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Abstract

Surfactant protein A (SP-A) has important roles in innate immunity and modulation of pulmonary 

and extrapulmonary inflammation. Given SP-A has been detected in rat and human brain, we 

sought to determine if SP-A has a role in modulating inflammation in the neonatal mouse brain. 

Neonatal wildtype (WT) and SP-A-deficient (SP-A−/−) mice were subjected to three models of 

brain inflammation: systemic sepsis, intraventricular hemorrhage (IVH) and hypoxic-ischemic 

encephalopathy (HIE). Following treatment, RNA was isolated from brain tissue and expression 

of cytokine and SP-A mRNA was determined by real-time quantitative RT-PCR analysis. In 

the sepsis model, expression of most cytokine mRNAs was significantly increased in brains of 

WT and SP-A−/− neonates with significantly greater expression of all cytokine mRNA levels 

in SP-A−/− mice compared to WT. In the IVH model, expression of all cytokine mRNAs was 
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significantly increased in WT and SP-A−/− mice and levels of cytokine mRNAs were significantly 

increased in SP-A−/− mice compared to WT. In the HIE model, only TNF-α mRNA levels 

were significantly increased in WT brain tissue while most cytokine mRNAs were significantly 

increased in SP-A−/− mice, and all cytokine mRNA levels were significantly higher in SP-A−/− 

mice compared to WT. SP-A mRNA was not detectable in brain tissue of adult WT mice nor 

of WT neonates subjected to the models. These results suggest that SP-A−/− neonatal mice 

subjected to models of neuroinflammation are more susceptible to generalized and localized 

neuroinflammation compared to WT mice, thus supporting the hypothesis that SP-A attenuates 

inflammation in neonatal mouse brain.
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1. Introduction

The neonatal population is inherently at risk for certain neuroinflammatory processes 

resulting from both systemic and localized injury. Three examples of such processes are 

sepsis, intraventricular hemorrhage, and hypoxic-ischemic encephalopathy. All neonates 

are vulnerable to sepsis, a potentially life-threatening inflammatory condition that occurs 

as a consequence of infection, which increases peripheral production of proinflammatory 

cytokines and reactive oxygen species, resulting in increased permeability of the blood-

brain barrier (BBB) and activation of glial cells and cytotoxic mediators (Danielski et al., 

2018). Intraventricular hemorrhage (IVH), bleeding within or surrounding the ventricles 

of the brain that is fairly common and specific to preterm neonates, results in red blood 

cell lysis and hemoglobin oxidation with the release of heme which can cause sterile 

neuroinflammation (Erdei et al., 2020). In term neonates, hypoxic-ischemic encephalopathy 

(HIE) can occur as a result of oxygen deprivation to the infant brain; in such cases, 

neuroinflammation is a major contributor to secondary brain cell injury which accounts for a 

significant proportion of neuronal loss in hypoxic-ischemic encephalopathy (HIE) (Li et al., 

2020). While these three inflammatory insults are similar in that they are all commonly seen 

clinically in neonates, they are believed to represent three completely different mechanisms 

of inflammation in the brain.

Production and action of pro-inflammatory cytokines, particularly IL-1β, IL-6 and TNF-

α, are common factors between these three different neuroinflammatory mechanisms. 

Mimicking sepsis, LPS injection leads to production of these cytokines by microglia and 

astrocytes in the neonatal rat brain (Dammann and Leviton, 1997; Fleiss et al., 2021; 

McAdams and Juul, 2012). When injected into neonatal mouse brain, these cytokines lead to 

proliferation of astrocytes in conjunction with reduced myelination (Nesin and Cunningham-

Rundles, 2000), presumably due to TNF-α-induced apoptosis of oligodendrocytes (Cai et 

al., 2000). These cytokines have a role in neuronal injury during hypoxic ischemia of the 

brain, which leads to increased secretion of IL-1β, IL-6 and TNF-α by activated microglia 

(Rothwell and Hopkins, 1995). In addition, the human IL-8 homologue CXCL1 has been 

shown to be involved in pro-inflammatory microglia activation following inflammation-
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sensitized hypoxic-ischemic brain injury in neonatal rats (Serdar et al., 2020). Further 

research into other potential proteins involved in these neuroinflammatory mechanisms is 

certainly warranted.

While surfactant is well-recognized in reducing alveolar surface tension in the lungs, 

components of surfactant have also been demonstrated to be involved in immune system 

activation and regulation of inflammation. Hydrophilic surfactant proteins A (SP-A) and D 

(SP-D) are carbohydrate-binding lectins, or collectins, that have been found to mediate 

recognition and neutralization of pathogens and modulate the inflammatory response 

(Herbein and Wright, 2001; Kishore et al., 2001; Kishore et al., 2006; Nayak et al., 2012; 

Sato et al., 2003; Vieira et al., 2017; Wright, 2005). In addition to their expression in 

the lung, SP-A and SP-D are expressed at extra-pulmonary sites including the nervous, 

ocular, cardiovascular, gastrointestinal, urinary/renal, male and female genital/reproductive, 

integumentary, and glandular systems (Madsen et al., 2000; Nayak et al., 2012; Snyder et 

al., 2008; Sorensen, 2018; Stahlman et al., 2002; Vieira et al., 2017). The role of collectins, 

specifically SP-A, in central nervous system (CNS) inflammation is the focus of the present 

study.

