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Abstract

Background: Estimation of insulin sensitivity (SI) and its daily variation are key for optimizing insulin therapy
in patients with type 1 diabetes (T1D). We recently developed a method for SI estimation from continuous glu-
cose monitoring (CGM) and continuous subcutaneous insulin infusion (CSII) data in adults with T1D (SI

SP) and
validated it under restrained experimental conditions. Herein, we validate in vivo a new version of SI

SP

performing well in daily life unrestrained conditions.
Methods: The new SI

SP was tested in both simulated and real data. The simulated dataset consists of 100 virtual
adults of the UVa/Padova T1D Simulator monitored during an open-loop experiment, whereas the real dataset
consists of 10 youths with T1D monitored during a hybrid closed-loop meal study. In both datasets, participants
underwent two consecutive meals (breakfast and lunch, at 7 and 11 am) with the same carbohydrate content
(70 g). Plasma glucose and insulin were measured during each meal to estimate the oral glucose minimal model
SI (SI

MM). CGM and CSII data were used for SI
SP calculation, which was then validated against the gold stan-

dard SI
MM.

Results: SI
SP was estimated with good precision (median coefficient of variation <20%) in 100% of the real

and 91% of the simulated meals. SI
SP and SI

MM were highly correlated, both in the simulated and real datasets
(R = 0.82 and R = 0.83, P < 0.001), and exhibited a similar intraday pattern.
Conclusions: SI

SP is suitable for estimating SI in both closed- and open-loop settings, provided that the subject
wears a CGM sensor and a subcutaneous insulin pump.
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Introduction

Insulin sensitivity quantifies the ability of insulin to si-
multaneously suppress endogenous glucose production

and stimulate glucose disposal. The ‘‘gold standard’’ method
to quantify insulin sensitivity (SI) is the hyperinsulinemic/
euglycemic clamp,1 which requires to infuse insulin and
glucose intravenously, in a laboratory setting, and frequently
measure plasma glucose and insulin concentrations. Such a
method is rather invasive and nonphysiological since glucose
is administered intravenously and both glucose and insulin
are artificially maintained almost constant. Other methods
have been proposed and validated to partially overcome the
above limitations, for example, the intravenous2 and oral
glucose or meal tolerance tests interpreted with mathematical
models.3,4 Empiric surrogate indices,5,6 or methods based on
basal/nonstimulated conditions,7–9 are also available. How-
ever, a drawback of all the above methodologies is the need to
measure both plasma glucose and insulin concentrations.
This precludes their use in outpatient settings.

So far, a few methodologies have been developed for the
estimation of SI from outpatient data and thus potentially
usable to quantify daily SI variations.10,11 Fabris et al pro-
posed a method based on Kalman filter and an extended oral
glucose minimal model (OGMM) to track real-time changes
of SI

10 from continuous glucose monitoring (CGM) and
continuous subcutaneous insulin infusion (CSII) data, assum-
ing minimal model parameters to be either fixed to population
values or estimated from historical patient data. The method
proved to be effective at adjusting insulin to carbohydrate
ratio (CR) after a single bout of aerobic exercise12 but, to the
best of our knowledge, it has never been validated against
other inpatient-derived SI indices available in the literature.

In a previous work we used a different approach based on an
algebraic formula to calculate, for each meal, an index of SI

from CGM and CSII data (SI
SP).11 The method was validated

against the OGMM SI and recently used to optimize CR both
in subjects wearing a sensor-augmented insulin pump13,14 and
artificial pancreas.15,16 However, the SI

SP method was origi-
nally developed and validated on data collected in strictly
controlled experimental conditions, that is, with well-spaced
consecutive meals (meal-to-meal interval of at least 6 h) and
no occurrence of hypoglycemic events,11 and thus its perfor-
mances are likely to degrade outside that domain of validity.

