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Abstract

Purpose of Review—To provide an up-to-date overview of recent developments in diagnostic 

methods and therapeutic approaches for chronic wound biofilms and pathogenic microbiota.

Recent Findings—Biofilm infections are one of the major contributors to impaired wound 

healing in chronic wounds, including diabetic foot ulcers, venous leg ulcers, pressure ulcers, and 

nonhealing surgical wounds. As an organized microenvironment commonly including multiple 

microbial species, biofilms develop and persist through methods that allow evasion from host 

immune response and antimicrobial treatments. Suppression and reduction of biofilm infection 

have been demonstrated to improve wound healing outcomes. However, chronic wound biofilms 

are a challenge to treat due to limited methods for accurate, accessible clinical identification and 

the biofilm’s protective properties against therapeutic agents. Here we review recent approaches 

towards visual markers for less invasive, enhanced biofilm detection in the clinical setting. We 

outline progress in wound care treatments including investigation of their antibiofilm effects, 

such as with hydrosurgical and ultrasound debridement, negative pressure wound therapy with 

instillation, antimicrobial peptides, nanoparticles and nanocarriers, electroceutical dressings, and 

phage therapy.

Summary—Current evidence for biofilm-targeted treatments has been primarily conducted in 

preclinical studies, with limited clinical investigation for many therapies. Improved identification, 

monitoring, and treatment of biofilms require expansion of point-of-care visualization methods 

and increased evaluation of antibiofilm therapies in robust clinical trials.
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Introduction

Biofilms consist of bacteria and fungi organized within a protective layer of 

extracellular polymeric substance (EPS) matrix comprised of deoxyribonucleic acid (DNA), 

immunoglobulins, and proteins from both bacteria and host [1]. Recent consensus further 

defines biofilms as an immunologically protected, genetically diverse microbial community 

with up to 1,000 times more resistance to antibiotics compared to planktonic bacteria, 

serving as a source of persistent and recurrent infection [2]. Biofilm infection elicits an 

inappropriate host inflammatory response, significantly damaging local tissue and skin 

barrier function. Particularly in chronic wounds, polymicrobial biofilm composition may 

be influenced by oxidative stress levels in the tissue microenvironment and even by patient 

genetic variation [3, 4]. Biofilm interaction with the host immune system can lead to 

persistence of cutaneous inflammatory disease pathogenesis, including in atopic dermatitis 

[5], acne [6], and hidradenitis suppurativa [7]. Biofilm-driven pathogenesis has been most 

frequently implicated in chronic wounds including diabetic foot ulcers (DFU), venous leg 

ulcers (VLU), decubitus or pressure ulcers (PU) and nonhealing surgical wounds [1, 8]. 

Thus, discussion of diagnostic tools and treatment options herein will focus on wound-based 

biofilms.

Chronic Wound Microbiome and Host Response

Traditional culture techniques have been found to underestimate the bacterial load 

and composition of the wound microbiome, especially of anaerobic species. Therefore, 

microbiome characterization has shifted towards culture-independent techniques such as 16S 

rRNA sequencing and metagenomic approach [9, 10]. Metagenomic shotgun sequencing 

of the wound microbiota provides an advantage over 16S sequencing in strain-specific 

identification, including the ability to discern bacterial isolates with genes providing 

antibiotic resistance or enterotoxins that correlate to wound healing outcomes [9, 11]. In 

general, non-healing wounds have lower bacterial diversity than healthy skin [12], with 

microbial stability correlating to poor clinical outcomes [13••]. Microbiota composition has 

also been found to differ between ulcer phenotypes based on wound depth, chronicity, 

and outcomes of healing [10, 14]. In addition to bacteria, 80% of chronic wounds 

contain fungi, and fungal-bacterial biofilms are associated with poor clinical outcomes 

[15]. Limited evidence in DFU patients suggests antibiotic treatment does not change 

overall microbial diversity or abundance [13••]. Antibiotics may even induce a shift in the 

microbiota to promote virulence factors of pathogenic bacteria such as methicillin-resistant 

Staphylococcus aureus (MRSA) and further delay wound re-epithelialization. These data 

suggest the need for careful consideration of antibiotic administration and its potential 

impact on the wound microbiota.

