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Abstract

Surveillance of HIV epidemics in key populations and in developing countries is often challenging 

due to sparse, incomplete, or low-quality data. Analysis of HIV sequence data can provide an 

alternative source of information about epidemic history, population structure, and transmission 

patterns. To understand HIV-1 dynamics and transmission patterns in Senegal, we carried 

out model-based phylodynamic analyses using the structured-coalescent approach using HIV-1 

sequence data from three different subgroups: reproductive aged males and females from the 

adult Senegalese population and men who have sex with other men (MSM). We fitted these 

phylodynamic analyses to time-scaled phylogenetic trees individually for subtypes C and CRF 

02_AG, and for the combined data for subtypes B, C and CRF 02_AG. In general, the combined 

analysis showed a decreasing proportion of effective number of infections among all reproductive 

aged adults relative to MSM. However, we observed a nearly time-invariant distribution for 

subtype CRF 02_AG and an increasing trend for subtype C on the proportion of effective number 

of infections. The population attributable fraction also differed between analyses: subtype CRF 

02_AG showed little contribution from MSM, while for subtype C and combined analyses 
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this contribution was much higher. Despite observed differences, results suggested that the 

combination of high assortativity among MSM and the unmet HIV prevention and treatment needs 

represent a significant component of the HIV epidemic in Senegal.
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1. Introduction

There are an estimated 36.7 million people around the world living with HIV with 

approximately 1.8 million newly infected in 2016 equating to approximately 5000 new 

infections per day (UNAIDS, 2017). Notably, 64% of incident HIV infections happen across 

sub-Saharan Africa (UNAIDS, 2017). In Senegal, 1100 new HIV infections have been 

estimated in 2016 among adults (UNAIDS, 2017) in which HIV prevalence is concentrated 

among key populations including men who have sex with other men (MSM).

Studies carried out among MSM in Senegal have showed stable and high HIV prevalence 

of 22.4% and 21.8%, including data from 2004 and 2007, respectively (Wade et al., 2005, 

2010). A more recent study showed a prevalence in Senegal MSM population of 23.5% 

(Lyons et al., 2017). While generalizability of these estimates is limited by the number of 

sample locations, they do suggest a concentration of HIV in MSM which is further reflected 

by genetic populations structure of the virus. For example, these surveys have shown that in 

Senegal HIV-1 subtype C is the predominant subtype circulating among MSM, but HIV-1 

CRF 02_AG predominates among the broader population of people living with HIV by a 

large margin (Ndiaye et al., 2009, 2013; Diop-Ndiaye et al., 2010), which shows a high 

degree of compartmentalization of these risk groups.

The high prevalence of subtype C among MSM may potentially lead to an increase of 

subtype C among other reproductive aged adults living with HIV if a substantial proportion 

of new HIV infections in women are acquired through sex with MSM. This is plausible 

because more than 90% of MSM in Senegal have reported having sex with women (Wade 

et al., 2005; Jung et al., 2012). In fact, prevalence of subtype C among reproductive aged 

adults living with HIV increased from 4% in 2000 to approximately 10% in 2010 (Jung et 

al., 2012), but the extent to which this is attributable to transmission by MSM to female 

partners has not been estimated.

To better understand HIV transmissions and the contribution of the unmet HIV prevention 

needs among MSM to the HIV epidemics in Senegal, we carried out a model-based 

phylodynamic analysis using HIV-1 genetic sequence data collected from both self-reported 

MSM and the general population. This analysis combined a phylogenetic component 

whereby a time-scaled phylogenetic tree was estimated from sequence data, with a 

model-fitting component whereby a semi-parametric compartmental epidemiological model 

was fitted to phylogenetic trees (Volz, 2012). The time-scaled phylogenetic tree is 

used to describe the evolutionary history of the pathogen and provides information on 

past transmission dynamics that is otherwise difficult to obtain using more traditional 
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epidemiological methods. The mathematical model describes transmissions between the 

different groups of individuals, including MSM and reproductive aged men and women.

Recent advances in phylodynamic analysis methodology have enabled estimation of recent 

incidence trends and transmission patterns between risk groups (Volz and Siveroni, 2018; 

Volz et al., 2013). Largescale blinded simulation experiments have shown that model-based 

phylodynamic methods provide a viable strategy for estimating transmission patterns which 

are not identifiable from non-genetic surveillance data (Ratmann et al., 2016). In this paper, 

we employed model-based phylodynamic analysis to elucidate epidemiological trends for 

HIV-1 subtypes B, C, and CRF 02_AG circulating in Senegal. Similar analyses have 

previously provided valuable insights into transmission patterns in Nigeria (Volz et al., 

2017a) and South Africa (Rasmussen et al., 2018).