In this study, we propose a new algorithm to assess SI from
CGM and CSII data in patients with type 1 diabetes (T1D)
under real-life conditions. The new method is tested and
validated both in silico and in vivo, against the OGMM index
of SI (minimal model SI [SI

MM])3 derived from plasma glu-
cose and insulin data.

Materials and Methods

Database

In silico dataset. The virtual dataset was generated using
the most recent version of the UVa/Padova T1D simulator
(T1DS),17 a tool accepted by U.S. Food and Drug Adminis-
tration as substitute for preclinical trials of certain insulin
treatments such as artificial pancreas,18 insulin analogs,19 and
glucose sensors.20 The simulator consists of a model of
glucose–insulin–glucagon dynamics and a population of
in silico T1D subjects (100 adults, 100 adolescents, and 100

children). In particular, in this study, the 100 in silico T1D
adults were used (mean – standard deviation [SD]: age = 34
– 10 years, body weight = 75.2 – 12.1 kg), for each of whom
the optimal daily pattern of basal insulin rate and CR were
available and usable for calculating the optimal basal insulin
infusion and prandial insulin boluses, respectively. Of note,
the latest version of the simulator incorporates a series of
novelties useful for the purpose of this work, including a
model of diurnal SI variability.21

Each in silico subject received 70 g of carbohydrate (CHO)
both at breakfast and lunch, these being separated by 4 h, with
premeal insulin bolus calculated based on subject’s optimal
CR and subject’s specific basal insulin infusion, mimicking
the protocol performed by the real subjects (see below).
Simulated CGM and CSII data are reported in Figure 1, left
panels (top and bottom, respectively) for both meals, whereas
simulated plasma glucose and insulin concentration data are
shown in Supplementary Figure S1 (left panels, top and bot-
tom, respectively). Of note, to simulate realistic data, we
superimposed noise to simulated CGM traces as described in
Visentin et al17; an independent, Gaussian noise, with zero
mean and coefficient of variation (CV) equal to 2% to plasma
glucose3; and an independent, Gaussian noise, with zero mean
and known variance to plasma insulin data.22

Real dataset. The real dataset was obtained from a larger
study (NCT03234491) and composed of 11 youths with T1D
(6 males; mean – SD: age = 21 – 4 years, BW = 64.8 – 8.1 kg,
HbA1c = 7.3% – 0.6%), who underwent an open-label, ran-
domized three-way crossover study comparing glucose
control during hybrid closed-loop (HCL) therapy, using
fast-acting insulin analog, with premeal insulin bolus given
either through the subcutaneous route (control) or Afrezza�

(MannKind, Danbury, CT) at two different doses.23 Here we
used only data coming from the control visit of this study.
One of the 11 subjects had incomplete pump data record,
and, therefore, was excluded from the analysis.

The real subjects underwent the same experimental sce-
nario as the virtual ones, consisting of two consecutive meals
(breakfast and lunch), administered around 7 and 11 am,
respectively. In particular, the ingested meals were designed
by the metabolic kitchen to be identical in terms of CHO and
nutrient content (total CHO content of 70–80 g per meal, lipid
content of 14–15 g, protein content of 25–30 g, and energy
540–570 kcal). Premeal insulin bolus was calculated based
on subject’s CR for that meal, whereas basal insulin and/or
correction boluses were calculated by the HCL platform
(Diabetes Assistant, DiAs).24 The HCL platform included the
Dexcom G5 sensor (Dexcom, San Diego, CA) and the t:slim
insulin pump (Tandem Diabetes Care, San Diego, CA).
Plasma glucose and insulin levels were frequently measured
for 8 h using YSI 2300 glucose analyzer (YSI Life Sciences,
Yellow Springs, OH) and Millipore ELISA assay (EMD
Millipore Corporation, Burlington, MA), respectively.

