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Summary

Background—Accurate prediction of seizures can help to direct resource-intense continuous 

electroencephalogram (CEEG) monitoring to neonates at high risk of seizures. We aimed to use 

data from standardised EEG reports to generate seizure prediction models for vulnerable neonates.
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Methods—In this retrospective cohort study, we included neonates who underwent CEEG 

during the first 30 days of life at the Children’s Hospital of Philadelphia (Philadelphia, PA, 

USA). The hypoxic ischaemic encephalopathy subgroup included only patients with CEEG data 

during the first 5 days of life, International Classification of Diseases, revision 10, codes for 

hypoxic ischaemic encephalopathy, and documented therapeutic hypothermia. In January, 2018, 

we implemented a novel CEEG reporting system within the electronic medical record (EMR) 

using common data elements that incorporated standardised terminology. All neonatal CEEG data 

from Jan 10, 2018, to Feb 15, 2022, were extracted from the EMR using age at the time of CEEG. 

We developed logistic regression, decision tree, and random forest models of neonatal seizure 

prediction using EEG features on day 1 to predict seizures on future days.

Findings—We evaluated 1117 neonates, including 150 neonates with hypoxic ischaemic 

encephalopathy, with CEEG data reported using standardised templates between Jan 10, 2018, 

and Feb 15, 2022. Implementation of a consistent EEG reporting system that documents discrete 

and standardised EEG variables resulted in more than 95% reporting of key EEG features. 

Several EEG features were highly correlated, and patients could be clustered on the basis of 

specific features. However, no simple combination of features adequately predicted seizure risk. 

We therefore applied computational models to complement clinical identification of neonates at 

high risk of seizures. Random forest models incorporating background features performed with 

classification accuracies of up to 90% (95% CI 83–94) for all neonates and 97% (88–99) for 

neonates with hypoxic ischaemic encephalopathy; recall (sensitivity) of up to 97% (91–100) for all 

neonates and 100% (100–100) for neonates with hypoxic ischaemic encephalopathy; and precision 

(positive predictive value) of up to 92% (84–96) in the overall cohort and 97% (80–99) in neonates 

with hypoxic ischaemic encephalopathy.

Interpretation—Using data extracted from the standardised EEG report on the first day of 

CEEG, we predict the presence or absence of neonatal seizures on subsequent days with 

classification performances of more than 90%. This information, incorporated into routine care, 

could guide decisions about the necessity of continuing EEG monitoring beyond the first day, 

thereby improving the allocation of limited CEEG resources. Additionally, this analysis shows 

the benefits of standardised clinical data collection, which can drive learning health system 

approaches to personalised CEEG use.

Introduction

Neonatal seizures are common and contribute to morbidity and mortality.1 Neonates with 

hypoxic ischaemic encephalopathy have a high incidence of seizures (about 30%),2–4 which 

are identified mostly by electroencephalogram (EEG) only and would not be identified 

by clinical observation alone. Additionally, among neonates with hypoxic ischaemic 

encephalopathy, seizures have been associated with an increased risk of subsequent 

neurobehavioural problems and epilepsy.2,4–7 Because of the high risk of seizures in this 

population, guidelines recommend that neonates with hypoxic ischaemic encephalopathy 

undergo continuous EEG (CEEG) monitoring during the periods of therapeutic hypothermia 

and return to normothermia, which often last 4–5 days.8,9 However, this practice is resource 

intensive and not feasible for all neonates who might benefit10 because many neonates 

receive care in neonatal intensive care units without CEEG capability and approaches to 
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remote CEEG are not widely available.11 Furthermore, CEEG is not entirely benign, as 

long-term electrode placement can cause skin breakdown12 and the necessary wires and 

head-wrap can interfere with parent–infant physical interaction and feeding.13 Therefore, it 

would be helpful to predict each individual’s risk of seizure to optimise resource allocation 

and minimise unnecessary medical procedures by targeting CEEG to neonates at the highest 

risk of seizures.

Previous studies have shown that the prediction of neonatal seizures is complex, and 

clinical and EEG data generally do not predict seizures well. Clinical features alone are 

not predictive of seizures in neonates.3,14 EEG studies have found that although normal 

backgrounds correctly predict the absence of seizures,15 an abnormal background does not 

accurately predict the presence of seizures.3,15–17 Seizure prediction models based on EEG 

features determined by manual review of EEG segments,18–21 review of EEG reports,16,17 

or direct computational analysis of EEG tracings22 have been limited by small sample sizes 

or the short windows of review,23 and only a few have been tested in neonates.16,17,19–21 

Due to the need for manual chart or EEG review, the existing models cannot easily be 

incorporated into routine clinical care.