Bacterial biofilms have been shown to trigger an inflammatory response distinct from 

that of planktonic bacteria, sustaining chronic wound pathogenesis and bacterial infection 

(Fig. 1) [16••, 17, 18]. Dysfunction of DFU neutrophils may further contribute to inability 

of host tissue to respond and clear wound biofilm [19]. Stimulated phagocytic evasion, 

reactive oxygen species (ROS) production, matrix metalloprotease induction, and resulting 

collagen degradation damage host tissue and contribute to impaired healing [18, 20, 21]. 
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In addition, biofilm infection downregulates tight junction proteins and compromises the 

skin barrier to cause increased transepidermal water loss [22]. Most recently, S. aureus was 

identified to have an intracellular niche in DFU epidermal keratinocytes via suppression 

of innate immune molecule Perforin-2 [23–25]. While it remains to be determined if 

the intracellular S. aureus contributes to biofilm formation, it has been hypothesized to 

contribute to persistence of DFU infection. Further studies are needed on the complex 

interactions in biofilms and subsequent impact on the host chronic wound environment to 

facilitate therapeutic developments targeting biofilm while also stimulating healing.

Diagnostics of Chronic Wound Biofilms

Wound biofilms are a therapeutic challenge in part due to limited accurate clinical 

identification. While only ~ 6% of acute wounds contain a biofilm, prevalence of biofilm 

in chronic wounds was found to range from 78 to 100% in patient-focused studies [26, 27]. 

Electron microscopy is the gold standard for biofilm identification; however, it is a labor- 

and time-intensive process that is not conducive to clinical point-of-care. Previous clinical 

indicators for wound biofilms such as presence of slough, exudate, and poor granulation 

tissue formation have demonstrated low correlation with diagnostic accuracy [28].

Advancement of point-of-care diagnostic tools include the most recent developments in 

visual markers for enhanced biofilm detection in the clinic (Table 1). One of the methods 

is application of probes targeting bacteria or biofilm components. For example, an enzyme-

based hydrogel involving biomarker alkaline phosphatase changes colors from yellow to 

purple to indicate detection of S. aureus in porcine wound models [29]. Another biofilm 

detection method is wound blotting and staining. The dyes alcian blue and ruthenium red 

stain EPS polysaccharides blotted from the biofilm, with alcian blue generally preferred due 

to quicker staining under a few minutes and increased sensitivity compared to ruthenium 

red [30]. Beyond hydrogels and dyes, a handheld fluorescence imaging device, MolecuLight 

i:X, uses violet light to stimulate and detect bacteria in wounds. S. aureus and Escherichia 
coli emit red fluorescence due to their porphyrin production, while Pseudomonas aeruginosa 
fluoresces cyan due to production of the fluorescent siderophore pyoverdine [31, 32]. 

Clinical studies have found MolecuLight i:X to increase bacterial detection fourfold, with a 

positive predictive value of up to 92.9% for certain species, significantly improving patient 

care [32, 33••]. Blotting and MolecuLight i:X methods also help localize the distribution 

of wound infection [30, 34]. With the rapid development of bacterial biofilm identification 

technologies, visual point-of-care approaches are likely the future of the wound biofilm 

identification in the clinic.

Pre-clinical Biofilm Wound Infection Models

Murine Wound Biofilm Models

Murine models are the most common animal models used in scientific research due to 

low cost of acquisition and maintenance [35]. One benefit is their rapid rate of wound 

healing, allowing shorter experimental timelines. However, wound healing in murine 

skin primarily uses contractile forces to close wounds, while human skin primarily 

utilizes re-epithelialization [35]. To establish biofilm in murine models, wounds are often 
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directly inoculated or infected with pre-formed biofilm [36]. One model utilizes luciferase-

expressing bacteria, wherein luminescence released by the breakdown of biofilm EPS 

and cell lysis signals effects of antimicrobial and biofilm dispersing agents [37]. Biofilm 

can alternatively be visualized through fluorescent staining or electron microscopy [38]. 

Diabetic db/db−/− murine models also demonstrate ability to develop wound biofilms 

under high levels of oxidative stress, using topical antioxidant enzyme inhibitors such 

as mercaptosuccinic acid and 3-amino-1,2,4-triazole to promote polymicrobial biofilms 

resembling those of human wounds [3, 39]. While this biofilm model has not been used for 

pre-clinical assessment of treatments, it has potential for use in future research.

Rabbit Ear Wound Biofilm Model

The rabbit ear is another popular modality to study chronic wound infection as it replicates 

the ischemia that plays a significant role in developing chronic wounds. An ischemic wound 

can be created by suturing the arterial blood supply to the rabbit ear and subsequently 

creating a full-thickness ear wound. The pathogenesis and treatment of infection can then 

be studied in an ischemic context more closely resembling that of a chronic wound [40]. 

Like mouse models, rabbits are inexpensive to maintain due to their smaller size and their 

wounds primarily heal through re-epithelialization [35]. However, anatomical differences 

still exist from human skin. The dermis is firmly attached to underlying ear cartilage, with 

an avascular wound base that prevents exact replication of human wound healing. Methods 

to establish biofilm include monospecies bacterial inoculation into the wound, with impaired 

wound healing and increased inflammatory cytokines, while topical antibiotics applied 4 

days post-wounding to eliminate planktonic bacteria provide improved wound biofilm model 

in this host [41, 42].

Porcine Wound Biofilm Model

Of all the animal models, the porcine wound healing model is the closest to recapitulating 

human wound healing. Porcine skin is the most comparable to human skin, with similarities 

in epidermal thickness, dermal-epidermal thickness ratios, collagen peptides, patterns of 

hair follicles and blood vessels, and histological location of epidermal keratins 10 and 16, 

dermal collagen IV, vimentin, and fibronectin [43, 44]. Wound healing also primarily occurs 

through epithelialization [45]. Drawbacks to experimental use include high costs due to their 

larger size. However, the large size also allows testing for multiple replicates and therapies 

within the same experimental animal. In addition to testing multiple novel therapies for 

biofilm-infected wounds such as antimicrobial nanofiber dressings, electroceutical dressings, 

and new antibiotics [44], the porcine wound infection model has compared efficacy between 

different debridement techniques to highlight promising therapeutics that require further 

investigation in the clinical setting [46].

Novel Therapeutics Against Wound Biofilms

The major challenge in biofilm treatment is that microorganisms are well protected from 

the host immune response and antimicrobials by several mechanisms including the quorum 

sensing system, which facilitates bacterial communication to regulate biofilm formation, and 

the EPS matrix, which impairs treatment penetration and bacterial killing [2]. Successful 
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suppression of biofilm formation significantly improves treatment efficacy and wound 

healing outcomes. Below we outline current and developing methods against biofilm 

including physical disruption, targeting EPS or quorum sensing systems, and nanoparticles 

for enhanced drug delivery or direct bactericidal effects (Table 2).

Debridement

One of the goals in wound debridement is to reduce bioburden, including necrotic tissue 

and bacteria, by disrupting the EPS matrix and converting biofilm to planktonic bacteria 

that is temporarily susceptible to antimicrobial therapy. There are multiple debridement 

approaches including mechanical, biological (maggot/larval therapy), enzymatic, and 

ultrasonic methods.

The gold standard to treatment is surgical or conservative sharp wound debridement [2]. 

However, sharp debridement only temporarily reduces bacterial burden and studies suggest 

limited removal of microorganisms [22, 47, 48]. Therefore, serial debridement of matured 

biofilms and use of adjunctive antimicrobial therapy is necessary [2, 49]. Remaining 

bacteria in deeper layers of the debrided tissue may promote persistent, clinically undetected 

infection [22]. Hydrosurgical debridement, involving a high-pressure waterjet using up to 

15,000 psi, may demonstrate more efficient and precise reduction of bacterial biofilms 

compared to scalpel use [50]; however, clinical comparison studies have been inconclusive 

[51]. Additionally, studies have shown significant increased levels of air contamination with 

bacteria after treatment [50, 52].

Ultrasound debridement involves mechanical low-frequency ultrasonic waves (20–40 kHz) 

to remove devitalized and necrotic soft tissue while preserving viable tissue [53]. Clinical 

studies suggest non-contact ultrasonic debridement has limited effect on bacterial burden 

in wounds compared to contact ultrasound [54]; however, it is hypothesized that effect 

on wound biofilms is underestimated due to the use of culture-based techniques for 

identification [55]. Other debridement strategies, including maggot/larvae and enzymatic 

debridement targeting EPS matrix, have more limited clinical evidence and usage [2]. 

Lack of visualization of biofilm aggregates is a limitation to complete removal of biofilm 

during wound debridement, and visual markers discussed above should be utilized to ensure 

complete removal.

Negative Pressure Wound Therapy

Negative pressure wound therapy (NPWT), also known as vacuum assisted closure (VAC) 

therapy, utilizes a pump to generate sub-atmospheric pressure in a local area. The negative 

pressure removes excess exudate, improves blood flow, and reduces bacterial colonization 

[56]. NPWT has been shown to modulate adhesion factors and quorum sensing systems of 

S. aureus–and P. aeruginosa–infected murine wounds, causing decrease in biofilm matrix 

and more scattered colonies [57, 58]. Some clinical reports support bacterial clearance in 

diabetic wounds [56], but a systematic review of patient wound studies found no change 

in bacterial burden based on limited evidence, requiring more clinical studies of NPWT’s 

antimicrobial and anti-biofilm functions [59].
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To improve antimicrobial effects, NPWT has been combined with a topical antimicrobial 

solution delivered to the wound in a regulated, cyclical manner between phases of 

negative pressure, known as negative pressure wound therapy with instillation (NPWTi). 

Clinical reports support enhanced effect against bacterial burden compared to just NPWT, 

particularly in complex wounds such as those with extensive biofilm [58, 60••]. A 

clinical trial measured decreased nonplanktonic bacteria in chronic ulcers under NPWTi 

therapy with 0.125% sodium hypochlo-rite solution [61] and other studies demonstrated 

efficacy with 1% acetic acid, polyhexamethylene biguanide solution, normal saline, and 

a commercial biofilm-disrupting agent [62–65]. NPWT has been combined with other 

antimicrobial modalities as well, including silver, with reduced bacterial load in lower 

extremity wounds of high-velocity trauma patients [66]. Some limitations to NPWT include 

limited patient mobility due to the patient being attached to the NPWT device, and irritation 

to peri-wound skin from device adhesion.

Antimicrobial Peptides

Antimicrobial peptides (AMPs) are produced constitutively by many cell types, including 

resident skin cells, and induced during inflammation or infection, including beta-defensins, 

cathelicidins (LL-37), and perforin-2 [67]. As widely conserved molecules, AMPs have 

a broad spectrum of antimicrobial activity and can modulate the host immune system 

to increase antigen presenting cells, phagocytosis, and suppress inflammatory signaling 

[67]. They also demonstrate ability to target dormant and intracellular populations, with 

diminished resistance levels compared to those of antibiotics [24, 68]. However, AMP 

resistance can eventually develop [69]. Selective antimicrobial activity is also possible 

through synthetic AMPs containing a binding peptide targeting specific species, which can 

promote a shift in multispecies biofilm communities to a “healthy” microbiome [70].

Natural and synthetic AMPs specifically act against biofilm by disrupting quorum sensing, 

inhibiting bacterial adhesion, and promoting biofilm dispersal. One of the first, and most 

studied, AMPs for anti-biofilm capabilities is LL-37 [71]. LL-37-derived topical gels have 

demonstrated efficacy against MRSA infection in ex vivo human skin wound models 

[72]. There are numerous AMPs continuing to be discovered or designed, with databases 

such as APD (http://aps.unmc.edu/AP/) and DRAMP (http://dramp.cpu-bioinfor.org/) each 

containing over 2000 entries. Most investigation has been limited to in vitro studies, with a 

few in vivo animal studies and significantly fewer specifically studying biofilm inhibition.

In the clinical setting, established treatments include cathelicidin AMPs such as colistin 

(polymyxin E), polymyxin B, and chlorhexidine [73]. Phase III clinical trials of infected 

DFU found topical AMP pexiganan acetate to have equivalent results as oral antibiotic 

ofloxacin in microbial elimination rates and wound healing [74]. Currently intravenous 

Brilacidin, a host defense peptide mimetic, is being tested in a phase II trial for acute 

bacterial skin infections (NCT02052388). However, overall, translation of AMPs from 

preclinical to clinical evaluation has been significantly limited. This may be due to 

interference of the highly proteolytic host microenvironment and reduced peptide stability in 

vivo, and AMP cytotoxicity at higher concentrations [75]. Bacteria in biofilms can also enact 

enzymes, signaling, or resistance genes that allow evasion or inactivation of AMP-mediated 
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bactericidal effects [76, 77]. Peptide stability and antibacterial activity are affected by 

vehicle of delivery as well, and recent advances in nanostructured antimicrobial peptides 

(Ns-AMPs) have attempted to improve on such deficiencies [78].

Nanotechnology

One of the largest challenges in biofilm treatment is impaired drug diffusion through 

the sticky biofilm matrix and dense cellular organization to effectively act on the 

biofilm structure or pathogenic microbes. Advances in nanotechnology have developed 

nanoparticles and systems to facilitate diffusion and precision of antibacterial therapies, 

using particle sizes smaller than biofilm pores and pH sensitivity enabling selective 

activation in the acidic biofilm microenvironment [79]. These nano-therapies act against 

biofilm through three main mechanisms: (1) nanoparticles that directly impair bacteria 

function and biofilm formation, (2) nanocarriers that deliver antimicrobials into biofilm, and 

(3) physical damage to biofilms.

Nanoparticles made of metal or metal oxide disrupt bacteria function and biofilm formation, 

including silver, copper, gold, titanium, and zinc [80]. In particular, silver nanoparticles have 

demonstrated inhibition of quorum sensing virulence factors and biofilm formation, along 

with antibacterial activity with wound healing in vitro and in vivo [81]. However, there is 

concern for emerging silver resistance among clinical isolates [82]. A comparative study 

of metal oxide nanoparticles (ZnO, CuO, and Fe2O3) found zinc oxide to exhibit the most 

antibacterial effect against multiple bacteria species, and treatment significantly reduced 

bacterial growth in murine models [83]. However, clinical translation of metal and metal 

oxide nanoparticles may be limited by cytotoxic effects to host cells such as keratinocytes 

and fibroblasts [84], and more investigation with in vivo models are needed to address 

potential nanoparticle toxicity.

The second use of nanoparticles is providing controlled and site-specific delivery of 

therapeutic agents. Established vehicles such as liposomes and polymeric nanoparticles are 

reviewed in depth by Forier et al. [85]. Another novel vehicle is vapor nanobubbles, which 

form around nanoparticles and can locally disturb biofilm integrity to improve antibiotics 

diffusion [86]. Nanoparticles, lipid-based nano-structures, and nanofiber dressings have 

demonstrated effective delivery of antibiotics, AMPs, and nitric oxide against biofilms in 

preclinical models with improved agent stability and action in vivo, although there have 

been few translated clinical studies thus far [85]. Delivery of photosensitizers into the 

biofilm for photodynamic therapy (PDT) has effectively impaired P. aeruginosa, MRSA, and 

S. epidermidis biofilms in vitro [87, 88]. Clinical studies for patients with infected chronic 

leg ulcers found that PDT significantly decreased bacteria levels, in correlation with wound 

healing [89••]. However, PDT may also hold cytotoxic effects against human fibroblasts 

[88].

Biofilms can also be physically disrupted through thermal or enzymatic damage. Irreversible 

thermal damage is generated by gold or magnetic nanoparticles (γ-Fe2O3 maghemite and 

Fe3O4 magnetite), which are activated by near-infrared light or alternate magnetic field 

[90]. These gold or magnetic nanoparticles also can be conjugated with antibiotics, further 
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deepening antibiotic penetration into the biofilm [91]. Enzyme-functionalized nanoparticles 

can degrade biofilm EPS matrix, demonstrated in vitro against S. aureus biofilms [92].