2. Material and methods

2.1. Data

We retrieved from the Los Alamos HIV database (www.hiv.lanl.gov) 541 DNA sequences 

from partial HIV-1 pol gene, comprising protease and partial reverse transcriptase, from 

Senegal. These consisted of 39 sequences from subtype B, 107 from subtype C and 395 

from subtype CRF 02_AG; and one sequence per patient.

We only retrieved DNA sequences with length greater than 1000 base pairs (bp). These 

sequence data were matched with associated epidemiological metadata on risk group, 

location of sampling, sex and collection date of HIV samples compiled at the Institut de 

Recherche en Santé, de Surveillance Epidémiologique et de Formation (IRESSEF), Dakar, 

Senegal.

In order to account for external introductions of HIV lineages into Senegal, we also 

retrieved additional sequences from outside Senegal by blastn (Altschul et al., 1990) using 

custom Python scripts (https://github.com/thednainus/senegalHIVmodel). Each Senegal 

sequence was compared to the nucleotide collection database (nt) which is a collection 

of sequences from the International Nucleotide Sequence Database Collaboration (INSDC). 

This comparison was carried out to obtain the best match for each sequence, which was only 

kept if the country of origin was known and it was not from Senegal. We only retrieved 

non-identical GenBank accession numbers that we referred to as “close global reference” 

(CGR) sequences. All CGR and Senegal sequences were analysed together and by subtype. 

The inclusion of CGR sequences allowed phylodynamic analyses to account for importation 

of lineages into Senegal (see section Phylodynamic Analyses).

For subtype B and C, three sequences from subtype D were used as an outgroup in the 

phylogenetic analysis (GenBank accession numbers: AY371157, AY253311 and K03454). 

Similarly, for subtype CRF 02_AG, three reference sequences from subtype A were used 

as outgroups (GenBank: AB253429, DQ676872 and AB253421). Outgroup sequences were 

used to root the phylogenetic trees by subtype (see section Molecular Clock Analysis).
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DNA sequence alignment using only one sequence per patient was generated for each 

subtype with default settings using MUSCLE version 3.8.31 (Edgar, 2004) as implemented 

in ALIVIEW version 1.18.1 (Larsson, 2014). Alignments were further manually refined 

using the reference subtype B sequence HXB2 (GenBank: K03455) to align sequences by 

codon position. Columns of the alignment in which the majority of sequences were missing 

a nucleotide were removed (Yang, 2014). Multiple nucleotide positions on HIV-1 pol known 

to be under strong pressure to evolve antiretroviral drug resistance should not be included 

in phylogenetic analyses. Because of that, we masked in all alignments drug resistance 

sites using the function seq.rm.drugresistance from the R (version 3.4.3) package big.phylo 
version 1.0.0 (Ratmann, 2018).

This package uses the drug resistance mutation sites from the International Antiviral 

Society-USA (Wensing et al., 2015). Finally, to check for the presence of recombination 

within each alignment we used the Phi test (Bruen et al., 2006) as implemented in 

SPLITSTREE version 4.14.5 (Huson and Bryant, 2006). Recombination between HIV-1 

subtypes were also further checked using the REGA HIV-1 subtyping tool version 3 

(Pineda-Peña et al., 2013).

Including CGRs, a total of 617 sequences were analysed: 46 sequences from subtype B, 123 

from subtype C, and 448 from subtype CRF 02_AG. These included 541 sequences from 

Senegal and 76 CGRs. The median age of Senegalese individuals analysed was 34 (IQR 

= 18–57) years old; 45% were females and 55% were males. From those, 91% were from 

Dakar and 9% from other cities in Senegal. Sample dates varied between 1990 and early 

2014. The median year for all HIV-1 sample collection for subtype B was 2004 (IQR = 

1999–2007), for subtype C was 2007 (IQR = 2004–2008) and for subtype CRF 02_AG was 

2008 (IQR = 2003–2010).

2.2. Phylogenetic analysis

DNA sequence alignments were used for phylogenetic reconstruction by maximum 

likelihood (ML) using RAXML-NG version 0.5.1 (Kozlov et al., 2018). We independently 

reconstructed phylogenetic trees for each subtype and using 4 different DNA substitution 

models: (1) GTR + Γ (General Time Reversible (Tavaré, 1986; Zharkikh, 1994; Yang, 1994) 

plus gamma distribution (Yang, 1996) with 4 categories); (2) GTR + I + Γ (where I is the 

proportion of invariable sites); (3) GTR + R (where R is the FreeRate model (Soubrier et 

al., 2012)); and (4) GTR + Γ and using 2 partitions for the data, one partition for first and 

second codon positions, and another partition for the third codon position. We also used the 

parsimony-based randomized stepwise addition trees as starting trees to search for the best 

ML tree.

We implemented all analyses using the computing resources of the Open Science Grid 

(OSG) (Pordes et al., 2007; Sfiligoi et al., 2009). To estimate the ML tree, we ran 20 jobs 

per alignment per DNA substitution model in parallel. We used parsimony starting trees to 

estimate the ML tree. We chose the tree with the highest likelihood as the best ML tree. 

Similarly, to calculate branch support for each tree, we ran 1000 independent bootstrapped 

trees per alignment in parallel which were merged into a single file to calculate the bootstrap 

support for each branch of the best ML tree.
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The best DNA substitution model was selected using the Bayesian Information Criterion 

(BIC). All subsequent analyses were carried out using the best ML tree as chosen by BIC.

2.3. Molecular clock analysis

Estimated phylogenetic trees have branch lengths in nucleotide substitutions per site. To 

convert these branch lengths in unit of calendar time, we fit a relaxed molecular clock to 

the estimated ML tree using the function dater, with default options, from the R package 

treedater version 1.0 (Volz and Frost, 2017). For these analyses, we rooted the trees using 

outgroup sequences, which were dropped before fitting the relaxed clock. A wide range 

of sample dates between 1990 and 2014 enabled precise estimation of molecular clock 

rates. Tree manipulations were carried out using the R package ape version 5.2 (Paradis 

et al., 2004). We also provided uncertainty bounds for samples with uncertainty in their 

collection date, for example, samples in which only year was provided. We used these dated 

phylogenetic trees in all phylodynamic analyses. The same relaxed clock model was fitted to 

bootstrap trees without temporal constrains to reduce computational time.

2.4. Phylodynamic analysis

Phylodynamic analyses were carried out using a structured coalescent model (SCM) (Volz, 

2012) which conditions on different sampling dates in different risk groups. SCM uses a 

dated phylogenetic tree to describe the transmission history of HIV between individuals, 

and a mathematical model to describe the transmission patterns. It also assumes that each 

sequence is associated to metadata – traits associated to each individual. In our analyses 

these traits were from one of the following groups: gpf (presumed heterosexual reproductive 

aged women); gpm (presumed heterosexual reproductive aged men); msm (men who have 

sex with other men); and src (source), which represented the global reservoir of HIV which 

donates lineages to Senegal. Source sequences were represented by the CGR sequences 

which were sequences from other countries and not from Senegal. The inclusion of these 

sequences allows the model to account for importation of lineages into Senegal.

Phylodynamic analyses were individually carried out using phylogenetic trees for subtype C, 

subtype CRF 02_AG, and the combined tree which comprised merging as a polytomy the 

dated trees for subtypes B, C and CRF 02_AG. We also removed from the trees samples for 

which risk group or sex was not available and samples collected from children. For analyses 

by subtype, we used all sequences from Senegal, while for the combined tree, we used only 

sequences from the capital city of Dakar. The latter was preferred to reduce computational 

time and assume a more homogeneous population for better population estimates.

We used ordinary differential equations (ODEs) to understand the dynamics of HIV 

infections and transmission rates. We based our ODEs on a compartmental infectious 

disease model with 4 compartments representing the number of infected individuals in 

gpf, gpm and msm risk groups. We also modelled importation of HIV lineages to gpf, 
gpm and msm by adding an additional compartment referred to as src. We modelled the 

src compartment as having a constant effective population size with two parameters: the 

effective source population size and the importation rate. The choice of a constant size was 

motivated by a desire to keep the number of free parameters down. Realism of the source 
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compartment is relatively unimportant, since in the coalescent model it serves merely as a 

reservoir for lineages which have a common ancestor in the distant past predating epidemic 

expansion in Senegal.

The ODEs representing our mathematical model were based on one stage of HIV infection: 

people living with HIV would not recover from the infection and would cease to transmit 

at a rate γ per person per year. We used only one stage of HIV infection because the 

available metadata did not have information that could be used to determine the stage of 

HIV infection at the time of sample collection.

Incidence of HIV infection was parameterized using a flexible piecewise linear function 

which depended only on time and the current number of infectious individuals. Note that 

these models do not make use of the common mass action assumption whereby incidence 

increases proportionally to the product of infectious and susceptible individuals (Anderson 

and May, 1991). For this reason, we did not need to model the number of susceptible 

individuals through time. The per-capita transmission rates (units of transmissions per 

person per unit time) are denoted by μ(t) and λ(t), respectively in gp (all reproductive 

aged adults) and msm. The functions μ(t) and λ(t) were piecewise linear functions with 4 

parameters each; 3 parameters for transmission rates and 1 parameter for the interval (time). 

The reproduction number, R0(t), was computed as μ(t)/γand λ(t)/γ for gp and msm.

The models also included parameters to control relative transmission rates between different 

risk groups. Transmissions by msm can infect susceptible hosts in gpf or msm, and we used 

the parameter q ∈ (0, 1) to represent the probability that a transmission by msm will infect 

msm and with probability 1 − q will infect gpf. Similarly, p ∈ (0, 1) represents the probability 

that a transmission by gpf will infect gpm and with probability 1 − p such a transmission 

will infect msm. Finally, whereas women may have higher susceptibility to infection during 

heterosexual intercourse (Boily et al., 2009; Patel et al., 2014), the model accounts for 

asymmetric risk of infection between men and women, and the parameter ψ > 0 represents 

the transmission risk ratio of males relative to females.

The ODEs, as explained above, describing the effective number of people living with HIV 

gpf (x), gpm (y) and msm (z) throughout time are represented below, and for a summary of 

each parameter in the equations see Table 1:

ẋ = ψμ(t)y + (1 − q)λ(t)z − γx (1)

ẏ = pμ(t)x − γy (2)

ż = (1 − p)μ(t)x + qλ(t)z − γz (3)

We model movement of lineages between Senegal and src as a migration process that 

depends the current number infected in each deme. The rate of lineages migrating from src 
to, for example, msm, is υz. The migration process is bidirectional and equal in magnitude, 

so migration from msm to src is given by the same rate. Consequently, this process has no 
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influence over the size of gpm,gpf, or msm through time. It does, however, play a large role 

in computing the estimated ancestral probabilities for lineages being in the src deme.

In these phylodynamic analyses, we associated each tip of the dated phylogenetic tree a trait 

based on available metadata, that in our model were gpf, gpm, msm and src. These represent 

self-reported classification of risk group. However, same-sex practices are illegal in Senegal, 

and there is significant stigma affecting MSM (Lyons et al., 2017). It is then possible that 

self-reported gpm are in fact msm. Based on this idea, we fit three variations of the model 

for the analyses with the combined tree (1 to 3; see below) and two variations of the model 

(1 and 2; see below) for the analyses by subtype because of limited amount of sequences.

1. We assigned each sequence to its respective risk-group in the phylogenetic tree a 

value of 100% in the respective self-reported risk group;

2. We assumed some uncertainty in the self-reported gpm by arbitrarily assigning to 

every gpm sequence a value of 50% of being gpm and 50% of being msm;

3. We removed all gpm sequences from the phylogenetic tree.

To each of these enumerated variations, we also adapted the model likelihood to include 

a term based on previously published HIV prevalence in gpm and msm in Dakar, Senegal 

(Mukandavire et al., 2018). For further information on how likelihoods were calculated see 

Supplementary Material. In summary, we fit six variations of the mathematical model for 

the combined tree, and four variations of the mathematical model for the phylodynamic 

analyses by subtype. We used as base model, the model using self-reported risk group 

and surveillance data in the calculation of the likelihood. The other variations of the 

mathematical model were used as sensitivity analyses to understand to what extent the 

uncertainty of the number of gpm would affect the estimated results.

Model variations were fitted using the R package phydynR version 0.1 (Volz, 2017). 

The structured coalescent likelihood was computed using the QL approximation described 

in Volz and Siveroni (2018). Model parameters were estimated by differential evolution 

Markov chain Monte Carlo (MCMC) zs sampler (ter Braak and Vrugt, 2008) using the 

development version of the R package BayesianTools version 0.1.5 (Hartig et al., 2018). All 

analyses were carried out in parallel using the computing resources of the OSG (Pordes et 

al., 2007; Sfiligoi et al., 2009). For more details see Supplementary Material.

After estimating the parameter of our mathematical model, we derived for each group 

(gpf, gpm and msm) the effective number of infections and the population attributable 

fraction (PAF) through time from simulations based on the MCMC posterior distributions. 

The effective number of infections was defined as the number of infected hosts within 

the structured coalescent model fitted to the virus phylogeny. These population sizes yield 

a distribution of branch lengths which are consistent with observations from the virus 

phylogeny. The effective population size is not the same but is approximately proportional as 

the number of infected hosts. Note that any unmodeled factor which influences evolution 

or transmission of the pathogen can influence the relationship between effective and 

true population sizes, including within-host evolution (Volz et al., 2017b), variance in 

transmission rates between individuals, and major epidemiological phenomena, such as 
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the roll-out of HAART (highly active antiretroviral therapy) in the 21st century Volz et 

al. (2013). PAF through time was defined as the probability that an infection at time t 

was generated by a given risk group, represented by gpf, gpm and msm. Simulations for 

phylodynamic analyses were carried out from 1978 to 2014 (see Supplementary Material for 

more information).

In the main text, we only reported results for PAF and effective number of infections derived 

from the base model: phylodynamic analysis carried out using self-reported risk group and 

adding a term based on previously published HIV prevalence in gpm and msm in Dakar, 

Senegal (see Supplementary Material). Also, there are no statistical analyses that we could 

use to compare the best phylodynamic analyses to derive PAF and effective number of 

infections from the mathematical models we tested. We therefore chose a base model based 

on self-reported risk groups and surveillance data and carried out sensitivity analyses using 

variations of the mathematical model. We also aimed to compare our MSM PAF results to 

the 1-year PAF reported in Mukandavire et al. (2018). Note that these authors only reported 

1-year MSM PAF for 1995, 2005 and 2015. They also did not report the effective number of 

infections or 1-year PAF for heterosexual reproductive aged females and males.

2.5. Code and data availability

We have uploaded all Python and R scripts used in our analysis as a research 

compendium in GitHub (https://github.com/thednainus/senegalHIVmodel). DNA multiple 

sequence alignments and phylogenetic trees used in phylodynamic analyses can also be 

found in this same research compendium in GitHub.

3. Results

No evidence of recombination was detected for any of the three subtypes using the Phi 
test, and phylogenetic trees were then individually reconstructed for each subtype. For all 

subtypes, partitioning the data by codon position generated an ML tree with the lowest BIC. 

This is not surprising given results on best substitution models for protein-coding sequences 

(Shapiro et al., 2006). These trees with the lowest BIC were used in all subsequent analyses. 

Estimated rates of molecular clock evolution were highly consistent across subtypes. These 

rates were 0.0022, 0.0019, and 0.0021 substitutions per site per year for 02_AG, B and 

C respectively. A relaxed clock was strongly supported in all cases with a coefficient of 

variation of rates of 0.30–0.38.

3.1. Phylodynamic analyses

Phylodynamic analyses were carried out for three different phylogenetic trees: subtype C, 

subtype CRF 02_AG and for the combined tree (including sequences from subtypes B, C 

and CRF 02_AG). We did not analyse subtype B phylodynamics because of the limited 

number of available sequences.

For the combined tree, phylodynamic analyses were carried out for a total of 463 sequences: 

387 from Dakar and 76 CGRs. This combined tree comprised 267 sequences from subtype 

CRF 02_AG, 90 sequences from subtype C and 30 sequences from subtype B. We also 
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individually analysed the phylodynamics for 355 (302 from Senegal) sequences from 

subtypes CRF 02_AG and 112 (96 from Senegal) sequences from subtype C.

For the combined analyses, a higher proportion of msm was observed within subtype C, 

while the highest proportion of gpf was observed within subtype CRF 02_AG (Table 2). 

For subtype C analyses, 41.9% were from the general population, 43.8% were from msm, 

and 14.3% represented source. For CRF 02_AG analyses, 73.5% were from the general 

population, 11.6% from msm and 14.9% represented source.

3.2. Effective number of infections

For subtype CRF 02_AG, we estimated very small numbers of infected msm with little 

variation through time when comparing to the other reproductive aged adults (Fig. 1). 

Consequently the proportion of infections in gpf, gpm and msm are approximately constant 

through time neglecting transient effects during the very early HIV epidemic. The proportion 

of infected individuals was higher for gpf than gpm due to asymmetric infection risk (Fig. 

1). The absolute number of infections in gpf, gpm and msm increased with time and a much 

higher number of infected individuals were observed among all reproductive aged adults 

(Fig. 1), and that is reflected on the very small proportion of infected individuals in msm.

We estimated that subtype C is highly concentrated in msm when comparing to subtype CRF 

02_AG (Figs. 1 and 2). For msm, the proportion of infected individuals slightly increased 

with time, decreasing slightly at around 2005; while the absolute number gradually 

increased with time. While the absolute number gradually increased with time for both 

gpf and gpm, the proportions of infected individuals increased and decreased more sharply 

for gpf and gpm, respectively. We observed, in general, a higher proportion of infected msm 
individuals (including credible interval) than gpf and gpm (Fig. 2). In general, a higher 

proportion of infected individuals was observed for gpf than gpm.

For the combined-subtype analyses, the proportion of infected gpf increased up to early 

1980’s and soon after decreased with time (Fig. 3). For gpm, the proportion of infected 

individuals decreased over time (Fig. 3). In contrast, the proportion of infected msm 
increased with time and by 2014 were higher but similar to those observed in gpm 
(including credible interval; Fig. 3 and Table 3). While we observed a high number of 

infected individuals in msm, these absolute numbers were much higher (including credible 

interval) for the general population (Fig. 3; Table 3).

When comparing the proportion of effective number of infections in 2014, we observed a 

higher gpf proportion across all analyses (Table 3). We also observed a very low proportion 

of effective number of infections for msm when analysing subtype CRF 02_AG (Table 3).

For plots showing the proportion of effective number of infections derived from 

phylodynamic analyses carried out using the other variations of the mathematical model 

see Supplementary Material.
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3.3. Population attributable fraction

Subtype CRF 02_AG had very little contribution from msm and, consequently, the PAF for 

gpf and gpm reach equilibrium during epidemic expansion in the 1980’s. In 2014, PAF for 

gpm was about 16% higher than for gpf, while PAF for msm was very low (Fig. 4).

For subtype C, the PAF for both gpf and gpm decreased with time and around early 2000 

started to increase. In general, gpf PAF was lower than gpm. In contrast, the PAF for msm 
increased with time reaching higher values (including credible interval) than gpf and gpm, 

and around early 2000 msm PAF started to decrease (Fig. 4).

For the combined analyses, the PAF for both gpf and gpm decreased with time, and the PAF 

for gpm was higher than gpf. In contrast, PAF for msm increased with time. By 2014, the 

PAF for msm was high and similar to that observed in the general population (Fig. 4; Table 

3).

When comparing our most recent estimates for PAF in 2014, we observed that gpf PAF for 

subtype CRF 02_AG (0.42; 95% Credible Interval (95% CI): 0.41–0.45) were similar to 

estimates for subtype C (0.39; 95% CI: 0.24–0.44) and combined analyses (0.37; 95% CI: 

0.23–0.43) (Table 3). PAF for gpm was the highest for subtype CRF 02_AG (0.58; 95% CI: 

0.55–0.58) and very similar between subtype C (0.47; 95% CI: 0.27–0.55) and combined 

analyses (0.47; 95% CI: 0.27–0.56) (Table 3). On the other hand, msm PAF was very low for 

subtype CRF 02_AG (9 × 10−4; 95% CI: 1.1 × 10−4–0.01) and similar between subtype C 

(0.14; 95% CI: 0.03–0.48) and combined analyses (0.17; 95% CI: 0.02–0.51) (Table 3).

For PAF derived from phylodynamic analyses carried out using the other variations of the 

mathematical model, see Supplementary Material. Note that, usually, when the prevalence 

term was not added to the calculation of the likelihood, 1-year MSM PAF for 1995, 2005 

and 2015 reported by Mukandavire et al. (2018) did not coincide with our estimates (see Fig. 

5 and Supplementary Material).

3.4. Transmission patterns

A small but significant net flow of transmissions was estimated from MSM to females 

which may be a consequence of higher prevalence among MSM and compounded by un-met 

prevention and treatment needs among MSM. In the combined-subtype analyses, 3.2% (95% 

CI: 0.6%–8.8%) of infections in heterosexual females were acquired from MSM, and 0.3% 

(95% CI: 0.1%–0.5%) in MSM acquired from heterosexual females (Table 4). For analyses 

using only subtype CRF 02_AG, a small proportion of transmissions were observed between 

MSM and heterosexual females and vice versa; while for analyses using only subtype C 

we estimated that approximately 2.5% (95% CI: 0.5%–8.6%) of infections were acquired 

by heterosexual females from MSM, and approximately 2.6% (95% CI: 0.9%–5.8%) of 

infections were acquired by MSM from heterosexual females.

3.5. Parameter estimates

Based on the incidence rates among all reproductive aged adults [μ(t)] and for MSM 

[λ(t)] we can estimate the basic reproduction number, R0 (see Section 2). Our most recent 
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estimates for 2014 showed a high R0 for the reproductive aged adults when analysing 

subtype C (median: R0 = 1.59) and the combined analyses (median: R0 = 1.29). An R0 less 

than 1.0 was observed for subtype CRF 02_AG reflecting decreasing epidemic prevalence 

within this subtype. On the other hand, R0was higher for MSM for the combined analyses 

(median: R0 = 1.96), and around 1.0 for subtypes C and CRF 02_AG (Table 5).

The probability of an infected gpf to infect a gpm was high and between 93% and 100% 

across analyses (Table 5). Similarly, the probability of an HIV-infected msm to infect 

another msm was also high and between 80% and 86% across analyses (Table 5). Our results 

also suggest that the probability (1 − q) an MSM will infect a gpf is between 14% and 20% 

across analyses.

3.6. Sensitivity analyses

To understand how sensitive the mathematical model was to the number of self-reported 

gpm in the phylogenetic tree, we tested variations of the mathematical model (see Section 

2). Fig. 5 shows msm PAF for Model 1 to Model 6. Model 1 to Model 3 were carried out 

using only genetic information while Model 4 to Model 6 were carried out using genetic 

information and surveillance data (see Section 2 and Supplementary Material). We also 

added 1-year MSM PAF for 1995, 2005 and 2015 reported by Mukandavire et al. (2018) for 

comparisons.

Our base model was Model 4 using information on self-reported risk groups and 

surveillance data. For the base model, we observed lower median estimates for 1995, 2005 

and 2015 and smaller uncertainty range for 2005 and 2015 estimates when comparing to 

results reported by Mukandavire et al. (2018) (Fig. 5). For Model 5, estimates reported by 

Mukandavire et al. (2018) were within our credible interval for 2005 and 2015 estimates, but 

not for the 1995 estimate. Our Model 4 and Model 6 showed very similar estimates (Fig. 

5). When only genetic data were considered (Models 1 to 3), our estimates were, in general, 

much lower than the ones reported by Mukandavire et al. (2018) (Fig. 5).

4. Discussion

This analysis provides additional insights into HIV epidemiological dynamics in Senegal 

using model-based phylodynamic methods applied to hundreds of HIV sequences. We 

observed substantial differences when comparing analyses based on combined HIV-1 

subtypes (B, C and CRF 02_AG) to those analyses by particular subtypes (C or CRF 

02_AG). For example, the proportion of effective infections were higher among MSM 

when analysing subtype C than in analyses of subtype CRF 02_AG. Trends observed 

for the proportion of effective number of infections among reproductive aged adults also 

differ. While the overall pattern for the combined analysis showed a decreasing proportion 

of infections among all reproductive aged adults relative to MSM, we observe a nearly 

time-invariant distribution for subtype CRF 02_AG and an increasing trend for subtype C.

A similar result for MSM PAF consistent with a previous epidemiological modelling 

study (Mukandavire et al., 2018) was estimated in one of our sensitivity analyses when 

we removed all self-reported general population males from our phylogenetic tree and 
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added the prevalence term to the calculation of the likelihood (Model 5; Fig. 5). The 

estimates of 1-year PAF reported in Mukandavire et al. (2018) were in accordance to our 

estimates for 2005 and 2015 for Model 5 (Fig. 5), but our estimates were lower in 1995 

when we estimated that the epidemic was expanding among MSM. Estimates reported by 

Mukandavire et al. (2018), usually, did not coincide with our MSM PAF estimates when 

our analyses were carried out without adding the prevalence term to the calculation of the 

likelihood (see Supplementary Material) (Fig. 5) suggesting that inclusion of non-genetic 

surveillance data is important to achieving stable estimates with the phylodynamic model.

Some differences observed between our analyses and Mukandavire et al. (2018) could be 

attributable to the different type of modelling and additional sources of surveillance data 

used. In Mukandavire et al. (2018), the authors used a dynamic HIV transmission model 

to investigate how the unmet HIV prevention and treatment needs among MSM, female 

sex workers (FSW) and their clients contributed to the overall HIV epidemics in Dakar, 

Senegal. Their model had more complex population structure involving the movement of 

individuals in six different sub-populations, stage of HIV infections and disease progression, 

and sex interactions which could result in HIV transmissions. Our model was more simple 

and focused on the transmission between three sub-populations (gpf, gpm and msm), but 

did include a more flexible function for the force of infection through time. Contrary to 

Mukandavire et al. (2018), we primarily used genetic data to infer the parameters of our 

model whereas Mukandavire et al. (2018) drew on a greater variety of previously published 

parameter estimates and epidemiological surveillance data over time. The scale of the 

epidemic size estimated by population genetic modeling is highly sensitive to unmodeled 

geographic structure and unmodeled variables that influence variance in transmission rates 

between individuals. It is currently infeasible to build and fit models that can adjust for all 

of these variables without extensive additional data. Since the primary aim of this analysis 

was to examine the epidemiological role of msm, we have remained agnostic regarding 

correspondence of our size estimates to the actual numbers of PLWHIV.

We tested six variations of the phylodynamic analyses with combined-subtype data and four 

variations of the phylodynamic analyses when analysing specific subtypes (see Section 2). 

We observed that results are sensitive to which data were included and assumptions made 

about metadata (Fig. 5). This sensitivity to model selection and data inclusion could be due 

to systematic differences in how sampling was conducted. Surveys which furnished HIV-1 

sequence samples used respondent-driven and convenience samples for MSM but not the 

overall population (Wade et al., 2005, 2010; Lyons et al., 2017), and this sampling strategy 

was preferred due to MSM being highly stigmatised in Senegal (Lyons et al., 2017).

Our results may facilitate design of public health interventions as it supports the hypothesis 

that scaling up prevention efforts among key populations including MSM may generate a 

greater reduction in new infections. According to our results, the probability that an MSM 

would transmit HIV to a female sex partner is 14% to 20% (1 − q; which is the probability 

an msm would transmit to a gpf in our mathematical model) across analyses (Table 4), 

consistent with previous reports that 90% of MSM have female sex partners in Senegal 

(Wade et al., 2005; Jung et al., 2012). We also estimate that a small but disproportionately 

higher number of transmissions among women are acquired from MSM, than vice versa 
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(Table 4). Similar transmission patterns between MSM and females were recently reported 

in Nigeria, also using phylodynamic methods (Volz et al., 2017a).

One limitation of these models is that we are unable to select the best model and/or 

analyses to draw our final conclusions on HIV transmission in Senegal because there is no 

statistical method available to carry out such model comparison. We can clearly show a 

difference between the individual analyses by subtypes C and CRF 02_AG, which can be 

a consequence of the sampling strategy used to collect these data. We also did not include 

female sex workers in our model because there were no sequence data available from these 

groups.

We also lacked metadata such as CD4 cell counts and HIV incidence assays which would be 

useful for controlling for differential transmission rates over the course of infection. Future 

studies could resolve these ambiguous results by conducting large randomized sampling 

of MSM, other core groups, and the general population combined with sequencing and 

collection of clinical data that is informative about time since infection. Moving forward 

necessitates the safe and systematic collection of risk status data for people living with HIV 

in Senegal, including FSW and their clients, which can be achieved in the context of passive 

case-based surveillance or in household surveys. Currently, the criminalization of same-sex 

practices likely limits disclosure and ultimately affects our ability to fully ascertain HIV 

transmission dynamics in Senegal.

Taken together, these analyses highlight the disproportionate burden of HIV among MSM in 

West Africa. These conclusions, while tentative, support the case for increased coverage of 

HIV prevention and treatment services for MSM with evidence-based and rights-affirming 

interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Effective number/proportion of infections in risk groups for subtype CRF 02_AG. Plots 

showing the absolute number and proportion of the effective number of infections in each 

deme/group (gpf, gpm and msm) for the individual analyses for subtype CRF 02_AG. 

Shaded area represents the 95% credible interval. MAP = maximum a posteriori.
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Fig. 2. 
Effective number/proportion of infections in risk groups for subtype C. Plots showing the 

absolute number and proportion of the effective number of infections in each deme/group 

(gpf, gpm and msm) for the individual analyses for subtype C. Shaded area represents the 

95% credible interval. MAP = maximum a posteriori.
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Fig. 3. 
Effective number/proportion of infections in risk groups for the combined analyses. Plots 

showing the absolute number and proportion of the effective number of infections in each 

deme/group (gpf, gpm and msm) for the combined analyses (including subtypes B, C and 

CRF 02_AG). Shaded area represents the 95% credible interval. The y-axis for proportion of 

infections in msm is the same as for gp. MAP = maximum a posteriori.
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Fig. 4. 
Population attributable fraction. Plots showing the population attributable fraction for each 

deme/group (gpf, gpm and msm) for the individual analyses for subtypes C and 02_AG, and 

for the combined analyses (including subtypes B, C and 02_AG). Point estimates and error 

bars in the last plot represents 1-year PAF estimated for MSM in Mukandavire et al. (2018). 

Shaded area represents the 95% credible interval. When not shown, y-axis is horizontally 

shared between plots. MAP =maximum a posteriori.
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Fig. 5. 
Sensitivity analyses. Plots showing the population attributable fraction for msm for the 

combined analyses (including subtypes B, C and 02_AG). Point estimates and error bars 

represent 1-year MSM PAF estimated in Mukandavire et al. (2018) for 1995, 2005 and 2015. 

Shaded area represents the 95% credible interval. MAP = maximum a posteriori.

Nascimento et al. Page 20

Epidemics. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nascimento et al. Page 21

Table 1

Summary of dynamic variables and parameters in the mathematical model.

Variable or parameter Definition

x(t) Number of infected gpf

y(t) Number of infected gpm

z(t) Number of infected msm

ψ Risk ratio of gpm to transmit to a gpf

p Probability of gpf to transmit to a gpm

q Probability of msm to transmit to another msm

γ Removal rate

μ(t) Piecewise linear function for per-capita transmission rate in gp

λ(t) Piecewise linear function for per-capita transmission rate in msm
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Table 2

Distribution of HIV-1 in Dakar by subtype and self-reported risk-group (discrete-trait) used in the combined 

analyses. Numbers in brackets are proportions.

02_AG B C

gpf 153 (0.57) 7 (0.23) 22 (0.24)

gpm 87 (0.33) 9 (0.30) 24 (0.27)

msm 27 (0.10) 14 (0.47) 44 (0.49)

Total 267 30 90
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Table 5

Estimates of parameter of interest. Estimates (median and 95% credible interval) for the basic reproduction 

number (R0), the probability an infected gpf would infect a gpm (p) and the probability an infected msm would 

infected another msm (q) for subtype CRF 02_AG, subtype C and combined analyses. R0was calculated for 

2014 and p and q was calculated for a period between 1978 and 2014.

Subtype 02_AG Subtype C Subtypes combined

R0(gp) 0.87 (0.53–1.80) 1.59 (0.67–2.91) 1.29 (0.73–2.06)

R0(msm) 1.05 (0.52–2.82) 1.00 (0.54–2.13) 1.96 (0.77–3.41)

p 1.00 (1.00–1.00) 0.93 (0.85–0.98) 0.99 (0.99–1.00)

q 0.86 (0.73–0.95) 0.82 (0.72–0.89) 0.80 (0.67–0.88)
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