The function of the collectins in regulation of inflammation is complex. A wide variety of 

ligands bind to or activate SP-A and SP-D, which then bind to downstream receptors (for 

a comprehensive list of these ligands and receptors, see (Vieira et al., 2017). Because of 

these complex and dynamic interactions, SP-A and SP-D are considered to be both pro- 

and anti-inflammatory molecules, which is consistent with findings in prior clinical research. 

SP-A and SP-D were found to have pro-inflammatory effects in the colon (Nexoe et al., 

2019) and vascular system (Colmorten et al., 2019). On the other hand, SP-A and SP-D 

have been found to attenuate inflammation in the intestine (Liu et al., 2021; Quintanilla et 

al., 2015; Saka et al., 2016), kidney (Tian et al., 2017), pancreas (Liu et al., 2015), fetal 

tissue (Agrawal et al., 2018; Salminen et al., 2008), and vascular system (Colmorten et 

al., 2019). While the anti-inflammatory effects of SP-A in the CNS have not been directly 

investigated, several previous studies have explored SP-A expression in the context of 

multiple CNS disease processes (Colmorten et al., 2019; Schob et al., 2013; Schob et al., 

2016; Yang et al., 2017). In addition, it is known that SP-A binds to toll-like receptor (TLR) 

2 and TLR4 and modulate their activity by various mechanisms (Henning et al., 2008). 

The main role of TLRs during neuroinflammation is the regulation of pathways which 

activate astrocytes, microglia, enzymes, and cytokines during the inflammatory process 

(Kielian, 2006). Therefore, it is reasonable to hypothesize that SP-A may play a role in 

neuroinflammation.

In this study, our goal was to further examine the role of SP-A in inflammation in 

the neonatal mouse brain by contrasting wildtype mice and mice deficient in SP-A. 

We chose models of sepsis, intraventricular hemorrhage (IVH), and hypoxic-ischemic 

encephalopathy (HIE) as triggers of this inflammation because these pathologies have 

certain implications for the neonatal population. The mechanisms of these pathologies 

as causes of neuroinflammation have been fairly well-established and primarily involve 

astrocyte and microglial activation, followed by infiltration of peripheral immune cells 

which then release a variety of pro-inflammatory cytokines, including IL-1, IL-5, IL-6, 
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CXCL1, and TNF-α (Aronowski and Zhao, 2011; Gao et al., 2008; Iadecola and Anrather, 

2011; Jones et al., 2018; Patel et al., 2013; Taylor and Sansing, 2013; Wang and 

Tsirka, 2005; Wang and Dore, 2007; Wilson and Young, 2003; Zhou et al., 2014). Other 

cytokines, including IL-4 and IL-10, are then triggered which exert inhibitory regulation 

on CNS cytokine production (Sawada et al., 1995). While previous work has examined the 

role of SP-A in inflammation, neuroinflammation has not been extensively investigated. 

Additionally, SP-A expression in the mouse brain has not been explored. In the present 

study, we hypothesized that SP-A as an immunomodulatory protein attenuates inflammation 

in the neonatal mouse brain.

2. Results

2.1 Cytokine expression in brain tissue of SP-A−/− mice is significantly increased 
compared to WT mice subjected to a sepsis model of generalized neuroinflammation.

To assess cytokine expression in WT and SP-A−/− mice following intraperitoneal LPS 

injection as a model for sepsis, qRT-PCR analysis of cytokine mRNA was performed. 

Expression of cytokine mRNA as a fold-change from WT control is shown in Figure 1 for 

both genotypes (WT or SP-A−/−) following injection of LPS or phosphate-buffered saline 

(PBS). We found that control expression (mice injected with PBS) of IL-1β, IL-6, CXCL1, 

and TNF-α mRNA in SP-A−/− neonatal mouse brain was significantly higher than levels in 

WT brain following intraperitoneal injection of PBS, a trend reported previously in ileum of 

neonatal mice (Liu et al., 2021). We found statistically significant differences between WT 

mice injected with PBS vs LPS for IL-1β (p < 0.001), CXCL1 (p = 0.047), and TNF-α (p 
= 0.001). We also found statistically significant differences for SP-A−/− mice for IL-1β (p < 

0.001), CXCL1 (p = 0.012), TNF-α (p = 0.012) and IL-10 (p = 0.004), indicating that the 

model is effective in generating inflammation. In addition, expression of all five cytokine 

mRNAs (IL-1β, IL-6, CXCL1, TNF-α, and IL-10) was significantly increased in the brains 

of SP-A−/− mice compared with WT mice at 24 hours following LPS injection (p = 0.001, p 
= 0.002, p < 0.001, p < 0.001, and p < 0.001, respectively). These results indicate that SP-A 

deficient mice demonstrate increased expression of inflammatory cytokines following LPS 

injection compared with WT controls. Interestingly, when analyzing for any sex differences 

in cytokine levels following the sepsis model, we found significantly greater cytokine levels 

in males compared to females for IL-6 (p = 0.009), CXCL1 (p = 0.019), and TNF-α (p = 

0.049) (data not shown).

2.2 Cytokine expression in brain tissue of SP-A−/− mice is significantly increased 
compared to WT mice subjected to an IVH model of localized neuroinflammation.

To compare cytokine expression in WT and SP-A−/− mice following unilateral 

intraventricular hemoglobin injection as a model for IVH, qRT-PCR analysis of cytokine 

mRNA was performed. Expression of cytokine mRNA as a fold-change from WT control is 

shown in Figure 2 for both genotypes (WT or SP-A−/−) following injection of hemoglobin 

(IVH) or phosphate-buffered saline (PBS). Similar to the results of the sepsis model, we 

found that control expression (mice injected with PBS) of IL-1β, IL-6, CXCL1, TNF-α, 

and IL-10 mRNA in SP-A−/− neonatal mouse brain was significantly higher than levels in 

WT brain following intraventricular injection of PBS. We found statistically significant 
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differences between WT mice injected with PBS vs hemoglobin for all five cytokine 

mRNAs (p < 0.001). We also found statistically significant differences for SP-A−/− mice 

(p < 0.001), indicating that the model is effective in generating localized inflammation 

in the brain. In addition, expression of four cytokine mRNAs (IL-1β, CXCL1, TNF-α, 

and IL-10) was significantly increased in the brains of SP-A−/− mice compared with 

WT mice at 4 hours following intraventricular hemoglobin injection (p = 0.005, p = 

0.040, p < 0.001, and p = 0.002, respectively). These results indicate that SP-A deficient 

mice demonstrate increased expression of inflammatory cytokines following intraventricular 

hemoglobin injection compared with WT controls. However, unlike the sepsis model, we 

found no significant differences in cytokine levels between males and females.

2.3 Cytokine expression in brain tissue of SP-A−/− mice is significantly increased 
compared to WT mice subjected to an HIE model of localized neuroinflammation.

To compare cytokine expression in WT and SP-A−/− mice following unilateral common 

carotid artery ligation followed by hypoxia exposure as a model for HIE, qRT-PCR analysis 

of cytokine mRNA was performed. Expression of cytokine mRNA as a fold-change from 

WT control is shown in Figure 3 for both genotypes (WT or SP-A−/−) as well as all three 

interventions (TrueSham, Sham+Hypoxia, and HIE). In regards to the control (TrueSham) 

group, unlike the sepsis and IVH models, we found that expression of cytokine mRNA in 

SP-A−/− neonatal mouse brain did not significantly differ from levels in WT brain. We found 

statistically significant differences between SP-A−/− mice that underwent Sham surgery with 

hypoxia exposure and those that underwent HIE surgery for IL-1β (p = 0.003), IL-6 (p = 

0.001), CXCL1 (p < 0.001), and TNF-α (p < 0.001), indicating that the model is effective in 

generating inflammation. Expression of all pro-inflammatory cytokine mRNAs (IL-1β, IL-6, 

CXCL1, and TNF-α) was significantly increased in the brains of SP-A−/− mice compared 

with WT mice at 24 hours following HIE surgery (p < 0.001, p = 0.002, p < 0.001, 

and p < 0.001, respectively). IL-10, an anti-inflammatory cytokine, showed no significant 

difference (p = 0.241). These results indicate that SP-A deficient mice demonstrate increased 

expression of inflammatory cytokines following unilateral common carotid artery ligation 

followed by hypoxia exposure compared with WT controls. Again, unlike the sepsis model, 

we found no significant differences in cytokine levels between males and females.

2.4 SP-A mRNA is not detectable in mouse brain through RT-PCR analysis.

To assess expression of SP-A in the mouse brain, three lung samples and three brain 

sample were collected from WT and SP-A−/− mice at six weeks of age. Figures 4A and 4B 

show RT-PCR analysis at 50 cycles of mSPA-1 mRNA in WT and SP-A−/− mouse tissue. 

RT-negative mSPA-1 was used as a negative control, and beta actin as a positive control. We 

found that SP-A mRNA expression was detected in lung tissue of WT mice, as expected. 

However, contrary to previous literature reporting SP-A expression in the brains of humans 

and rates, SP-A expression was not detected in the brains of either WT or SP-A−/− mice. 

These results indicate that SP-A does not appear to be expressed in the mouse brain by six 

weeks of age at baseline.

In order to evaluate whether inflammation would increase SP-A expression in the brain to 

detectable levels, four to five brain samples from WT mice following each of the three 
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inflammatory models (sepsis, IVH, and HIE) were collected and RT-PCR analysis was again 

performed at 50 cycles to measure mSPA-1 mRNA (Figure 4C). One lung sample, as well as 

beta actin (not shown) were used as positive controls. Once again, SP-A expression was not 

detected in the brains of WT mice, indicating that inflammation does not appear to increase 

SP-A expression to a detectable level.

3. Discussion

The present study investigated the potential role of SP-A in neuroinflammation in the 

neonatal mouse. Three models of neuroinflammation were selected due to their clinical 

relevance in human neonates. All three models consistently demonstrated increased cytokine 

expression in SP-A deficient mice following neuroinflammatory insult when compared with 

SP-A sufficient mice. Notably, this finding remained reliable in models of focal CNS disease 

as well as generalized neuroinflammatory injury. Despite this outcome, we were unable to 

detect SP-A expression in the brains of either SP-A sufficient or SP-A deficient mice, even 

following an inflammatory insult.

The vast majority of research on surfactant proteins has historically focused on their location 

and function in the lung. However, more recent studies have focused on extra-pulmonary 

expression of SP-A and SP-D, and several research groups have demonstrated expression 

of SP-A in the CNS in humans (Schob et al., 2013; Yang et al., 2017) utilizing multiple 

methods, including RT-PCR, conventional PCR, Western blot, and immunohistochemistry, 

to evaluate SP-A expression in human brain tissue and cerebrospinal fluid (CSF). All 

surfactant proteins, including SP-A, were detected by each of their methods. Furthermore, 

they localized SP-A immunoreactivity to the tissue surrounding the microvasculature of the 

brain parenchyma, the choroid plexus, and the small vessels of the pineal gland. Yang and 

colleagues (Yang et al., 2017) performed immunohistochemical staining of SP-A in human 

astrocytes and microglial cells, detecting immunopositive SP-A in the cytoplasm and nuclei 

of human astrocytes and in the cytoplasm of microglia. However, unlike the current study, 

neither of these studies utilized a negative control in SP-A−/− mice.

Other investigators have explored expression of SP-A in the CNS in rats (Luo et al., 2004; 

Schob et al., 2017; Yang et al., 2017). Luo and colleagues (Luo et al., 2004) found strong 

immunoreactive SP-A positive signals in myelin sheaths of cerebrum, cerebellum, and walls 

of blood vessels. Schob and colleagues (Schob et al., 2017) also used immunohistochemistry 

and concluded that SP-A is abundant at the site of the BBB. Similarly, Yang and colleagues 

found strong immunoreactivity for SP-A in the choroid plexus, cerebellum, and glial cells. 

This localization of SP-A to the choroid plexus, the microvasculature, and the BBB supports 

a role for SP-A in protection of the CNS from pathogens, as well as a possible role in 

prevention of entry of peripheral immune cells into the CNS. However, once again, a 

negative control was not utilized in any of these investigations.

While SP-A expression in the CNS of mice had not been investigated prior to the current 

study, Lambertsen and colleagues (Lambertsen et al., 2014) did utilize SP-D knockout mice 

to investigate whether SP-D affected cerebral ischemic infarction and ischemia-induced 

inflammatory responses in mice. They found very low to undetectable levels of SP-D in the 
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normal mouse brain. Interestingly, they also found no evidence of SP-D mRNA upregulation 

by the parenchymal cells after the ischemic insult. These results may be consistent with our 

own in that mouse parenchymal cells do not demonstrate expression of collectin mRNA. 

Additionally, relatively few studies have previously explored the function of collectins in 

the CNS. SP-A expression has found to be decreased in certain central autoimmune and 

neuroinflammatory conditions (notably multiple sclerosis), yet expression was increased in 

diseases characterized by elevated intracranial pressure or ventricular enlargement (acute 

hydrocephalus, aqueductal stenosis, and pseudotumor cerebri) (Schob et al., 2013; Schob et 

al., 2016; Yang et al., 2017). Yang and colleagues (Yang et al., 2017) found that treatment of 

human astrocytes and microglia with lipopolysaccharide (LPS) stimulated SP-A expression, 

and that exogenous SP-A decreased expression of TLR4 and reduced IL-1β and TNF-α 
levels, concluding that SP-A likely has a role in the modulation of CNS inflammatory 

responses. Similar studies have been conducted investigating the effect of SP-D on CNS 

diseases. Kumral and colleagues (Kumral et al., 2017) found that introduction of SP-D 

resulted in a significant decline in apoptosis in a model of LPS-induced periventricular 

leukomalacia. This suggests that collectins may also suppress inflammation in the brain by 

promoting clearance of apoptotic cells by macrophages, similar to their role in the lung.

The current study represents the first investigation into the expression of SP-A in the 

CNS in mice, as well as the first exploration of the role of SP-A specifically in neonatal 

neuroinflammation. We utilized SP-A knockout mice as a true negative control which, while 

far from novel, has not been consistent throughout earlier literature. Additionally, we were 

able to conclusively demonstrate increased cytokine expression in SP-A deficient mice using 

models of both focal and generalized brain injury. Interestingly, cytokine expression in the 

control groups of two of the three neuroinflammatory models (the sepsis model and the 

IVH model) showed evidence of greater inflammation in SP-A knockout mice compared 

to SP-A sufficient mice. This would suggest that without any experimental inflammatory 

intervention, SP-A knockout mice demonstrate higher levels of baseline inflammation. This 

is consistent with previous work on SP-A in the gut by Liu and colleagues (Liu et al., 2021) 

demonstrating that intestinal levels of inflammatory cytokines are increased at baseline in 

SP-A knockout mice compared to wild type mice. Cytokine expression in the control group 

of the HIE model demonstrated no significant difference in inflammation in SP-A knockout 

mice compared to wild type mice. It is unclear if this difference could be because these mice 

were slightly older (generally closer to 9 days of age rather than 7 days), or perhaps because 

there was a greater degree of manipulation in this model.

Since IL-10 is anti-inflammatory, is expressed in response to inflammation, and can help 

resolve inflammation in the brain by down-regulating production of IL-1β and TNF-α 
(Opp et al., 1995), we expected IL-10 levels to increase in concert with the increase of 

pro-inflammatory cytokine expression, perhaps “validating” the impact of the lack of SP-A 

to increase inflammation in models of neuroinflammation. Indeed, our results indicate that 

IL-10 expression increased in SP-A−/− mice compared to WT mice in the models. It has 

been reported that SP-A inhibits LPS-induced expression of IL-10 by macrophages in the 

lung (Chabot et al., 2003), and in this study IL-10 expression was significantly increased in 

the LPS-induced model of sepsis. We feel these outcomes strengthen the argument that SP-A 

has a role in modulating neuroinflammation as it does pulmonary inflammation.
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When analyzing for sex differences in cytokine levels following each inflammatory model, 

only the sepsis model of generalized inflammation showed significant differences in that 

males demonstrated higher cytokine levels compared to females. Several previous studies 

investigated sex differences in response to bacterial infection in the presence or absence 

of SP-A (see (Depicolzuane et al., 2021) for a brief review). Mikerov and colleagues 

(Mikerov et al., 2008; Mikerov et al., 2012) found that in SP-A knockout mice exposed 

to Klebsiella pneumoniae infection, infected males showed lower survival and were more 

predisposed to have a higher level of dissemination of infection compared to females. 

Additional investigation into the mechanisms for sex differences in SP-A deficient mice is a 

potential future direction for this project.

There are several limitations to this study. The most notable limitation is that SP-A 

expression in the brain was only analyzed by one method: RT-PCR. This identifies a definite 

future direction for our work, analysis of actual cytokine levels in the brain. Another 

limitation is the fairly low sample size (6-8 animals) of each intervention group, resulting 

in fairly large standard deviations in some analyses. Nevertheless, statistically significant 

differences were detected between SP-A−/− and WT mice. Finally, there is currently no 

reliable method of administering exogenous SP-A to SP-A−/− mice in order to demonstrate 

a direct impact of SP-A on reversal of inflammation. We attempted to introduce intranasal 

exogenous SP-A obtained via bronchoalveolar lavage of human subjects with pulmonary 

alveolar proteinosis to neonatal mice, but were unable to verify that SP-A was delivered to 

the lungs. This is another direction we hope to further investigate.

In conclusion, our study showed that neonatal mice deficient in SP-A demonstrated 

increased inflammation in the brain following several proinflammatory insults, both focal 

and generalized. This supports the hypothesis that SP-A does in fact play a role in neonatal 

neuroinflammation in mice, and possibly in other species. This difference occurred despite 

our inability to detect SP-A expression in the brains of either WT or SP-A knockout 

mice both at baseline and following an inflammatory insult, suggesting that either SP-A is 

expressed elsewhere in the body and circulated systemically to the brain, or SP-A expression 

needs to be analyzed by other methods designed to detect very low levels of SP-A or localize 

SP-A to specific sections of the brain.

4. Experimental Procedures

4.1. Animals

Wild type C57BL/6J mice (WT) were purchased from The Jackson Laboratory (#000664, 

Bar Harbor, ME). Mice deficient for the SP-A gene (SP-A−/−) were obtained from Dr. 

Carole Mendelson (Montalbano et al., 2013) and were originally generated in the lab 

of Dr. Samuel Hawgood (Li et al., 2002). It has been long established in the literature 

that under normal conditions, SP-A null mice have no obvious phenotype other than 

increased susceptibility to mortality after pulmonary infections by bacteria and viruses 

(Depicolzuane et al., 2021; Ikegami et al., 1997). Our work and others have also shown 

that SP-A-deficient mice are more susceptible to mouse models of non-pulmonary injury 

involving inflammation (Liu et al., 2021; Vieira et al., 2017).
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To reduce genetic differences in our wild type and SP-A−/− lines used in this study, 

backcrossing protocols were used as previously described (Liu et al., 2021). Briefly, SP-A−/− 

mice and WT mouse lines were crossed when first introduced in our colony and resulting 

heterozygotes from different sires were crossed again. From these crosses, the resulting 

SP-A−/− and WT offspring from different sires were used as breeding pairs for our studies. 

This backcross procedure is repeated yearly to keep genetic variation between the lines at a 

minimum.

All three neuroinflammatory models were performed in 7- to 10-day-old (P7-P10) mice as 

previous research has indicated that the brains of 7- to 10-day-old mice and rats are similar 

to third-trimester human fetuses (and thus premature human newborns) in regards to cellular 

proliferation and myelination, neuroanatomy, neurochemical indices, and neuroinformatics 

(Clancy et al., 2007; Dobbing and Sands, 1979; Marret et al., 1995; Romijn et al., 1991). 

Pups were kept with their dams at all times, with the exception of the brief period during 

surgery. In regards to blinding, the surgeon for the HIE model was blinded to genotype, and 

all tissues (SP-A−/− and WT) were processed and analyzed together. SP-A expression was 

evaluated in 6-week-old mice as previous research has indicated lower levels of SP-A in 

neonatal mice compared with older animals. Animals of both sexes were included in each 

experimental group in this study and treatment between the sexes was standardized. A total 

of 94 pups were used in the study.

4.2. Sepsis model

P7 mice were injected intraperitoneally with lipopolysaccharide (LPS-EB Ultrapure; 

Escherichia coli; strain: 0111:B4; 100 μg/kg; InvivoGen, San Diego, CA) diluted to 0.1 

μL/g. The dose of LPS (100 μg/kg) used in this study has been previously shown in 

Sprague-Dawley rats to produce mild fever (Heida et al., 2004), transient activation of 

cerebral microglia, and a long-lasting increase in hippocampal excitability (Galic et al., 

2012). Furthermore, peripheral LPS administration at doses of 20 μg/kg up to 100 μg/animal 

in mice have been shown to increase pro-inflammatory cytokine expression in the brain 

(Gabellec et al., 1995; Pitossi et al., 1997). Pups in the control group received the same 

volume of sterile phosphate-buffered saline (PBS). Pups were returned to their dams, then at 

24 hours post-injection, pups were deeply sedated with isoflurane, cervically dislocated, and 

decapitated to harvest brain tissue. No animals died unintentionally during this procedure.

4.3. IVH model

P7 mice received unilateral intraventricular hemoglobin injection using a modification of 

a previously described rat model of neonatal IVH (Goulding et al., 2020). Prior to IVH 

induction, pups were sedated throughout the procedure with isoflurane (5% for induction 

and 2-3% for maintenance). Pups were secured in a warmed stereotaxic frame using 

nonrupture ear bars (Stoelting, Wood Dale, IL). The scalp was prepped with 10% povidone-

iodine, and a midline skin incision was made to expose bregma. Using a stereotaxic 

injector (Stoelting, Wood Dale, IL) equipped with a Hamilton syringe (model 701 RN, 

30G, point style 4, removable needle), the right lateral ventricle was accessed at coordinates 

1 mm lateral, 3 mm posterior, and 2 mm deep from bregma. Injections of 150 mg/ml of 

hemoglobin (MP Biomedicals, Irvine, CA) prepared in phosphate-buffered saline (PBS) or 
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PBS alone (control group) were delivered at a rate of 6.67 μl per minute, until a total of 10 

μl was injected. The syringe was left in place for an additional 1 minute to reduce retrograde 

flow upon removal. Incisions were closed with Vetbond tissue adhesive (3M Corp, St. Paul, 

MN), and animals were returned to their dams. All mice were then deeply sedated with 

isoflurane, cervically dislocated, and decapitated at 4 hours post-surgery to harvest brain 

tissue. No animals died unintentionally during this procedure.

4.4. HIE model

Unilateral HIE was induced in P8-10 mice (weight 5-6 grams) using the modified Rice-

Vannucci model (Liu et al., 1999; Rice et al., 1981). After sedation with isoflurane (4% 

for induction and 1.5-2% for maintenance) and local anesthesia with bupivacaine infiltration 

to minimize pain and distress, the surgical site was cleaned with 10% povidone-iodine and 

a midline cervical incision was made. The right common carotid artery was isolated and 

occluded through 8-Watt electrocoagulation. For mice in the sham groups, the carotid artery 

was visualized and isolated but not cauterized. The skin incision was closed with Vetbond 

tissue adhesive and infiltrated with additional local anesthesia. All mice were subjected 

to ischemic surgery within 5 minutes. Mice then received a subcutaneous injection of 0.3 

mL normal saline to prevent dehydration during recovery. After surgery, the pups were 

kept warm using a temperature-controlled blanket and allowed to recover for 2 hours. Two 

control groups (True Sham and Sham + Hypoxia) were used in order to control for the 

effects of hypoxia alone. To induce hypoxia, the HIE and Sham + Hypoxia groups were 

placed in a chamber containing 10% oxygen and 90% nitrogen at 36°C for 45 minutes. 

After that, the animals were replaced on a temperature-controlled blanket for 20 min and 

then returned to their dams. The True Sham group remained in normoxia. All mice were 

then deeply sedated with isoflurane, cervically dislocated, and decapitated at 24 hours 

post-surgery to harvest brain tissue. Overall unintended death rate for this procedure was 

8.3% and was due to either surgical complications or intolerance of hypoxia.

4.5. Assessment of SP-A and cytokine expression

Expression of SP-A was determined via standard reverse transcription PCR analysis, while 

expression of cytokines IL-1β, IL-6, CXCL1, TNF-α, and IL-10 was determined via 

real-time quantitative reverse transcription PCR (qRT-PCR) as described previously (Liu 

et al., 2021). Brains were harvested, flash frozen in liquid nitrogen, then transferred to 

−80°C freezer until ready for RNA isolation. Brain tissue was mechanically homogenized 

then processed to isolate RNA using RNeasy Mini Kit (Qiagen, Germantown, MD) per 

manufacturer’s instructions. RNA concentration was quantified using TECAN (Infinite 200 

Pro, Männedorf, Switzerland), then reverse transcription was performed for complimentary 

DNA using iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA). For 

cytokine analysis, qRT-PCR was performed using a LightCycler 480II System (Roche 

Diagnostics, Indianapolis, IN) and the iTaq Universal SYBR Green Supermix (Bio-Rad) 

per manufacturer’s instructions using primers specific for target mRNAs (see Table 1). Data 

was calculated by the comparative CT method (CT, threshold cycle) and each sample was 

duplicated to ensure accuracy. The amplicon used as a reference in all analyses by real-time 

qRT-PCR was generated using primers specific for 18S rRNA (Tratwal et al., 2014). We 

determined that the 18S rRNA primer efficiency is 106%, which is between the 90-110% 

Crocker et al. Page 10

Brain Res. Author manuscript; available in PMC 2024 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acceptable range for PCR primer efficiency (giving an amplification of 2.07 per PCR cycle). 

Cytokine expression was determined via replicated 2-ΔΔC(t) values and normalized to WT 

control values = 1 (Livak and Schmittgen, 2001; Schmittgen and Livak, 2008).

For analysis of SP-A expression in tissue, standard RT-PCR was performed using primers 

specific for mouse SP-A and β-actin (see Table 1). Briefly, mRNA isolated from lung 

and brain tissue was subjected to reverse transcription to produce cDNA which was then 

subjected to 50 cycles of PCR. Negative controls were included in the analysis in which the 

reverse transcription step was eliminated.

4.6. Statistical analysis

Values were graphed as average mean ± standard deviation (SD). Comparison of cytokine 

mRNA expression between two groups by genotype or intervention was determined via 

Student’s t-test. Normality was examined using the Shapiro-Wilk test. In case a variable 

violated the normality assumption, the statistical result based on the Box-Cox transformed 

variable was reported. To control for false discovery rate, multiple comparison adjustment 

was performed using the Benjamini-Hochberg method and all the reported p-values have 

been adjusted for multiple comparison. We used additional Student’s t-test to assess 

sex differences in cytokine levels with each of the models of inflammation. Statistically 

significant difference was defined as p-value ≤ 0.05. All statistical analyses were performed 

in R Statistical Software (version 4.2.0; R Core Team 2022).
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ABBREVIATIONS:

SP-A surfactant protein A

SP-D surfactant protein D

CNS central nervous system

IVH intraventricular hemorrhage

HIE hypoxic-ischemic encephalopathy

BBB blood-brain barrier
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TLR toll-like receptor

LPS lipopolysaccharide
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Surfactant protein A (SP-A) impacts immunomodulation in extra-pulmonary tissues

The presence of SP-A has been reported in brain tissue of adult mice

Prematurity predisposes infants to neuroinflammation via multiple mechanisms

Neonatal mice deficient in SP-A have increased expression of cytokines in brain tissue

Crocker et al. Page 17

Brain Res. Author manuscript; available in PMC 2024 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Cytokine mRNA expression in brains of WT and SP-A−/− mice subjected to systemic 
inflammation.
A. Neonatal mice (P7) were subjected to a model of LPS-induced systemic inflammation 

(image created with BioRender.com). After 24 h, mRNA was isolated from brain tissue and 

analyzed as described in Methods. Shown are levels of cytokine mRNA expression relative 

to levels in WT mice not exposed to LPS (set as 1); B. IL-1β mRNA relative expression, C. 
IL-6 mRNA relative expression, D. CXCL1 mRNA relative expression, E. TNF-α mRNA 

relative expression, F. IL-10 mRNA relative expression. Data shown represents the average 
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+/− SD; n ≥ 6 of 3 independent experiments. Significance (p) between samples are indicated 

by the bars. † indicates p-value after Box-Cox transformation was reported.
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Figure 2. Cytokine mRNA expression in brains of WT and SP-A−/− mice subjected to an IVH 
model.
A. Neonatal mice (P7) were subjected to a model of IVH-induced localized inflammation 

(image created with BioRender.com). After 24 h, mRNA was isolated from brain tissue and 

analyzed as described in Methods. Shown are levels of cytokine mRNA expression relative 

to levels in WT mice not exposed to LPS (set as 1); B. IL-1β mRNA relative expression, C. 
IL-6 mRNA relative expression, D. CXCL1 mRNA relative expression, E. TNF-α mRNA 

relative expression, F. IL-10 mRNA relative expression. Data shown represents the average 
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+/− SD; n ≥ 6 of 3 independent experiments. Significance (p) between samples are indicated 

by the bars. † indicates p-value after Box-Cox transformation was reported.
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Figure 3. Cytokine mRNA expression in brains of WT and SP-A−/− mice subjected to an HIE 
model.
A. Neonatal mice (P8-10) were subjected to a model of HIE-induced localized inflammation 

(image created with BioRender.com). After 24 h, mRNA was isolated from brain tissue and 

analyzed as described in Methods. Shown are levels of cytokine mRNA expression relative 

to levels in WT mice not exposed to LPS (set as 1); B. IL-1β mRNA relative expression, C. 
IL-6 mRNA relative expression, D. CXCL1 mRNA relative expression, E. TNF-α mRNA 

relative expression, F. IL-10 mRNA relative expression. Data shown represents the average 
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+/− SD; n ≥ 3 of 3 independent experiments. Significance (p) between samples are indicated 

by the bars. † indicates p-value after Box-Cox transformation was reported.
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Figure 4. Detection of mouse SP-A mRNA in WT and SP-A−/− lung and brain tissue.
A. RNA was isolated from lung and brain tissue from 6 week-old WT and SP-A−/− 

mice. RNA was subjected to reverse transcription and the resulting cDNA subjected to 

50 cycles of PCR using primers specific for mouse SP-A. Lung RNA samples were also 

subjected to PCR analysis without the reverse transcription step to serve as a true negative 

control. Shown is an image of the ethidium bromide-stained DNA following standard gel 

electrophoresis. The arrow indicates the expected position of the SP-A amplicon, * indicates 

unexpected spurious bands. B. Image represents a continuation of image in A in which brain 
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RNA samples were also subjected to PCR analysis without the reverse transcription step to 

serve as a true negative control. Shown is an image of the ethidium bromide-stained DNA 

following standard gel electrophoresis. The arrow indicates the expected position of the β-

actin amplicon, * indicates unexpected spurious bands. Also included are RT-PCR reactions 

using β-actin primers as a positive control. C. Analysis of neonatal (P7-P10) WT brain 

tissue for expression of SP-A mRNA after being subjected to inflammatory models. Brain 

tissue RNA isolated from 4 or 5 WT pups subjected to the neuroinflammatory models was 

analyzed by RT-PCR as described above using primers specific for SPA-1 mRNA. Shown 

is an image of the ethidium bromide-stained DNA following standard gel electrophoresis. 

RT-PCR analysis of RNA isolated from a WT lung sample is included as a positive control. 

β-actin positive control not shown.
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Table 1.

Sequence of primers used in real-time quantitative RT-PCR analysis.

Target Gene Forward Primer Reverse Primer Amplicon Size Ref

IL-1β 5’-GCCACCTTTTGACAGTGATGAG 5’-AAGGTCCACGGGAAAGACAC 218 bp (Cai et al., 2017)

IL-6 5’-TAGTCCTTCCTACCCCAATTTCC 5’-TTGGTCCTTAGCCACTCCTTC 75 bp (Willis et al., 2020)

CXCL1 5’-CTGCACCCAAACCGAAGTC 5’-AGCTTCAGGGTCAAGGCAAG 66 bp (Stewart et al., 2014)

TNF-α 5’-CAGCCTCTTCTCATTCCTGC 5’-GGTCTGGGCCATAGAACTGA 132 bp (Sales et al., 2015)

IL-10 5’-GCTCTTACTGACTGGCATGAG 5’-CGCAGCTCTAGGAAGCATGTG 104 bp (Ouchi et al., 2001)

SP-A 5’-GTGCACCTGGAGAACATGGA 5’-TGACTGCCCATTGGTGGAAA 177 bp (Ferretti et al., 2016)

β-actin 5’-CATGTACGTTGCTATCCA 5’-CTCCTTAATGTCACGCAC 249 bp (Akiyama et al., 2016)

18S 5’-GTAACCCGTTGAACCCCATT 5’-CCATCCAATCGGTAGTAGCG 150 bp (Tratwal et al., 2014)
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