Combining multiple antimicrobial and antibiofilm molecules into nano-based therapies 

allows lower doses of adjuvant drugs due to synergistic effects. However, limitations 

include costly development and lack of clinical use despite the increasing number 

of new formulations under laboratorial investigation. Further advances in antibiofilm 

nanotechnology require more focus on evaluating efficacy and biocompatibility of 

nanoparticles in vivo and in clinical studies, particularly with understanding potential 

toxicity and metabolism of the nanoparticles in patients.

Novel Dressings

Dressings are a centerpiece of wound care, promoting an environment favorable to healing 

by maintaining moisture, thermally insulating, allowing gaseous exchange, and, for some 

dressing materials, controlling microbial growth [93]. Antimicrobial-impregnated dressings, 

including alginates and silver, are traditionally useful against superficially infected or 

high-risk wounds [93]. However, bacterial resistance to silver treatment may represent a 

challenge [82]. Some newer dressing types with specifically antibiofilm properties include 

honey-based dressing and electroceutical dressings. Manuka honey–based wound dressings 

are currently U.S. Food and Drug Administration (FDA) cleared for management of chronic 

wounds and burns and are commercially available [94]. Its bactericidal activity relates to 

high methylglyoxal content, but is also likely influenced by other components such as 

low pH, hydrogen peroxide, and phenolic compounds [95]. Biofilm viability is reduced 

by inhibiting bacterial adhesion to major extracellular matrix components such elastin, 

fibronectin, and lamin [96], and synergistic antibiofilm effect has been demonstrated with 

adjuvant antibiotics in vitro [97]. Chronic wound infections also are effectively treated with 

manuka honey when introduced on scaffolds such as hydrogels and microneedles [98, 99]. 

However, the honey’s effectiveness varies between bacterial species [95]. A meta-analysis 

of clinical studies using medicinal honey dressing for DFU found accelerated bacterial 

clearance rate [100].

The skin naturally contains an electrical gradient, and modulating the host and bacterial 

electrical forces has become a novel method against biofilm. Presence of an endogenous 

electric field influences polarization and migration of host cells such as keratinocytes, 

fibroblasts, and leukocytes [101, 102]. Furthermore, electric signaling plays an important 

role in bacterial growth, function, and multi-species biofilm formation [103, 104]. Wireless 

electroceutical dressing (WED), FDA-cleared and available commercially (Procellera®), 

consists of a matrix embedded with silver and zinc that generates an electric field across 

the dressing through redox chemical reactions [105]. WED has demonstrated interference 

of the quorum sensing system, bacterial adherence, and EPS production, inhibiting 

biofilm-forming bacteria in vitro and disrupting biofilm integrity and biofilm-induced 

inflammation in vivo [106]. Electronic scaffolds that generate hypochlorous acid also inhibit 

biofilm formation with minimal damage to surrounding host tissue. Initial clinical studies 

find electroceutical dressing well tolerated with minimal adverse side effects [106], but 

investigations have been mostly limited to infected acute wounds [107] (NCT01938066, 
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NCT04079998, NCT00816101) with one clinical trial in progress for biofilm infection 

in chronic wounds (NCT04794621). In targeting electro-interactions, WED anti-biofilm 

activity is unlikely to be attenuated by drug resistance from the biofilm-containing bacteria.

Additional topical therapies have emerged with biofilm disruption technology targeting the 

EPS matrix. Surfactant molecules can disrupt non-covalent forces of microbial aggregates 

and mature biofilms, playing a role in biofilm detachment and dispersion. A micelle 

matrix gel (marketed as Plurogel TM, Medline Inc, Northfield, IL) utilizes concentrated 

surfactant (Poloxamer 188) to impede biofilm development, with potential quorum-sensing 

interference (reviewed in [108]). Likewise, the proprietary technology of the Xbio product 

line (marketed as BlastX™, Next Science Inc, Jacksonville, FL), which includes an 

antimicrobial gel, disrupts metallic bonds and dissolves polymers of the EPS matrix, then 

uses the product’s high osmolarity and surfactant molecule to promote bacterial cell lysis 

[108]. Some potential limitations include interference of gel ingredients with use of other 

antibacterial technologies such as silver. Although direct assessment of biofilm or bacterial 

aggregates in studies has been limited, a case series of patients with non-healing DFUs 

demonstrated the ability of micelle matrix gel to reduce microbial load and shift the 

microbial community composition, and Xbio™ based gel has enhanced healing in multiple 

randomized control studies of patients with chronic wounds [109–111].

Phage Therapy

Phage therapy uses a virus that can degrade the biofilm by inducing protease synthesis 

and targeted bacterial cell lysis [112]. Preclinical studies demonstrate efficacy in destroying 

biofilms and lysing bacteria of specific strains, sometimes using a cocktail of different 

phages to act on a broad range of bacterial isolates, while sparing the normal skin microbiota 

and maintaining stability on the human skin [113, 114]. Antibiofilm effects of phage 

therapy can also be enhanced with combination of other therapeutic treatments such as 

honey and surgical debridement [112, 115]. Despite being a rather recent development, 

the bacteriophage approach has several clinical studies supporting efficacy against infected 

chronic wounds. In one randomized clinical trial, topical application of a bacteriophage 

cocktail (PP1131) reduced bacterial burden in burn wounds infected by P. aeruginosa 
[116••]. There are also clinical reports of treating refractory-DFU with commercial anti-

staphylococcal bacteriophage [117], and a prospective study of patients with chronic non-

healing wounds treated with custom bacteriophages [118]. Topical application of phages has 

been primarily used to avoid side effects of systematic use. Studies suggest phages may 

impact the host immune system, thereby promoting bacterial infection in certain situations 

[119]. Other risks include development of bacterial resistance or horizontal gene transfer, 

resulting in the phage promoting virulent bacterial genes or transferring the genes to other 

pathogenic organisms. Phages also have narrow range of efficacy due to their specificity 

towards individual bacterial strains, although this limitation is combated through cocktail 

mixtures acting against multiple bacteria strains.

Chen et al. Page 9

Curr Dermatol Rep. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT04079998
https://clinicaltrials.gov/ct2/show/NCT00816101
https://clinicaltrials.gov/ct2/show/NCT04794621


Conclusion

Interaction between microbial infection and host response shapes the formation and 

maintenance of a pathogenic biofilm. New therapeutic strategies show promise in preclinical 

studies against biofilm infection. However, preclinical models have limited involvement 

of host-mediated responses to biofilm infection, and current animal models are primarily 

acute infected wounds that are not fully analogous to chronic wounds [120], limiting 

evaluation of ultimate therapeutic efficacy and risks compared to human studies. For many 

therapeutics already available in the clinical setting, randomized clinical trials have been 

limited. Biofilm therapeutics with some clinical evidence include debridement, NPWTi, 

photodynamic therapy, silver-based dressings, electroceuticals, and phage therapy. Direct 

investigation of biofilm changes is rare, possibly restricted by a currently limited toolbox 

for accurate biofilm identification and monitoring methods in clinic. Successful translation 

of antibiofilm therapies from bench to bedside rests on developing standard experimental 

models and evaluation methods that will ultimately allow us to effectively test biofilm-

targeted therapeutics and treat patients.
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Fig. 1. 
Molecular pathology of chronic wound biofilms. Chronic wounds exhibit a 

hyperproliferative and non-migratory epidermis, unresolved inflammation, and fibrosis. 

Biofilm presence, which can incorporate a diverse community of bacteria and fungi, 

promotes impaired keratinocyte migration, dysregulated inflammatory response, and 

inflammatory cell dysfunction. Additionally, biofilm damages host tissue through increased 

neutrophilic reactive oxygen species production, imbalance of metalloproteases and 

inhibitors, and breakdown of keratinocyte tight junctions. These processes further perpetuate 

chronic wound pathogenesis. (DAMP, damage-associated molecular patterns; MMP, 

matrix metalloprotease; ROS, reactive oxygen species; TIMP, tissue inhibitor of matrix 

metalloprotease; TEWL, transepidermal water loss)
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