Hypoglycemia (YSI glucose values below 80 mg/dL) was
treated with 16 g fast-acting CHO if participants were expe-
riencing symptoms. For YSI glucose values below 70 mg/dL,
all subjects received a rescue oral glucose treatment regard-
less of the symptoms. The study protocol was approved by
the Human Investigations Committee of the Yale School of
Medicine (NCT03234491). The details of the original study
are available elsewhere.23
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Measured CGM and insulin pump data are reported in
Figure 1, right panels (top and bottom, respectively), while
frequently measured plasma glucose and insulin concentra-
tions are reported in Supplementary Figure S1 (right pa-
nels, top and bottom, respectively).

Calculations

Assessment of SI from CGM and CSII data. Paralleling
what already presented in a previous work,11 we made some
approximations about how to use CGM sensor and CSII de-
vice as surrogates for the glucose and insulin signals, re-
spectively, and we calculated the amount of carbs absorbed
during the meal (AoC) [mg], possibly accounting for residual
CHOs from previous meals (Supplementary Data). Thus, one
obtains:

where BW is subject’s body weight [kg], AUC area under the
curve obtained using the trapezoidal rule, Dt time between
meal ingestion (tmeal) and the end of experiment (tend),

Basal and Bolus the amount of insulin administered by the
pump through basal infusion and premeal/correction boluses
during the observation period, possibly accounting for
residual active insulin (Insulin On Board, IOB)26 (Supple-
mentary Data), CL plasma insulin clearance (L/min) calcu-
lated using a population model,27 and risk the function
describing the behavior of insulin action below basal glucose
levels. Precision of SI

SP estimation was assessed by propa-
gating the measurement error on CGM traces to SI

SP.
Since the Dexcom G5 sensor was used in both real and

simulated datasets, a mean absolute relative deviation equal
to 9% was assumed.28 Finally, it is important to clearly define
the domain of validity of Eq. (1). Specifically, SI

SP cannot be
calculated if one or more of the following conditions occur:

(i) DCGM is higher than 150 mg/dL 6 h after meal ingestion,
since this makes it difficult for the quantification of insu-
lin action and possibly leads to negative SI

SP estimates;

FIG. 1. Median (line) and interquartile ranges (shaded area) of CGM (top) and insulin pump (bottom) data, during
breakfast (black continuous line) and lunch (gray dashed line) meals, for the simulated and real datasets (left and right
panels, respectively). CGM, continuous glucose monitoring.

SSP
I ¼

AoC mealð Þ
BW

�GEZI � AUC DCGMð Þ�VG CGM tendð Þ�CGM tmealð Þ½ �
1
Dt
� AUC Basalð Þ

CL
� AUC DCGMð Þþ AUC Bolusð Þ

CL
� AUC 1þ r1 � riskð Þ � CGM½ �

n o (1)
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(ii) CGM at meal time is below 60 mg/dL or above
200 mg/dL, since they are far from target glucose
levels;

(iii) absolute glucose rate of change at meal time is
higher than 2 mg/dL/min, since this reveals unstable
glucose levels at the time of meal ingestion;

(iv) the ratio between glucose excursion above and
below the basal glucose value, as quantified by AUC,
is below 60% and the precision of SI

SP, expressed as
CV (CV %), is higher than 50%.

Validation. The above-described method was validated
by comparing SSP

I with the index of SI derived from the
OGMM (SMM

I ), which employs plasma glucose and insulin
concentration data,3 instead of CGM and insulin infusion
by the pump.

In particular, the model is similar to the OGMM3 (Eqs. S1–
S3 in Supplementary Data) but, here, the meal glucose rate of
appearance (RaG) (mg/kg/min) was described with the model
of gastrointestinal tract reported in another work,29 to facil-
itate model identification in the case of temporally close
meals.

The model was identified from plasma glucose and insulin
concentration data using a Bayesian Maximum a Posteriori
estimator to help numerical identifiability. Measurement
error on plasma glucose concentration was assumed to be
independent, Gaussian, with zero mean and known SD
(CV = 2%).3 Precision of model parameters was obtained
from the Fisher Information matrix.30

Statistical analysis

Data are presented as median and interquartile range,
unless otherwise specified. Two-sample comparisons were
done by paired Student’s t-test, for normally distributed
variables, or Wilcoxon signed rank test, otherwise. Normality
of the distributions was assessed by the Lilliefors test.
Pearson’s correlation was used to evaluate univariate linear
correlation.

Results

Simulated dataset

We were able to estimate SI
SP in about 91% of the simu-

lated meals. The remaining ones fell outside the domain of
validity of the method, described above, and were removed
from the analysis. SI

SP was 6.4 [4.5, 10.6] and 9.1 [6.9, 13.9]
10–4 dL/kg/min per lU/mL at breakfast and lunch
(CV = 15%), respectively, while SI

MM was 10.2 [6.3, 16.2]
and 11.7 [8.7, 22.8] 10–4 dL/kg/min per lU/mL in the two
meals (CV = 5%) (Fig. 2, left panel). Both SI

SP and SI
MM

resulted significantly lower at breakfast than lunch (P = 0.019
and P = 0.003, respectively). The overall correlation between
the two indices (Fig. 2, right panel) was high (R = 0.82,
P < 0.001), as it was the meal-specific correlation for break-
fast (RB = 0.86, P < 0.001) and lunch (RL = 0.78, P < 0.001).
We also assessed the performance of SI

SP if plasma glucose
was used instead of CGM: as expected, this led to a sig-
nificant improvement in the overall correlation (R = 0.89,
P < 0.001), and the correlations at breakfast (RB = 0.94,
P < 0.001) and lunch (RL = 0.86, P < 0.001) alone (Supple-
mentary Fig. S2).

In addition, a correlation between SI at breakfast and
lunch was shown for both the MM and the sensor and
pump method (R = 0.43 and R = 0.54, P < 0.001, respec-
tively; Fig. 4, top panels), but its extent is influenced by
a nonnegligible intersubject variability. The ratio between
lunch and breakfast indices obtained from the MM (lunch
SI

MM/breakfast SI
MM) positively correlated with that

obtained with the sensor and pump (lunch SI
SP/breakfast

SI
SP) method (R = 0.54, P < 0.001) (Supplementary Fig. S4,

left panel), which rose (R = 0.76, P < 0.001) if plasma glu-
cose was used instead of CGM (Supplementary Fig. S5, left
panel).

Real dataset

In real patients, SI
SP was 11.7 [10.1, 17.6] and 15.8

[12.7, 19.1] 10–4 dL/kg/min per lU/mL at breakfast and
lunch (CV = 19%), respectively, whereas SI

MM was 15.2 [10.5,
18.3] and 17.2 [12.4, 25.0] 10–4 dL/kg/min per lU/mL

FIG. 2. Boxplots (left panel) and correlation (right panel) of SI indices obtained with the oral MM, which exploits plasma
glucose and insulin data, versus SP, which exploits CGM sensor and insulin pump data, at breakfast (black squares) and
lunch (gray triangles) meals for the simulated dataset. Pearson’s correlation (R) was used to evaluate univariate linear
correlation. MM, minimal model; SI, insulin sensitivity; SP, sensor and pump.
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(CV = 6%) (Fig. 3, left panel). Of note, SI
SP resulted slightly

significantly lower at breakfast than lunch (P = 0.02), whereas
this was not the case for SI

MM. The correlation between the two
indices (Fig. 2, right panel) was good both overall (R = 0.83,
P < 0.001), and by meal (breakfast: RB = 0.81, P < 0.001;
lunch: RL = 0.85, P < 0.001). In agreement with the simulated
results, we found a significant improvement in the correlation,
both overall (R = 0.89, P < 0.001) and at breakfast (RB = 0.94,
P < 0.001) and lunch (RL = 0.85, P < 0.001), whenever CGM

data were substituted with plasma glucose (Supplementary
Fig. S3). In addition, a correlation between SI at breakfast and
lunch was shown for both the MM and the sensor and pump
method (R = 0.47 and R = 0.63, respectively; Fig. 4, bottom
panels). Such correlations were not statistically significant,
probably due to both the nonnegligible intersubject variability
and the small sample size (n = 10).

The lunch SI
MM/breakfast SI

MM well correlated with lunch
SI

SP/breakfast SI
SP (R = 0.85, P = 0.002) (Supplementary

FIG. 3. Boxplots (left panel) and correlation (right panel) of SI indices obtained with the oral MM, which exploits plasma
glucose and insulin data, versus SP, which exploits CGM sensor and insulin pump data, at breakfast (black squares) and
lunch (gray triangles) meals for the real dataset. Pearson’s correlation (R) was used to evaluate univariate linear correlation.

FIG. 4. Correlation between SI indices at breakfast and lunch meals obtained either with the oral MM (left panels), which
exploits plasma glucose and insulin data, and SP (right panels), which exploits CGM sensor and insulin pump data, for the
simulated (top panels) and real datasets (right panels). Pearson’s correlation (R) was used to evaluate univariate linear
correlation.
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Fig. S4, right panel), which rose (R = 0.97, P < 0.001) if
plasma glucose was used instead of CGM (Supplementary
Fig. S5, right panel).

Discussion

We presented a novel SI index, derived from CGM and CSII
data in daily life conditions. The index has been validated
during two consecutive meal scenarios in a simulation
framework, using the adult population of the UVa/Padova
T1DS,17 and in real youths with T1D wearing a HCL system.23

The validation was performed by comparing, for each meal,
SI

SP with the reference SI
MM estimated using the OGMM.3

The results showed a good agreement between SI
SP and

SI
MM, with a high correlation between the two indices as well

as a similar breakfast versus lunch pattern in both the simu-
lated (Fig. 2) and real (Fig. 3) datasets. Of note, to facilitate
model identification in the case of meals that are too close to
each other (4 h), we coupled a model of the gastrointestinal
tract to the model of glucose kinetics.3 This was necessary to
obtain the best possible estimate of the reference SI

MM since,
after only 4 h, not all the ingested glucose might be fully
absorbed into the circulation and this could affect the SI

MM

calculation. However, this is not facilitating the comparison
between SI

MM versus SI
SP, since the latter adopted an integral

approach to compute the amount of glucose absorbed during
the meal. On the contrary, the fact that the absorption model
used in the OGMM is the same used to generate the (in silico)
data would make SI

MM as accurate as possible, thus making
the validation of the integral method even more challenging.

Results also showed a nonnegligible intersubject vari-
ability in breakfast versus lunch SI, both for the MM and the
SP method (Fig. 4). Hence, using the proposed method, one
might wonder how many SI estimates would be required to
detect a statistically significant variation in SI: assuming an
average precision of SI estimation equal to 20%, a type I error
equal to 5%, and a statistical power of 80%, the number of SI

estimates required to detect a 20% (or 10%) variation in SI is
8 (or 32). In addition, we also calculated the ratio of SI esti-
mated at lunch and breakfast with both the reference MM and
sensor and pump methods and compared them (Supplemen-
tary Fig. S4). The correlation between the two was similar to,
or slightly lower than, that obtained when comparing
breakfast and lunch SI values separately. This is partially
expected since SI estimates at breakfast and lunch are af-
fected by an estimation error and this propagated (sometime
badly) to ratios. Nevertheless, when comparing the same
ratios obtained using plasma glucose instead of CGM, the
correlation indices improved in both datasets (Supplementary
Fig. S5).

The new SI
SP index overcomes some of the limitations of

the one previously proposed by our group,11 for example, it
works even in case of not well-spaced consecutive meals
and/or in the presence of hypoglycemic events, which can
occur in daily life conditions of individuals with T1D. This
was achieved, thanks to the two modifications incorporated
in the new formula: (1) the ability to describe the peculiar
dynamic of insulin action in the hypoglycemic range and
(2) the possibility to separately account for basal and bolus
insulin in determining insulin action, which may also be
beneficial for analyzing data coming from patients under
multiple daily injection therapy.

To better grasp the positive impact of such modifications,
we also calculated SI

SP using the previous approach11 and
compared it with SI

MM in our data: correlation between the
model-based and sensor-based indices were lower with the
previous method (from 0.82 and 0.83 of the newly proposed
to 0.66 and 0.67 of the previous one, in simulated and real
dataset, respectively). Moreover, the previously published
method provided values of SI

SP more than doubled with
respect to those estimated with the MM and the new formula
(20.8 [11.0, 41.6] and 40.9 [35.0, 54.5] 10–4 dL/kg/min per
lU/mL with the previous formula, in simulated and real
dataset, respectively).

We also tested the proposed methodology in the adult
population with T1D used to develop the previous version of
the SI

SP methodology11: both SI
SP indices provided a good

correlation when compared with SI
MM (R = 0.79 with the

new SI
SP, R = 0.82 with the previously published one). This

proves that, in strictly controlled experimental conditions,
that is, when consecutive meals are well spaced (meal-to-
meal interval of at least 6 h) and there are not hypoglycemic
events, both methodologies provide good results in terms
of correlation with the reference SI

MM.
We previously showed how SI

SP index can be used to
optimize the insulin to CHO ratio (CR)13,14 Hereafter, we
tested in silico the ability of the new SI

SP formula to optimize
CR, and compared the performance against the one based on
the previous SI

SP formulation.13 In particular, we used the
virtual adult population of the UVa/Padova T1D Simulator17

to perform an in silico scenario, consisting of a 70 g CHO
meal administered three times: in the first experiment, the
meal insulin bolus was calculated based on patient-specific
CR; whereas in the second and third experiments the meal
insulin bolus was calculated using the CR based on the pre-
vious SI

SP calculation13 and the adapted CR derived from
the new SI

SP methodology, both calculated from the CGM
and insulin pump data of the first experiment. Moreover, to
test the efficacy and robustness of the CR method against
suboptimal CR therapy, three in silico scenarios were per-
formed differing by the patient-specific CR used in the first
experiment: nominal CR, CR underestimated by 20% and
CR overestimated by 20%.

Results showed that, for each in silico scenario, the per-
formance of the new SI

SP index in optimizing CR was almost
identical to the ones previously reported,13 especially in
protecting from hypoglycemia (results not shown). Further-
more, using the in silico data described above, we also
assessed the robustness of the new SI

SP methodology to
suboptimal CR: a good correlation was shown between SI

MM

versus the new SI
SP in all the analyzed scenarios (overall

R = 0.90). Of note, as assessed by repeated measurements
ANOVA followed by post-hoc analysis, both SI

MM and SI
SP

showed slightly (but statistically significant) higher SI values
in the scenario with CR underestimated by 20%, and slightly
(but statistically significant) lower SI in the scenario with
CR overestimated by 20%, with respect to the scenario
with nominal CR. This can be explained by the well-known
nonlinear relationship between insulin-dependent glucose
disposal and glucose levels, which results in an apparent
reduction in SI (or increase in insulin resistance) when glu-
cose levels achieve high values.31

Needless to say, before adapting patient’s insulin ther-
apy parameters, like CR, in real life condition of individuals
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with T1D, one should manage the within- and between-day
variability in SI.

32,33 As an example, one can iteratively
update SI and CR estimates, let say every week, using a run-
to-run approach, as done in,16 where the previous version of
SI

11 was used to optimize CR during a closed-loop study.
Differently from other approaches for SI estimation, for

example,10,12 our integral approach does not require any
assumptions on glucose absorption and subcutaneous insulin
infusion. On the other hand, our approach provides an esti-
mate of SI with a lower time resolution (every few hours—
e.g., after each meal—instead of almost every 5 min10).
However, given the slow dynamics of the glucose–insulin
system, the impact of fast SI variations on glucose outcomes
is expected to be modest.34,35

The methodology proposed in this study still has some
limitations. Our study was validated in a limited number of
real youths and adults with T1D, therefore additional studies
are needed to extend the domain of validity of the method to
populations of different ages. Moreover, the method requires
dynamic data, particularly after a meal ingestion, and thus it
cannot be used to assess SI during night-time and/or in the
postabsorptive state. Future work will also focus on the
extension of the methodology to assess SI in these condi-
tions and/or to assess if the administration of a small insulin
bolus, able to properly induce a glucose excursion without
causing hypoglycemia, would allow to estimate SI

SP even
overnight. Finally, the method was not designed to assess
SI in subjects with type 2 diabetes on CGM and CSII, as the
endogenous insulin secretion, which is not modeled in the
method proposed in this study, might represent a confound-
ing factor in the quantification of the effect of exogenous
insulin on glucose kinetics.

As discussed, SI
SP index cannot be calculated when CGM

readings are too high or too low for a long-time frame after
the meal (Methods section) since, in such conditions, non-
linearities in insulin action or counterregulatory mechanisms
may occur, which are not accounted by the method. Never-
theless, these limits apply also to the OGMM. To this end, the
use of in silico data was fundamental to assess the constraints
cited above and to strengthen the validation of the method-
ology. Another limitation concerns the need to fix some
parameters (GEZI, VG, r1, and r2) to population values3,25,36

and to calculate others from population models (CL) using
anthropometric data.27 Nevertheless, these values were con-
sistently fixed in both SI

SP and SI
MM and, according to what

was reported in a previous work,11 the sensitivity of the
method to the chosen values was modest. Finally, the accu-
racy of SI

SP relies on the quality of the data provided by
CGM devices, which luckily has greatly improved in the last
decade. Another important information, which affects the
estimation of SI

SP, as well SI
MM, is the knowledge of the

amount of CHOs entering the circulation.
We also acknowledge that macronutrient composition or

other surrogate indices, like the glycemic index, can be help-
ful in the calculation of SI

SP, especially in the presence of
multiple meals close to each other. To deal with this, we have
previously developed and validated the concept of the CHOs
on Board (COB, Supplementary Data),11 using model-based
estimations of glucose postprandial rate of absorption. Future
work will focus on assessing how different types of CHOs,37

macronutrient intake, and/or food glycemic indices modulate
COB, as well as how these affect SI. In fact, it has been shown

that meal composition may affect the estimate of SI, with an
apparent reduction by 20%–30% in the presence of fat and
proteins (e.g., oral glucose vs. mixed meal test).38 In addition,
learning techniques can also be applied to classify meal
compositions based on CGM readings, and this information
may be used to tune the SI estimation algorithm. This, how-
ever, would require the availability of data collected in real-
life conditions, in which meal doses and compositions are
known.

The current version of the proposed methodology can
be used by individuals with T1D using either sensor-
augmented pump (SAP) therapy or closed-loop systems.
Future works will include the extension of SI

SP to the broader
population of T1D on multiple daily injection therapy, as
well as subjects with T1D with different degrees of insulin
resistance. Finally, it would be interesting to assess the
accuracy and limitations of the methodology in other con-
ditions like exercise, sick-days, use of drug modifying the
SI (e.g., steroids), menstrual cycle, as well as intra- and
interday variations of SI due to habits and/or behavioral
factors, as apparently shown also in well-controlled exper-
imental conditions.32,33 However, these require additional
data not available to date.

Conclusions

We propose a new index of SI, estimated from glucose
sensor and insulin pump data, and thus valuable to quantify SI

in real-life conditions in subjects with T1D. The method
was validated, both in silico and in vivo, against the OGMM.
This methodology would additionally permit, once the rep-
eatability of the method is assessed, the quantification of
the intra- and interday variability of SI, and correlation
with patient’s daily activities. This, in turn, would forecast
an automatic optimization of insulin treatment for patients
on SAP or HCL that includes adjustments of insulin-to-CR
and/or insulin correction factor.
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