We implemented a standardised reporting template for all clinical EEG reports 

derived from terminology published by the American Clinical Neurophysiology Society 

(ACNS),24 and have previously shown that this reporting system is acceptable to 

electroencephalographers.25 In this study, we aimed to determine whether this standardised 

template leads to complete reporting of the recommended EEG features, and we aimed 

to develop neonatal seizure prediction models based on data extracted from these reports 

to optimise CEEG use among neonates, including the subset with hypoxic ischaemic 

encephalopathy.

Methods

Study design and participants

This retrospective cohort study was done at the Children’s Hospital of Philadelphia 

(Philadelphia, PA, USA). All neonatal CEEG data from Jan 10, 2018, to Feb 15, 2022, 

were extracted from the electronic medical record (EMR) using age at the time of CEEG 

and the EEG study common data elements. Neonates were included in this cohort if they 

underwent CEEG during the first 30 days of life. The hypoxic ischaemic encephalopathy 

subgroup included only patients with CEEG data during the first 5 days of life, International 

Classification of Diseases, revision 10, codes for hypoxic ischaemic encephalopathy, 

and documented therapeutic hypothermia. The patient list was cross-validated against an 

independently curated list kept by the Critical Care EEG Service at the study site, with 

manual chart review of selected patients to validate the EMR algorithm (appendix p 1). 

Other indications for neonatal CEEG included cardiac surgery for con genital heart disease, 

congenital diaphragmatic hernia repair, and clinical concern for seizure.

This study met exemption criteria per the Institutional Review Board at the Children’s 

Hospital of Philadelphia (Philadelphia, PA, USA), and, as such, patient consent was not 

required.
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Procedures

Patients were managed by neonatology and neurocritical care consultation services. 

CEEG was performed following an institutional CEEG pathway consistent with ACNS 

recommendations8 and generally lasted 2 days for most neonates, 4–5 days for neonates 

with hypoxic ischaemic encephalopathy, and at least 24 h after the last seizure for neonates 

with seizures. Prophylactic anti-seizure medications were not administered, but some 

neonates with clinically evident seizures before CEEG initiation were receiving antiseizure 

medications. All neonates with electrographic seizures were treated with appropriate 

antiseizure medications.

CEEGs were interpreted by paediatric electroencephalographers who were knowledgeable 

about the ACNS standardised terminology.24 In January, 2018, the Children’s Hospital of 

Philadelphia implemented a novel EEG reporting system based on common data elements 

in the EMR that incorporated this terminology. The neonatal template included embedded 

descriptions of continuity, variability, reactivity, voltage, graphoelements, epileptiform 

transients, seizures, and an overall impression (appendix p 1). According to ACNS 

guidelines, electrographic seizures were defined as repetitive, evolving patterns with a 

minimum voltage of 2 mV peak-to-peak and a duration of at least 10 s.24 Details regarding 

the reporting system have been published previously.25 The electroencephalographers 

completed a standardised form that both stored the data as common data elements in the 

EMR and generated a clinical report. Thus, the information stored in the common data 

elements is the exact data used for clinical decision making.

Data processing

The diagnostic codes, demographic data, and EEG template common data elements 

extracted from the EMR were exported using Clarity, an SQL database, and analysed in R 

(version 4.1.2) using RStudio (version 2021.09.2+382). From these raw data, key predictive 

features from the first day of CEEG monitoring were selected and mapped onto binary 

outcomes representing “normal” and “abnormal” for ease of modelling. For example, the 

continuity feature included the levels “low voltage suppressed”, “excessive discontinuity”, 

and “burst suppression”, which were mapped to “abnormal”, and “normal discontinuity” and 

“normal continuity”, which were in turn mapped to “normal”. The outcome variable was 

defined as seizures on subsequent CEEG days, occurring on day 2 or later of the CEEG 

session.

Correlation and clustering analyses

Cross-correlation plots were created for all EEG features using native R functions and the 

corrplot package. Pearson cross-correlation values and 95% CIs were calculated. Features 

and patients were clustered using the ComplexHeatmap package,26 separating patients with 

and without any seizures and using complete linkage clustering and a Euclidean distance 

measure.

Model building

Various frameworks can be used for prediction models, and we sought to identify the 

benefits and weaknesses of various methods to optimise the prediction of future seizures. 
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Our primary aim was to build a seizure prediction model to determine which neonates, 

and particularly which neonates with hypoxic ischaemic encephalopathy, would ultimately 

have seizures, based on EEG features during the first 24 h of CEEG. We compared logistic 

regression models, decision trees, and random forest algorithms, representing a shift from 

standard epidemiological methods to machine learning methods. Decision trees, which are 

supervised machine learning algorithms useful for solving classification problems with 

categorical variables, are simple, intuitive, fast, and relatively robust to outliers and missing 

data. An example decision tree is shown in the appendix (p 4). One preferred feature of 

these models is the ability to identify patients at low and high risk of seizures by examining 

the leaves of the tree. Random forest models are built using ensembles of many decision 

trees. The assumption underlying these models is that large numbers of uncorrelated trees 

operating as a group will outperform any constituent model. This prevents overfitting, which 

can occur with decision trees, and improves the stability of the final model.

Given the relative rarity of our outcome of interest, we tuned many of our models to be more 

sensitive to individuals with seizures by increasing the weight of samples with subsequent 

seizures. See the appendix (pp 5–6) for details of the weighting process. Logistic regression 

models were built using the caret R package. Random forest models were built using the 

randomForest and ranger packages as well as the H2O platform (H2O.ai, R Interface for 

H2O, R package, version 3.10.0.8). When evaluating the performance of our classifiers, we 

used accuracy, precision, recall, F1, area under the curve (AUC), area under the precision–

recall curve (AUCPR), and Cohen’s κ scores. Given our imbalanced dataset, we sought to 

maximise F1 and AUCPR over AUC and accuracy.27 Variable importance, which displays 

the relative influence of each feature, was determined within our H2O models through 

feature inclusion in a split as well as the squared error reduction at each split in which that 

feature was included. All models were developed with separate training and testing data as 

well as cross-validation within the training data. We used bootstrapping to determine 95% 

CIs for model performance metrics. If neonates had two separate EEG recording periods 

separated by at least 24 h off EEG, then these were treated as two separate sessions for 

modelling.

Patients with missing data for any of the key variables were not included in the models. 

Missing data were excluded for three reasons. First, to facilitate comparisons across 

models, we only included individuals with complete data because not all models used 

can accommodate missing data. Second, working with complete data allowed us to better 

characterise the effect of each feature on model performance. Finally, based on data review 

and clinical experience with the templated EEG reports, the omitted clinical features are 

often normal and thus the exclusion of these individuals is not likely to falsely increase 

model accuracy. However, including individuals with incomplete data could be informative, 

potentially further improving the performance of models that can accommodate missing 

data.

Statistical analysis

We used Fisher’s exact test to determine the significance of differences in proportions 

of categorical EEG features between groups. We used the Wilcoxon rank-sum test, a non-
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parametric test, to compare numerical values between the overall neonatal group and the 

hypoxic ischaemic encephalopathy subgroup. In all cases, results were considered to be 

significant if p values were less than 0·05.

All code and the de-identified dataset are available online. All analyses were done with R 

(version 4.1.2).

Role of the funding source

The funders of the study had no role in study design, the collection, analysis, and 

interpretation of data, the writing of the report, or in the decision to submit the paper for 

publication.

Results

Between Jan 10, 2018, and Feb 15, 2022, the common data element-based novel 

documentation system was used to report more than 42 000 EEGs (figure 1A; appendix 

p 2), including 1117 neonates in the intensive care unit. For neonates, ACNS-defined 

key neonatal EEG variables (presence or absence of EEG seizures, continuity, variability, 

reactivity, voltage, graphoelements, epileptiform transients, and overall EEG impression) 

were recorded in more than 95% of reports on the first day of CEEG (figure 1C; appendix p 

7). 114 neonates had two separate EEG recording periods separated by at least 24 h off EEG, 

and these were treated as two separate sessions for modelling. 277 neonates, 30 of whom 

had hypoxic ischaemic encephalopathy, were missing data for at least one key variable and 

were therefore excluded from models.

In addition to an overall high completion rate, the completeness of EEG reports improved 

over time (figure 1B). Neonatal EEGs reported in 2018, during the first 6 months of template 

use, had an average completion rate of 80%, whereas EEGs reported in 2021–22, during the 

most recent 6 months of template use, had a significantly higher average completion rate of 

98% (p<0·0001). Therefore, implementation of EEG templates provided complete data that 

could be used to build prediction models to inform clinical care.

The cohort of neonates who underwent CEEG during the first 30 days of life included 1117 

individuals, 150 (13·4%) of whom had hypoxic ischaemic encephalopathy managed with 

therapeutic hypothermia and constituted the hypoxic ischaemic encephalopathy subgroup for 

the seizure prediction analyses. The hypoxic ischaemic encephalopathy cohort is of clinical 

interest and serves as an example of a particularly vulnerable population that could benefit 

from improved intervention. Demographic features are presented in the table. The median 

age at CEEG initiation was 4 days (IQR 2–7) for the overall cohort and was significantly 

younger in the hypoxic ischaemic encephalopathy subgroup at 1 day (1–1, p<0·0001; table; 

appendix p 2). The median duration of CEEG was 3 days (IQR 2–4) for the overall cohort 

and was significantly longer at 5 days (4–6, p<0·0001; table; appendix p 2) in the hypoxic 

ischaemic encephalopathy subgroup.

On the first day of recording, the frequency of EEG feature abnormalities was higher in 

neonates in the hypoxic ischaemic encephalopathy subgroup than in the overall cohort 
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(p<0·0001 for voltage, p=0·0003 for variability, p=0·032 for reactivity, and p=0·0001 for 

graphoelements; figure 1C; appendix p 7). Over the course of CEEG, neonates in the 

hypoxic ischaemic encephalopathy subgroup were also more likely to have at least one 

seizure across all days of recording than the overall cohort, although this difference did not 

reach significance (49 [32·7%] of 150 vs 342 [26·0%] of 1313; odds ratio 1·4 [95% CI 

0·98–2·1], p=0·060). The time to first seizure from CEEG initiation was similar between the 

overall cohort and hypoxic ischaemic encephalopathy subgroup (figure 1D).

Several EEG features were correlated for the overall cohort and the hypoxic ischaemic 

encephalopathy subgroup, including overall EEG impression and continuity (0·75 [95% 

CI 0·72–0·77] vs 0·78 [0·71–0·84]), variability and reactivity (0·48 [0·43–0·52] vs 0·62 

[0·51–0·72]), voltage and variability (0·40 [0·35–0·44] vs 0·62 [0·51–0·71]), and voltage 

and reactivity (0·39 [0·35–0·44] vs 0·54 [0·41–0·65]; figure 2A, C). Furthermore, although 

there were overall differences in abnormal feature representation between the seizure and no 

seizure groups, there was a large degree of heterogeneity, and the presence or absence of 

seizures could not be predicted by feature clustering alone (figure 2B, D). In summary, in 

addition to being sparsely represented across the cohort, many EEG features were correlated, 

and easily identifiable patterns in the data were not predictive of future seizures.

Models built with logistic regression predicted subsequent seizures with accuracy of up 

to 84% (95% CI 78–89) and AUCPR of 0·54 (95% CI 0·35–0·71) in the overall cohort 

and accuracy of 77% (50–91) and AUCPR of 0·57 (0·34–0·86) in the hypoxic ischaemic 

encephalopathy subgroup (figures 3, 4).

A basic decision tree model did not outperform logistic regression, with accuracies of 

82% (95% CI 75–86) for the overall cohort and 73% (45–86) for those with hypoxic 

ischaemic encephalopathy, and AUCPR of 0·36 (95% CI 0·23–0·60) for the overall cohort 

and 0·46 (0·28–0·73) for the hypoxic ischaemic encephalopathy subgroup (figures 3, 4). 

Thus, although decision trees are intuitive and could identify groups of patients at high 

and low risk of subsequent seizures more readily than logistic regression models, they had 

suboptimal performance.

Untuned random forest models performed our classification task with accuracies similar to 

the regression models. However, tuned models that more heavily weighted the subsequent 

seizure class helped the model to identify these patients with much greater success, resulting 

in recall of up to 97% (95% CI 91–100) in the overall cohort and 100% (100–100) in the 

hypoxic ischaemic encephalopathy subgroup. AUCPR values were up to 0·97 (95% CI 0·94–

0·98) for the overall cohort and 0·98 (0·88–1·0) for the hypoxic ischaemic encephalopathy 

subgroup. This class weighting came at a cost of lower prediction accuracy for the null class 

(those who do not have seizures) and increased the false positive rate for the most heavily 

weighted models up to 53% (95% CI 26–90) for the overall cohort and 38% (13–72) for 

the hypoxic ischaemic encephalopathy subgroup. However, the accuracies of these models 

were still up to 90% (95% CI 83–94) for the overall cohort and 97% (88–99) for the hypoxic 

ischaemic encephalopathy subgroup, with precision (positive predictive value) of up to 92% 

(84–96) for the overall cohort and 97% (80–99) for the subgroup (figures 3, 4).
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Discussion

Using neonatal EEG reports collected over a 4-year period at a large tertiary paediatric 

centre, we found that neonatal seizures on subsequent days after initial recording are highly 

predictable. Our results provide the basis for rational CEEG use, particularly in limited 

settings. For example, our findings suggest that a centre without the ability to monitor 

neonates with hypoxic ischaemic encephalopathy with CEEG through re-warming (4–5 

days) could perform 24 h of CEEG and be assured that subsequent seizures would not be 

missed in neonates identified as being at low risk.

Our study had four main findings. First, we showed that use of a standardised EEG 

reporting template in the EMR improved adherence with use of recommended neonatal 

EEG terminology,24 increasing over time from 80% to 98%. This result speaks to a dynamic 

interaction between tool implementation and provider uptake: even though compliant use 

of the new format was not monitored or reinforced, EEG readers slowly gravitated towards 

more complete reporting. This example shows how implementation of novel technologies 

can provide a subtle transformative effect in areas of health care that require exact and 

standardised reporting. Standardised EEG reporting might enable better understanding of 

the EEG data by clinical teams and better assessment for EEG changes over time, while 

also facilitating acquisition of EEG data required for research and quality improve ment 

initiatives.

Second, we showed that clinical and EEG data available from the first day of CEEG 

are highly predictive of seizures on the subsequent days. Using a random forest model, 

AUCPR values were 0·97 (95% CI 0·94–0·98) for the overall cohort and 0·98 (0·88–1·00) 

for the hypoxic ischaemic encephalopathy subgroup. Thus, for neonates with heterogeneous 

aetiologies as well as a smaller more homogeneous cohort, the considerable data obtained 

as part of routine care could be used to make reliable predictions about the occurrence 

of future events. CEEG is resource intense, and longer durations of CEEG, especially for 

patients at low risk of seizures, have substantial incremental cost-effectiveness ratios.10 

Thus, approaches to provide broad 1-day screening CEEG, but longer CEEG in patients 

at high risk of seizures, might yield a higher value strategy enabling more widespread 

implementation.

Third, we found that machine learning methods surpass the accuracy of conventional 

statistical approaches for seizure prediction in neonates using data from standardised 

neonatal EEG reports. This finding and the lack of predictive power of single EEG features 

can be attributed to the complexity inherent in EEG reports. Many EEG features are highly 

correlated, which represents an ongoing challenge for traditional statistical approaches. 

Tools such as random forest models are less susceptible to such confounding structures and 

can therefore generate more accurate predictions. Additionally, we used class weighting to 

optimise model performance, which maximised recall but also increased the false positive 

rates. For clinical applications, this represents a strength of this model because it can detect 

the neonates who will have seizures with very high sensitivity, while still identifying a 

sufficiently large proportion of neonates at low risk of seizures.
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Fourth, use of standardised EEG reporting templates for 4 years as part of clinical reporting 

generated sufficient data to develop a model that could predict neonatal seizures on 

subsequent days with high accuracy. This finding speaks to the overall power of learning 

health system approaches in child neurology.28 Basic standardisation and tracking could 

advance knowledge in a manner that can drive changes to clinical care, which can be further 

assessed and refined over time. The strong predictive power of these data supports the value 

of clinically derived information, which might be considered only indirect at first. Each EEG 

report represents the expert assessment of an electroencephalo grapher, thereby allowing us 

to use a data resource that is highly informative and valuable while also saving time and 

resources. Although multi-rater scoring with formal processes to derive consensus might 

represent the gold standard for EEG interpretation in research studies, such approaches are 

resource intense and not feasible for large-scale real-world investigations or learning health 

system approaches involving CEEG data. Our data indicate the potential for standardised 

EMR-based approaches to advance knowledge in an efficient manner.

Inferences about underlying causes and biology are limited in machine learning approaches 

in contrast to single-feature predictions or logistic regression. Although simple decision 

trees can be visualised and followed to guide clinical practice, random forest models do not 

have a simple or intuitive visual representation. Thus, we created an online calculator that 

generates predictions based on our model. We intend to update the model quarterly with the 

most recent data, following the paradigm of a learning health system.28 We recognise the 

model cannot be externally validated at this time due to the scarcity of large standardised 

CEEG databases, and the accuracy at centres with differing patient populations is unknown. 

Furthermore, as we recognise that black-box models can sometimes be difficult to adopt 

into clinical practice, we explored the feature importance and found EEG features important 

within the model corresponded with our clinical experience.

In the future, the efficacy of seizure prediction could be improved further by considering 

additional data already existing in the EMR beyond the demographic features included in 

our current models. For example, clinical variables in combination with EEG features have 

previously resulted in improved model performance. For a seizure prediction model built 

using Cox’s proportional hazards regression, the AUC improved from 76% to 83% when 

clinical features, including gestational age, EEG indication, and aetiology or therapies, were 

added to EEG-based prediction alone.16 Features such as gestational age, Apgar scores, 

and diagnosis, and phenotypic features including human phenotype ontology codes,29 

physical examination signs, medication administration, and laboratory data are increasingly 

standardised within the EMR. As these data accrue over time, we anticipate that it will be 

feasible and beneficial to incorporate additional variables into our predictive models.

In summary, we have built the first high-performing prediction model for neonatal seizures 

occurring after the first day of CEEG using automated EEG docu mentation, achieving 

accuracies of more than 90%. The use of data from routine clinical care alone, without 

prior assumptions, was sufficient for meaningful seizure predictions in neonates at high 

risk of seizures. If validated, this model could enable more targeted use of limited CEEG 

resources by reducing CEEG duration among patients at low risk of seizures after the initial 
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day of CEEG. Incorporation of accurate seizure prediction into real-time clinical care could 

improve the quality and efficiency of care for neonates with critical illness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched the literature on electroencephalogram (EEG)-based seizure prediction 

in neonates in PubMed from Jan 1, 1946, to June 1, 2022, using combinations 

of the keywords “seizure”, “prediction”, “EEG”, “neonatal”, and “hypoxic-ischemic 

encephalopathy”. We used no language restrictions. Previous studies relied on manual 

review of EEG reports to forecast seizures in neonates using regression models. These 

studies were limited in sample size because they required manual review of reports and 

manual data entry.

No studies were identified using automated collection of EEG data from routine care, and 

none used machine learning-based modelling techniques.

Added value of this study

We built seizure prediction models based on standardised EEG features reported in the 

electronic medical record (EMR) that could predict seizures in neonates, and particularly 

neonates with hypoxic ischaemic encephalopathy, with greater than 90% accuracy. 

Furthermore, these models could be tuned to not miss seizures, performing with recall 

(sensitivity) of up to 97% (95% CI 91–100) in the overall neonatal cohort and 100% 

(100–100) in neonates with hypoxic ischaemic encephalopathy, while still maintaining 

precision (positive predictive value) of up to 92% (95% CI 84–96) in the overall cohort 

and 97% (80–99) in neonates with hypoxic ischaemic encephalopathy.

Previous studies have built seizure prediction models using EEG data, but most have used 

features derived from manual scoring of EEG tracings or computational analysis of the 

raw EEG recordings. Although these studies are informative, they are not easily scalable 

for incorporation into routine clinical practice. To our knowledge, this is the first study 

reporting a seizure prediction model based on standardised reports already documented in 

the EMR that can be used for clinical decision support to improve care for critically ill 

neonates.

Implications of all the available evidence

Continuous EEG (CEEG) monitoring is currently the standard of care for critically ill 

children at risk of seizures. Although effective for seizure detection, CEEG is resource 

intensive, especially when used for long durations in patients at low risk of seizures, 

and can have physical and psychosocial consequences, such as skin breakdown and 

impediments to parent–infant physical interaction. Accurately predicting which neonates 

are likely to have seizures after an initial shorter period of monitoring would help 

to allocate CEEG resources towards neonates with the highest risk of seizures and 

avoid unnecessary use of limited CEEG resources in neonates at low risk of seizures. 

Furthermore, the ability to directly extract these predictors from standardised clinical 

reporting in the EMR will allow for automated predictions and dashboard development 

for use at scale in real-time clinical care.
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Figure 1: EEG data accrual, population characteristics, and time to seizure
(A) More than 42 000 EEGs were reported using the templated system, most of these being 

routine (<1 h) EEGs or hospital-based long-term monitoring (CEEG). (B) Completion index 

for neonatal CEEGs, defined as proportion of key features described, has improved over 

time from less than 80% when templates were first instituted to more than 95% currently. 

The dots indicate mean completion indices, and the line shows the trend line fit. (C) All 

key features were reliably reported for both the overall neonatal cohort and subgroup of 

neonates with hypoxic ischaemic encephalopathy (solid bars). Frequencies of abnormalities 

varied slightly between the overall cohort and subgroup of neonates with hypoxic ischaemic 

encephalopathy (translucent bars). (D) Among the neonates who ultimately had at least 

one seizure, the duration from CEEG initiation to the first seizure was similar between 

the overall cohort and subgroup of neonates with hypoxic ischaemic encephalopathy, with 

most patients having seizures within the first 2 days of monitoring. CEEG=continuous 

electroencephalogram. EEG=electroencephalogram. ICU=intensive care unit.
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Figure 2: Feature correlation and clustering
Cross-correlation coefficients for all EEG features are shown for the entire neonatal cohort 

(A) and the subgroup of neonates with hypoxic ischaemic encephalopathy (C). Features 

with the strongest correlations include impression and continuity. Clustering of individuals 

on the basis of EEG feature representation did not clearly segment patients based on the 

presence or absence of seizures for the overall cohort (B) or the subgroup of neonates with 

hypoxic ischaemic encephalopathy (D). Seizures (day 1) are those occurring on the first 

day of EEG recording, whereas seizures (after day 1) represent all subsequent seizures. 

EEG=electroencephalogram.
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Figure 3: Model performance for all neonates
(A) Performance values are displayed for the logistic regression (LR1–LR4), decision tree 

(DT), and random forest (RF1–RF15) models tested on the entire neonatal cohort. Accuracy, 

precision, recall, F1, AUC, AUCPR, and Cohen’s κ scores are provided for each model. 

Lighter colours represent better performance. (B) The precision of each model plotted over 

recall for all 20 models, coded by type, AUC, and accuracy. (C) The relative importance of 

each feature in the model and the AUCPR are shown for model RF15. AUC=area under the 

curve. AUCPR=area under the precision–recall curve.
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Figure 4: Model performance for neonates with hypoxic ischaemic encephalopathy
Performance values are displayed for the logistic regression (LR1–LR4), decision tree (DT), 

and random forest (RF1–RF15) models tested on the cohort of neonates with hypoxic 

ischaemic encephalopathy. Accuracy, precision, recall, F1, AUC, AUCPR, and Cohen’s κ 
scores are provided for each model. Lighter colours represent better performance. (B) The 

precision of each model plotted over recall for all 20 models, coded by type, AUC, and 

accuracy. (C) The relative importance of each feature in the model and the AUCPR are 

shown for model RF15. AUC=area under the curve. AUCPR=area under the precision–recall 

curve.
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Table:

Demographics

All neonates (n=1117) Neonates with hypoxic ischaemic encephalopathy (n=150) p value

Sex

 Male 638 (57%) 92 (61%) 0·33

 Female 479 (43%) 58 (39%) 0·33

Race or ethnicity

 White 630 (56%) 75 (50%) 0·16

 Black 183 (16%) 34 (23%) 0·064

 Asian 40 (4%) 5 (3%) 1

 Hispanic or Latinx 175 (16%) 18 (12%) 0·28

Age at CEEG initiation, days 4 (2–7) 1 (1–1) <0·0001*

CEEG duration, days 3 (2–4) 5 (4–6) <0·0001*

Data are n (%) or median (IQR) unless otherwise stated. All p values are Fisher’s exact test comparing all neonates with a subgroup of neonates 
with hypoxic ischaemic encephalopathy unless otherwise stated. CEEG=continuous electroencephalogram.

*
Wilcoxon rank-sum test.

Lancet Digit Health. Author manuscript; available in PMC 2023 April 01.


	Summary
	Introduction
	Methods
	Study design and participants
	Procedures
	Data processing
	Correlation and clustering analyses
	Model building
	Statistical analysis
	Role of the funding source

	Results
	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table:

