, we devise Accelerator-Level Dataflow

Virtual Machine (XLVM), which is at the confluence of the Yin-Yang abstractions. XLVM

preserves and translates the CNF program as a queued-fractalized dataflow graph (QF-

DFG) intermediate representation (IR). Then, we develop Engine Selector that selects

the engines for the application, maximizing acceleration gains. Finally, we also develop

Engine Compiler, which compiles the individual engines into the corresponding runnable

executables and links them as a unified execution flow.

A. Queued-Fractalized Dataflow Graph (QF-DFG)

For effective engine selection and runtime orchestration, it is crucial to have an intermediate

representation (IR) that 1) preserves the program and domain semantics (input, output,

interface, and hierarchy of components), and 2) is flexible to support any granularity

required for multi-acceleration. As such, we devise queued-fractalized dataflow graph (QF-

DFG), which is designed to capture the details of the program such as dependency (order of

execution), functionality (operation), and compositionality (hierarchy) of the CNF programs.

In QF-DFG, each edge denotes a dataflow and node denotes an operation of multiple levels

of granularity, progressing from coarse granular nodes to finer nodes until primitive scalar

operations are reached. Figure 2(d) shows a snippet of the QF-DFG IR, which corresponds

to the CNF program in Figure 2(b).

B. Engine Selector

QF-DFG is a target-independent IR which, when created from CNF, is oblivious to the target

engines for execution, similar to target-independent IR stages of the traditional compilers.

Unlike traditional compilation processes where the target platform is explicitly known, the

duality of domains and engines provided by Yin-Yang opens a new avenue for optimal

target engine determinations as it exhibits the following properties: 1) a domain possibly has

multiple engines that can support different subsets of its capabilities; and 2) every engine,

even within the same domain, has different performance energy tradeoffs. Thus, to choose

an optimal combination of engines for a given QF-DFG and a set of engine specifications,

XLVM is equipped with Engine Selector, which exploits 1) a simple cost model as a proxy

to estimate the performance of engine assignment, and 2) an optimized objective function.

Kim et al. Page 5

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 1

Engine selection algorithm for QF-DFG

1: Input: QF-DFG G(N,E)

2: Output: Engine Selection S

3: candidates ← Ø, cost ← {}

4: while new_candidate_exists() do

5: candidates ← candidates ∪ {(n, e) | ∀ n ∈ N,∃ e ∈ n.domain.engines}

6: end while

7: for c in candidates do

8: cost[c] ← 0

9: for (n, e) in c do

10: cost[c] cost[c] + T(n, e)
11: for (n_child, e_child) in children((n, e)) do

12: cost[c] cost[c] + C e, e_child + D e,e_child
13: end for

14: end for

15: end for

16: S ← find_engine_selection_with_minimum_cost(cost)

17: returnS

Cost model and objective function.—We model the execution time of end-to-end

multi-acceleration applications using three cost functions: 1) computation latency T , 2)

data copy overhead C , and 3) data format conversion cost D . To simplify the design, we

model the overall cost for the given QF-DFG as a sum of these functions, which does not

consider the dynamic runtime factors such as pipelined execution and bandwidth contention

with other applications. Using this cost model, we formulate the objective function of

Engine Selector as a combination of engines S for the QF-DFG from the candidate engine

set E, that minimizes total execution latency:

argmin
S ⊂ E

Cost = ∑
i

Ti + ∑
ij

Cij + ∑
ij

Dij, for i, j ∈ S

Algorithm 1 illustrates the engine selection process, which takes a QF-DFG and maps the

graph nodes to a set of available engines that minimize the expected latency by optimizing

the cost function. Engine Selector conducts a brute-force search of all possible engine

assignment combinations to the QF-DFG and formulates the candidate set for the engine

selections (Line 4–6). Then, Engine Selector evaluates the cost function per each candidate

selection and chooses the candidate that imposes the minimum latency cost (Line 7–16).

The selection results are augmented to the QF-DFG as metadata. While we demonstrated

the engine selection process optimizing for the execution time, the objective function can be

updated for other objectives such as energy efficiency or SLO.

Kim et al. Page 6

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

C. Engine Compiler

Once every node has been assigned to an engine, Engine Compiler individually invokes the

engine-specific compiler to obtain the engine executable. The canonical set of operations in

engine executables constitutes loading the input data to engines, setting the configuration

registers, triggering the computation, observing the runtime status, and receiving the output

data. The underlying implementations of these operations for accelerators are all disparate,

which makes the runtime orchestration difficult. To unify the interfaces, XLVM abstracts the

engines as files that can perform computation and formalizes the engine interfaces as a set of

file management APIs. Similar to the Unix I/O, these APIs include (1) open a new engine,

(2) read data back from the engine, (3) write data to the engine, (4) initiate compute of

a capability, and (5) close the engine. Thus, to link this computational file abstraction with

the low-level hardware interfaces, the engine developers are asked to provide engine-specific

device drivers.

V. Evaluation

A. Experimental Setup

Benchmarks.—Cross-domain multi-acceleration is an emerging field and there is a lack of

established workloads that span multiple domains. We take real-life applications comprising

well known algorithms to create a benchmark suite that can evaluate cross-domain multi-

acceleration. Table I(a) summarizes these benchmarks, the domains they contain, and the

accelerated kernels: (1) memory-enhance is the deep brain stimulation introduced in Section

II-B; (2) robot-explorer is a four-wheeled robot equipped with a Kinect sensor to find its

way through a cave and requires a KinectFusion (KF) algorithm to reconstruct a 3D map

of the cave and MPC algorithm to navigate through the cave; (3) video-sync synchronizes

subtitles with speech segments for video files, and requires MPEG-decoding and FFT to

boost the speech-text pattern matching process; (4) stock-market predicts the call option

price in the stock market, and requires sentiment analysis using LR on news articles to

extract market signals with Black-Scholes model to predict call option pricing; (5) leukocyte

detects leukocytes from video microscopy of blood vessels, and uses Gradient Inverse

Coefficient of Variation (GICOV) score to perform detection in the frame and Motion

Gradient Vector Flow (MGVF) matrix to track the leukocytes; (6) security-camera detects

suspicious objects from its input video stream by decoding the MPEG encoded video stream

using MPEG-Decoding and performing an object detection using deep learning (Tiny-Yolo-

v2).

Compute platforms.—Table I(b) summarizes the domains used in the benchmarks, the

accelerated capabilities, the used engines, and their platforms. Our system is equipped with

a host CPU, Intel Xeon E3 (3.50 GHz). For fair comparison, we use optimized software

libraries to obtain the best performance, including Intel MKL 2020, OpenBlas v0.3, and

OpenCV 3.4.2. For FPGA, we use Xilinx KCU1500 with open-source hardware accelerators

[7, 9]. Accelerators are attached to the host via a PCIe interconnect.

Runtime measurements.—We run the experiments for ten times and attain the average

to report. When open-source RTL implementations of existing FPGA accelerators are

Kim et al. Page 7

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

unavailable, we use the author-provided simulators to measure the performance. Using the

kernel execution time on the platforms, we estimate the end-to-end application runtime.

Energy measurements.—To measure the energy consumption, we use the Intel Running

Average Power Limit (RAPL) for CPU and use the simulators for the FPGA accelerators.

Programming effort.—Accurately measuring human effort is impossible, yet similar to

prior works, FlexJava and EnerJ, we count the number of lines of code (LoC) and the

number of annotations to quantify the human effort.

B. Experimental Results

1) Performance Improvement—Figure 3(a) shows the speedup gains as the number

of accelerator engines increases compared to the CPU-only baseline. All the benchmarks

provide benefits even from a single-engine acceleration, which yields a 12.0× speedup

when the best-performing engine is used for accelerating the benchmarks. However, the

results show that the speedup increases to 29.4× on average when leveraging more engines,

which amounts to a 145% extra speedup. Thus, there is untapped potential in accelerating

multiple kernels, which is unleashed by our dual abstractions and XLVM. The rightmost bar

(“Manual Program”) also shows the speedup when the maximal number of accelerators are

enabled manually by programmers, which represent the ideal speedup that Yin-Yang would

be able to achieve. The results show that Yin-Yang almost reaches this ideal speedup, while

requiring less programming effort (see Section V-B(3)). Overall, our system attests to the

common wisdom that “the more accelerators, the better”.

2) Performance-per-Joule Improvement—Figure 3(b) illustrates the performance-

per-Joule improvement of multi-acceleration over the CPU baseline. As the figure shows,

acceleration using a single engine achieves an overall Performance-per-Joule improvement

of 7.0× against the baseline. By leveraging more engines through the Yin-Yang abstractions,

we can achieve higher performance-per-Joule improvements of 12.2×, which is translated

to 74.2% extra efficiency. Similar to Section V-B(1), we also report the manual multi-

acceleration result, which shows that Yin-Yang closely reaches to the ideal efficiency gain,

only leaving a marginal room for improvement.

3) Programmability—Figure 3(c) shows Lines of Code (LoC) improvements of the dual

abstractions when compared to manual programming. The bar on the left represents LoC

that programmers write, while the stacked bar on the right delineates the summated LoC that

programmers, domain experts, and engine developers should write in aggregate. The results

show that Yin-Yang effectively reduces the LoC by 33.1% on average while obtaining the

same functionality and performance. The human efforts needed for domain descriptions

and engine specifications is imposed only once when registering the domains and engines.

From the programmers perspective, the LoC is reduced from 383 to 137, which increases

the reduction rate to 64.2%. These results suggest that the proposed dual abstractions allow

domain experts and engine developers to take part in enabling multi-acceleration with

minimum effort, and CNF emancipates application programmers from the onerous task of

hardware development and low-level programming for orchestrating multiple accelerators.

Kim et al. Page 8

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

VI. Related Work

Abstractions for heterogenous platforms.

Although various general purpose abstractions for accelerators such as OpenCL exist, they

do not incorporate the algorithmic domain knowledge. Intel oneAPI [10] provides libraries

and compilation tools that can target multiple accelerators. The libraries of oneAPI contain

fine-grained constructs that allow programmers to focus on their domain of interest and

optimize it. SysML [11] is a system architecture modeling tool built upon Unified Modeling

Language (UML). While SysML has a similarity to our CNF programming model, it offers

a general-purpose and unified abstraction that lacks the notion of domains. In contrast,

this work provides cross-domain programming abstractions and necessary mechanisms to

make it easy for programmers to harmoniously combine existing accelerators from different

domains together to develop a single application.

Domain-specific abstractions.

There are a plethora of one-sided acceleration solutions [6, 8] for a single domain, which

is either algorithm-centric or hardware-centric. Our approach differs from these works

in providing dual abstractions that move away from one-sided representation of a single

domain and links multiple domains. This enables us to utilize disjointly pre-designed

accelerators to be used in tandem for cross-domain applications.

FPGA acceleration.

High-Level Synthesis (HLS) is an effective tool that allows programmers to use a high-

level language for accelerator development. While HLS improves programmability, its

performance gains are usually lower than the custom-designed accelerators, as shown in

prior works [12]. In contrary, Yin-Yang is an alternative programming tool that offers three

different abstractions for three parties–(1) domain experts, (2) engine developers, and (3)

application programmers, which allow them to collaboratively enable multi-acceleration for

cross-domain applications.

VII. Conclusion

Cross-domain multi-acceleration can unlock new capabilities. For this emerging direction,

we uniquely provide dual abstractions which preserve domain knowledge while linking

algorithmic representations to hardware capabilities. As a mechanism to provide this

linkage, we develop XLVM, which represents the program as QF-DFG and determines

efficient engine-to-capability mappings. Experimental results using a real-life benchmark

suite show significant improvements in performance and energy when multiple accelerators

from different domain are used. This paper also provides an open-source benchmark suite

for the emerging area of cross-domain multi-acceleration, which is available at https://

github.com/he-actlab/cross-domain-benchmarks.

Acknowledgment

This work was in part supported by generous gifts from Google, Samsung, Qualcomm, Microsoft, Xilinx, as well
as the National Science Foundation (NSF) awards CCF#2107598, CNS#1822273, National Institute of Health

Kim et al. Page 9

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/he-actlab/cross-domain-benchmarks
https://github.com/he-actlab/cross-domain-benchmarks

(NIH) award #R01EB028350, Defense Advanced Research Project Agency (DARPA) under agreement number
#HR0011–18-C-0020, and Semiconductor Research Corporation (SRC) award #2021-AH-3039. This work was
also partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korean Government (MSIT) (No.2018–0-00503, Researches on next generation memory-
centric computing system architecture; and No.2022–0-01037, Development of high performance processing-in-
memory technology based on DRAM). The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied of Google, Qualcomm, Microsoft, Xilinx, Samsung, NSF, SRC, NIH,
DARPA, the U.S. Government, and the Korean Government.

Biographies

Joon Kyung Kim is a software engineer at Apple. He was a research assistant at the

University of California, San Diego. His research interests include operating systems,

computer networks, and computer architecture. Kim received his MS in computer science

from the Georgia Institute of Technology. Contact him at jkkim@eng.ucsd.edu.

Byung Hoon Ahn is a PhD candidate in computer science at the University of California,

San Diego. His research interests include machine learning, compilers, and computer

architecture. Ahn received his MS in computer science and engineering from the University

of California, San Diego. Contact him at bhahn@eng.ucsd.edu.

Sean Kinzer is a PhD candidate at the University of California, San Diego. His research

interests include compilers and domain-specific architectures. Kinzer received his MS in

computer science and engineering from the University of California, San Diego. Contact

him at skinzer@eng.ucsd.edu.

Soroush Ghodrati is a PhD candidate at the University of California, San Diego. His

research interests include computer architecture and next-generation specialized systems for

AI/ML. Ghodrati received his MS in computer science and engineering from the University

of California, San Diego. Contact him at soghodra@ucsd.edu.

Rohan Mahapatra is a PhD student at UC San Diego. His research interest include

designing systems for datacenters, serverless computing, and GPUs. Mahapatra received

his MS in electrical and computer engineering from the University of Wisconsin-Madison.

Contact him at rohan@ucsd.edu.

Brahmendra Yatham is a senior power architect at Nvidia. His research interests

include machine learning hardware and computer architecture. Yatham received his MS

in computer engineering from the University of California, San Diego. Contact him at

byatham@nvidia.com

Shu-Ting Wang is a PhD student at UC San Diego. His research interests include

designing systems and networking for datacenters, and serverless computing. Wang received

his MS in computer science from the National Tsing Hua University. Contact him at

shutingwang@ucsd.edu.

Kim et al. Page 10

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dohee Kim is a software engineer at Viva Republica (TossBank). Her research interests

include computer architecture and systems optimization. Kim received her MS in computer

science from the Korea Advanced Institute of Science and Technology (KAIST). Contact her

at dohee.kim@toss.im.

Parisa Sarikhani is a PhD student at Emory University. Her research interests include

developing precision neuromodulation therapies using AI, and designing automated closed-

loop neuromodulation frameworks using machine learning. Sarikhani received her MS in

electrical engineering from Shiraz University. Contact her at psarikh@emory.edu.

Babak Mahmoudi is an assistant professor of Biomedical Informatics and Biomedical

Engineering at Emory University. His research is broadly focused on developing intelligent

systems for precision therapies and diagnostics using machine learning and artificial

intelligence. Prior to joining the faculty at Emory, he completed an NIH fellowship in

translation neurology. Mahmoudi received his PhD in biomedical engineering from the

University of Florida. Contact him at b.mahmoudi@emory.edu.

Divya Mahajan is a senior researcher at Microsoft Azure’s Cloud Accelerated Systems

& Technologies team. Her research interests include devising next-generation sustainable

compute platforms targeting end-to-end data pipeline for large scale AI and machine

learning. Mahajan received her PhD in computer science from the Georgia Institute of

Technology. Contact her at divya.mahajan@microsoft.com.

Jongse Park is an assistant professor in the School of Computing at the Korea Advanced

Institute of Science and Technology (KAIST). He is also co-leading the Computer

Architecture and Systems Laboratory (CASYS). His research focuses on building hardware-

software co-designed systems for emerging algorithms and applications. Park received

his PhD in computer science from the Georgia Institute of Technology. Contact him at

jspark@casys.kaist.ac.kr.

Hadi Esmaeilzadeh is the Halicioğlu Chair in Computer Architecture at the University

of California, San Diego where he is an associate professor of Computer Science &

Engineering. He is the founder and CTO of Protopia AI. His research interests include

computer architecture, machine learning, systems, and philosophy and psychology of

conciseness. Esmaeilzadeh received his PhD in computer science and engineering from the

University of Washington. He was inducted to the ISCA Hall of Fame in 2018, and he is

the recipient of IEEE TCCA “Young Architect” Award and the Air Force Young Investigator

Award. Contact him at hadi@eng.ucsd.edu.

References

[1]. “Aws f1,” https://aws.amazon.com/ec2/instance-types/f1/.

[2]. Fowers J, Ovtcharov K, Papamichael M, Massengill T, Liu M, Lo D, Alkalay S, Haselman M,
Adams L, Ghandi M et al., “A configurable cloud-scale dnn processor for real-time ai,” in ISCA,
2018.

[3]. Liniger A, Domahidi A, and Morari M, “Optimization-based autonomous racing of 1: 43 scale rc
cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647, 2015.

Kim et al. Page 11

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://aws.amazon.com/ec2/instance-types/f1/

[4]. Künhe F, Gomes J, and Fetter W, “Mobile robot trajectory tracking using model predictive
control,” in II IEEE latin-american robotics symposium, vol. 51. Citeseer, 2005.

[5]. Sarikhani P, Miocinovic S, and Mahmoudi B, “Towards automated patient-specific optimization of
deep brain stimulation for movement disorders,” in EMBC, 2019.

[6]. Jain AK, Li X, Singhai P, Maskell DL, and Fahmy SA, “Deco: A dsp block based fpga accelerator
overlay with low overhead interconnect,” in FCCM, 2016.

[7]. Mahajan D, Park J, Amaro E, Sharma H, Yazdanbakhsh A, Kim JK, and Esmaeilzadeh H,
“TABLA: A unified template-based framework for accelerating statistical machine learning,” in
HPCA, 2016.

[8]. Sacks J, Mahajan D, Lawson RC, and Esmaeilzadeh H, “Robox: An end-to-end solution to
accelerate autonomous control in robotics,” in ISCA, 2018.

[9]. Nardi L, Bodin B, Zia MZ, Mawer J, Nisbet A, Kelly PHJ, Davison AJ, Luján M, O’Boyle
MFP, Riley G, Topham N, and Furber S, “Introducing SLAMBench, a performance and accuracy
benchmarking methodology for SLAM,” in ICRA, 2015.

[10]. “Intel oneAPI,” https://software.intel.com/content/www/us/en/develop/tools/oneapi.html.

[11]. Friedenthal S, Moore A, and Steiner R, A Practical Guide to SysML: The Systems Modeling
Language, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[12]. Chang S-E, Li Y, Sun M, Shi R, So HK-H, Qian X, Wang1 Y, and Lin X, “Mix and Match: A
Novel FPGA-Centric Deep Neural Network Quantization Framework,” in HPCA, 2021.

Kim et al. Page 12

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

Fig. 1:
Overview of Yin-Yang.

Kim et al. Page 13

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2:
Example Yin-Yang code and its QF-DFG IR.

Kim et al. Page 14

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3:
Experimental results that show the acceleration gains by Yin-Yang, in comparison with

the baselines. We use the CPU-only execution as the baseline for performance and

energy-efficiency results. The baseline for Lines-of-Code results is the case of manual

programming.

Kim et al. Page 15

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 16

TABLE I:

(a) Cross-domain benchmark suite, and (b) domains and engines used in the benchmarks.

(a)

Name Description Domains Used
Capabilities

memory-enhance Deep Brain Stimulation closed-loop control pipeline to optimize stimulation
signals for memory enhancement

DSP FFT

Data Analytics LR

Optimized Control MPC

robot-explorer KinectFusion for 3D map generation with model predictive control for cave
exploration

Robotics KF

Computer Vision MPC

video-sync Calculate correct offset to sync a movie and subtitle file
DSP MPEG-Decode

FFT

stock-market Text sentiment classification on stock market news articles to estimate call option
price

Data Analytics LR

Finance Black-Scholes

leukocyte Detect and tracks rolling leukocytes (white blood cells) in a microscopy of blood
vessels vivo video

Computer Vision GICOV

MGVF

security-camera Real-time object detection system which decodes MPEG encoded video

Deep Learning Tiny-Yolo-v2

DSP MPEG-Decode

(b)

Domain Capabilities Engine* Platform

DSP FFT, MPEG-Decode

FFTW CPU

ffmpeg CPU

DeCO FPGA

LogiCore FPGA

Data Analytics LR

MLPack CPU

InAccel FPGA

Tabla FPGA

Robotics MPC
ACADO CPU

RoboX FPGA

Computer Vision GICOV, MGVF, KF

OpenCV CPU

SLAMBench FPGA

Iron FPGA

Finance Black-Scholes QuantLib CPU

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 17

HyperStreams FPGA

Deep Learning Tiny-Yolo-v2

TensorFlow CPU

TVM CPU

DnnWeaver FPGA

*
We omit the references due to the number of reference limit for submission.

IEEE Micro. Author manuscript; available in PMC 2023 September 01.

	Abstract
	Introduction
	Yin Abstraction
	Abstract Domain Description
	Example domain description for digital signal processing.

	Component & Flow Programming Model
	Deep brain stimulation.
	Example CNF code for deep brain stimulation.

	Yang Abstraction
	Abstract Engine Specification
	Example engine specification describing an digital signal processing accelerator.

	Hints for Engine Selection

	Accelerator-Level Virtual Machine
	Queued-Fractalized Dataflow Graph QF-DFG
	Engine Selector

	Algorithm 1
	Engine Compiler

	Evaluation
	Experimental Setup
	Benchmarks.
	Compute platforms.
	Runtime measurements.
	Energy measurements.
	Programming effort.

	Experimental Results
	Performance Improvement
	Performance-per-Joule Improvement
	Programmability

	Related Work
	Abstractions for heterogenous platforms.
	Domain-specific abstractions.
	FPGA acceleration.

	Conclusion
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	TABLE I:

