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Abstract

Background: Hox genes encode transcription factors that are important for establishing the body 

plan. Hoxa5 is a member of the mammalian Hox5 paralogous group that regulates the patterning 

and morphology of the cervical-thoracic region of the axial skeleton. Hoxa5 also plays crucial 

functions in lung morphogenesis.

Results: We generated a Hoxa5eGFP reporter mouse line using CRISPR technology, allowing 

real-time visualization of Hoxa5 expression. Hoxa5eGFP recapitulates reported embryonic Hoxa5 
mRNA expression patterns. Specifically, Hoxa5eGFP can be visualized in the developing mouse 

neural tube, somites, lung, diaphragm, foregut, midgut, among other organs. In the stomach, 

posteriorly biased Hoxa5eGFP expression correlates with a drastic morphological reduction of the 

corpus in Hox5 paralogous mutants. Expression of Hoxa5eGFP in the lung continues in all lung 

fibroblast populations through postnatal and adult stages.

Conclusions: We identified cell types that express Hoxa5 in postnatal and adult mouse lungs, 

including various fibroblasts and vascular endothelial cells. This reporter line will be a powerful 

tool for studies of the function of Hoxa5 during mouse development, homeostasis, and disease 

processes.
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2. Introduction

Hox genes code for homeobox-containing transcription factors that are important for 

patterning during embryonic development and organogenesis.1–5 There is a total of 39 total 

Hox genes in mammals, collinearly arranged in four distinct chromosomal clusters. They 

can be further subdivided into 13 groups termed paralogs based on their position within 

the cluster and similarity in sequence. Genetic loss-of-function analyses have demonstrated 
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remarkable redundancy among paralogs. Paralogous Hox genes function to pattern the 

morphology of the axial skeleton and regulate organ formation along the anterior-posterior 

axis in a region-specific manner.6,7,7–20

Hoxa5 is one of the three members of the Hox5 paralogous group (Hoxa5, Hoxb5, Hoxc5). 

It encodes a 270-amino-acid protein with a highly conserved DNA-binding homeodomain 

characteristic of all Hox proteins.21 Its expression in mice has been previously described. In 

mouse embryos, Hoxa5 mRNA expression is first detectable at embryonic day (E) 8.0-8.25 

in somite 5-7 and the neural tube.22 During gut development, dynamic Hoxa5 expression 

has been reported in the foregut and midgut mesenchyme from E9.0 through E18.5.1,22–25 

In the skeletal system, Hoxa5 expression is in vertebral cartilage condensations, anterior 

rib condensations, and the sternal mesenchyme from E12.5 through E16.5.23,26–29 Hoxa5 
expression has also been reported in brown adipose tissue from E14.5-E18.5.28,30 Within the 

lung, Hoxa5 is exclusively expressed in the mesenchyme, and not in the epithelium, during 

development.19

The Hox5 genes function at the anterior limits of their expression boundaries in the 

developing nervous system (rhombomere 8),31–33 and also functions to pattern the cervical-

thoracic region (cervical vertebra 3 - thoracic vertebra 2).16,34 These genes are critical for 

the morphogenesis of the trachea and lung and in the patterning of the stomach. Most 

Hoxa5 null (Hoxa5−/−) animals die perinatally, likely by tracheal collapse and diaphragm 

defects.35–39 Lung-specific deletion of Hoxa5 during postnatal or adult stages leads to 

distal airways expansion, abnormal pulmonary function, and disruptions of the lung elastin 

network, phenotypes that are exacerbated in the background of Hoxb5/Hoxc5 nulls.40,41 In 

the gut tube, loss of Hoxa5 function results in the thinning of the gastric epithelium and 

delayed development of adult digestive functions.24,42

There are some critical outstanding questions in Hox5 biology that cannot be addressed with 

the genetic tools currently available. Previous work shows that the Hox5 paralogous genes 

(Hoxa5, Hoxb5, and Hoxc5) play a functional role in the mesenchyme of the lung.40,43 

However, lung mesenchymal cell types and lineage relationships remain poorly defined,44 

and little is known about which fibroblast cell type(s) expresses Hox5 genes in the lung 

mesenchyme. To address this, we generated a novel Hoxa5eGFP reporter line that allows 

real-time visualization of Hoxa5 expression. Here we show that expression from this line 

follows previously reported mRNA expression patterns for Hoxa5. Hoxa5eGFP can be 

detected in the neural tube, lung, diaphragm, foregut, midgut, and other organs at embryonic 

stages. Expression of Hoxa5eGFP in the lung continues through postnatal and adult stages. 

Additionally, we are able to isolate and culture lung fibroblasts from Hoxa5eGFP/+ postnatal 

and adult animals, which display high Hoxa5eGFP expression. This mouse line will be a 

novel tool for the research community to capture a spatiotemporal expression profile of 

Hoxa5 in mice both in vivo and in vitro and to perform mechanistic studies to dissect Hoxa5 
function.
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3. Results and Discussion

The Hoxa5eGFP allele was generated using Cas/CRISPR technology45,46 in which the exon 

1 of Hoxa5 is replaced by an in-frame eGFP fusion (Figure 1A) using a similar strategy 

we have used previously47. The Hoxa5eGFP allele is a knock-in/knock-out reporter and 

Hoxa5eGFP homozygotes (Hoxa5eGFP/eGFP) die around birth, recapitulating the described 

lethality caused by Hoxa5 loss-of-function.35 We identified mice carrying the Hoxa5eGFP 
allele by polymerase chain reaction (PCR) genotyping (Figure 1B). F1 offspring from 

the Hoxa5eGFP/+ × Hoxa5+/+ cross follow Mendelian ratios and were used in this study. 

Hoxa5eGFP/+ animals are viable and fertile and indistinguishable from Hoxa5+/+ animals 

other than Hoxa5eGFP fluorescence.

3.1. Hoxa5eGFP expression in whole-mount embryos

Hoxa5eGFP expression was initially characterized in freshly dissected whole-mount mouse 

embryos. Hoxa5eGFP expression is first detected in Hoxa5eGFP/+ E9.5 embryos in the 

foregut region (Figure 1C), which will ultimately develop into the lung, liver, gall bladder, 

pancreas, etc.48 Hox5 genes have been shown to express in the phrenic motor column of 

the hindbrain, and Hoxa5 mutation is related to reduced and disorganized phrenic motor 

neurons.32,37 From E12.5 through later embryonic stages, robust Hoxa5eGFP signal is 

detected in the hindbrain of the neural tube, the somites, the scapulae, and the stomach 

(Figure 1D–E). The red arrowhead in Figure 1D indicates the anterior boundary of Hoxa5 
expression at somite 5. Hoxa5eGFP expression is not detected in wild-type (WT) littermates 

at any embryonic stages (Figure 1F).

3.2. Hoxa5eGFP localization in the respiratory system during embryogenesis

Strong Hoxa5eGFP signal is also observed in the mouse respiratory system. At E12.5 

(Figure 2A–B) and E13.5 (Figure 2C–D), the trachea, bronchi, and lung display robust 

Hoxa5eGFP signals in the mesenchyme, while no Hoxa5eGFP signal is detected in the 

epithelium. Notably, we observe high levels of Hoxa5eGFP expression in the diaphragm of 

E12.5 and E13.5 embryos (Figure 2A,D).

The trachea and the main bronchi transport external air to the distal lung lobes. They are 

comprised of smooth muscles, fibroblasts, and C-shaped cartilage that regulate the elasticity 

and rigidity of the airway and prevent the long from collapsing during each breathing 

cycle.49 During development, cartilage forms at the ventral side of the trachea and the 

lateral sides of the main bronchi, adjacent to the smooth muscle layer. SRY-box transcription 

factor 9 (Sox9) is an early marker for chondroprogenitors during cartilage formation.50 

Immunofluorescence staining shows that Hoxa5eGFP expression and Sox9+ cartilage cells 

are largely exclusive in the trachea and main bronchi at E16.5, while Hoxa5eGFP is highly 

overlapping with smooth muscle alpha-actin (SMAα)+ smooth muscles (Figure 2E–F).

3.3. Hoxa5eGFP expression and Hox5 mutant phenotypes in the gastrointestinal tract

Next, we examined the Hoxa5eGFP expression in the embryonic gastrointestinal (GI) tract. 

Cryosections (Figure 3A–C) and whole-mount images of the gut tube (Figure 3D–E) from 

Hoxa5eGFP/+ embryos reveal that Hoxa5eGFP is expressed in the mesenchyme of the 
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stomach, the pancreas (stained with pancreatic and duodenal homeobox 1 (PDX1) antibody, 

a pancreatic epithelial marker), the duodenum, and the jejunum, with little to no expression 

in the hindgut or the gut epithelium. As previously reported,24 a gradient Hoxa5eGFP 

expression is observed in the stomach, with the strongest expression in the hindstomach, 

including the corpus and the antrum, with low signal in the forestomach, including the 

fundus (Figure 3C,D). This expression pattern is maintained from E13.5 to E16.5 (Figure 

3D–E). No Hoxa5eGFP expression is detected in the esophagus at any embryonic stage 

(Figure 2C–F). By comparing to WT littermates, we confirm that the Hoxa5eGFP signal 

detected in the liver is due to autofluorescence (data not shown).

Although the GI phenotypes of Hoxa5 null embryos (Hoxa5−/− ) have been reported,24,42 

the effects of losing all the Hox5 paralogs in this tissue have not been described. Here 

we show that, at E18.5, the GI tract displays morphological defects in Hox5 triple mutant 

(Hoxa5−/−;Hoxb5−/−;Hoxc5−/− or Hox5aabbcc) embryos when compared to controls (Figure 

3F–I). Specifically, the corpus of the Hox5 null mutant (Hox5aabbcc) exhibits a significant 

size reduction, with the fundus and antrum displaying relatively normal morphology (Figure 

3F–G). Additionally, loss of all Hox5 alleles leads to a shortened length of the small 

intestine, while the appearance of the cecum and the length of the large intestine are 

not noticeably altered (Figure 3H–I). These phenotypes are consistent with the gradient 

expression of Hoxa5eGFP in the stomach and small intestine expression of Hox5 genes in 

the mouse.25 These data demonstrate a redundant role for Hox5 paralogs in gut formation.

3.4. Hoxa5eGFP expression in the postnatal and adult lung

To characterize Hoxa5 expression in the lung, we performed immunofluorescence (IF) in 

postnatal and adult Hoxa5eGFP/+ lung cryosections with antibodies against GFP and lung 

cell-type specific antigens to identify cell types that are Hoxa5eGFP-positive. IF reveals that 

Hoxa5eGFP is not expressed in T1α+ alveolar epithelial cell (AEC) type I cells, surfactant 

protein C (SPC)+ AEC type II cells, or Wilms’ tumor 1 (WT1)+ mesothelial cells in either 

postnatal (Figure 4A,B,G) or adult lungs (Figure 5A,B,F). In contrast, in the postnatal lung, 

a large number of SMAα+ myofibroblasts, adipocyte differentiation-related protein (ADRP)

+ lipofibroblasts, and platelet-derived growth factor receptor alpha (PDGFRα)+ fibroblasts 

show Hoxa5eGFP expression (Figure 4C,D,E, white arrowheads). Similarly, ADRP+ 

lipofibroblasts and PDGFRα+ fibroblasts were largely overlapping with Hoxa5eGFP+ cells 

in the adult Hoxa5eGFP/+ lung (Figure 5C,D, white arrowheads). Interestingly, co-staining 

of mouse GFP and ETS-related gene (ERG, a vascular endothelial marker) antibodies 

reveals Hoxa5eGFP expression in both postnatal (Figure 4F, white arrowheads) and 

adult (Figure 5E, white arrowheads) lung vascular endothelial cells. No Hoxa5eGFP 

fluorescence is detected in the airway epithelium (Figure 4F and Figure 5A,E). These 

results are consistent with the Hoxa5 expression profile in single-cell RNA-sequencing data 

from a postnatal day 7 mouse lung reported in LungGENS (https://research.cchmc.org/pbge/

lunggens/genequery_PN7.html?geneid=hoxa5).51–53

Next, we isolated lung fibroblasts from postnatal and adult Hoxa5+/+ as well as Hoxa5eGFP/+ 

mice via enzymatic digestion and cultured them in vitro. At passage 0, most fibroblasts 

isolated from postnatal and adult Hoxa5eGFP/+ lungs are Hoxa5eGFP-positive, while no 
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Hoxa5eGFP signal is detected in WT fibroblasts (Figure 6A–C). This high Hoxa5eGFP 

expression percentage is maintained through later passages and, using flow cytometry, 

nearly 95% of live, adult Hoxa5eGFP/+ fibroblasts are Hoxa5eGFP-positive at passage 8 

(Figure 6D).

In summary, we generated and characterized a novel Hoxa5eGFP reporter mouse line 

that closely recapitulates the previously reported Hoxa5 mRNA expression in the mouse 

respiratory tract, GI tract, neural tube and skeleton, demonstrating that it is a fidelitous 

reporter line. We also identified cell types that express Hoxa5 in postnatal and adult mouse 

lungs that include various fibroblasts and vascular endothelial cells. Finally, this reporter line 

will be a helpful tool for monitoring Hoxa5 cellular localization in vivo and isolating Hoxa5-

expressing cells in vitro to interrogate the function of Hoxa5 during mouse development, 

homeostasis, and disease.

4. Experimental Procedures

4.1. Generation of Hoxa5eGFP mice and Hox5 null mutants

The Hoxa5eGFP line was produced by Jackson Laboratories with an eGFP construct 

inserted as an in-frame fusion just after the start codon in exon 1 of Hoxa5, resulting in 

the deletion of most of exon 1. The eGFP construct is followed by a bovine growth hormone 

polyadenylation (bGH-PolyA) signal terminator, such that the Hoxa5 locus is knocked out 

and eGFP will function as a real-time reporter of the Hoxa5 protein.

The reporter line was generated in the C57BL/6J mouse background. Oligonucleotides 

used for crRNA were as follows: Up_crRNA: atttgggtgcctacgtagga; Down_crRNA: 

tctgatccacgcgtccgtgg. The founder line was identified by PCR analysis by using 

the following primers: Homology Arm Spanning Assay--Hoxa5_eGFP_HA-LHAF: 

atcggctctggctactgaaa; Hoxa5_eGFP_HA-RHAR: gttggtgtgaagccacaatg (WT amplicon = 

4273 bp; eGFP KI amplicon = 4639 bp). Left Homology Arm Assay--Hoxa5_eGFP_HA-

LHAF: atcggctctggctactgaaa; Hoxa5_eGFP_LHAR: gaacttcagggtcagcttgc (eGFP KI 

amplicon = 1720 bp). Right Homology Arm Assay--Hoxa5_eGFP_RHAF: 

acgtaaacggccacaagttc; Hoxa5_eGFP_HA-RHAR: gttggtgtgaagccacaatg (eGFP KI amplicon 

= 2996 bp). Donor Plasmid Backbone Assay -- (detects random integrations of the 

donor plasmid, all N1s were confirmed to be negative for this assay): pUC57_F: 

ttgggtaacgccagggttttc; Hoxa5_eGFP_LHAR: gaacttcagggtcagcttgc (Tg/Random Insertion 

amplicon = 1742 bp). Long-range PCR products from the homology arm, left homology 

arm, and right homology arm assays were sequenced with the primers used for amplification 

as well as: GenoF: gggatacaaagccggggaaa; GenoR: caccccattttcctccctcc; Hoxa5_eGFP_SRF: 

acgtaaacggccacaagttc; Hoxa5_eGFP_SRR: tgctcaggtagtggttgtcg.

Three N1 generation mice (2 males and 1 female) carrying the Hoxa5eGFP allele were 

produced from the founder line and their offspring used in this study were found to 

be indistinguishable in fluorescence. Primers used for PCR to distinguish Hoxa5+/+ or 

Hoxa5eGFP/+ offspring were as follows: WT Forward: cgcccgctcagccccagatctacc; GFP 

Forward: cgacaaccactacctgagca; Shared Reverse: ctgctgcagtaattgggaggaa (WT amplicon = 

235 bp; eGFP amplicon = 519 bp).
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The generation of Hox5 null mutant (Hoxa5−/−; Hoxb5−/−;Hoxc5−/− or Hox5aabbcc) has 

been previously reported.16

4.2. Whole-mount embryo and GI tract imaging

Whole-mount Hoxa5eGFP/+ embryo in Figure 1 and GI tract in Figure 3D–E were dissected 

out at various stages, washed in 1× PBS solution, and immediately imaged on a ZEISS Axio 

Zoom V16 Axiocam 506 Camera. Whole-mount stomachs and intestines of control and 

Hox5aabbcc mutants in Figure 3F–I were imaged on a Leica MZ125 Dissecting Microscope.

4.3. Cryosection and immunostaining

Hoxa5+/+ and Hoxa5eGFP/+ mouse embryos, postnatal and adult lungs were washed in 1× 

PBS solution, fixed in 4% PFA at 4°C, moved to 30% sucrose (in 1× PBS) at 4°C, embedded 

in O.C.T (Fisher Sci., #23730571) for cryosection. The specimens were sectioned on a Leica 

CM3050 S Cryostat (embryos: 14 μm/section; lungs: 7 μm/section) at −18°C.

For immunostaining, sections were baked at 65°C for 10 minutes, blocked in 5% donkey 

serum (Sigma, #D9663) at room temperature for 1 hour, incubated in primary antibodies at 

4°C overnight, incubated in secondary antibodies at room temperature for 2 hours, incubated 

with 5 μg/ml DAPI (Thermo Sci., #62248) at room temperature for 10 minutes and mounted 

using ProLong Gold Mountant (Fisher Sci., #P36930). The full primary antibody list is 

provided in Table 1. Embryonic sections in Figure 2 and Figure 3A–C were imaged on a 

Keyence BZ-X800 Microscope and processed via the Keyence BZ-X800 Analyzer Software. 

Lung sections in Figure 4 and Figure 5 were captured on a Leica SP8 3X STED Confocal/

Super-Resolution Microscope at the University of Wisconsin Optical Imaging Core and 

further analyzed via ImageJ 2.0.0.

4.4. Lung Fibroblast Culture, Imaging and Flow Cytometry

Lung fibroblasts in Figure 6A–C were isolated and cultured as previously described,41 

imaged and processed using the Incucyte® S3 Live-Cell Analysis System (Essen 

BioScience). For flow cytometry data in Figure 6D, Hoxa5eGFP/+ adult lung fibroblasts 

were cultured to passaged 8 and analyzed on the Sony MA900 Multi-Application Cell Sorter 

at the University of Wisconsin Carbone Cancer Center Flow Cytometry Laboratory.
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Figure 1. Generation of the Hoxa5eGFP targeted allele in mice and detection in whole-mount 
embryos.
A: Schematic of the Hoxa5 WT allele (top) and the Hoxa5eGFP allele (bottom). B: PCR 

genotyping validation of a Hoxa5eGFP/+ and a Hoxa5+/+ mouse. The Hoxa5eGFP allele is 

identified by the presence of a 519 bp band (top band), the 235 bp band (bottom band) 

indicates the presence of a WT allele, and blank denotes a PCR reaction without DNA. C-E: 
Embryonic day (E) 9.5, E12.5, and E16.5 Hoxa5eGFP/+ whole-mount embryos in left lateral 

view (GFP and brightfield) and dorsal view (GFP). Red arrowhead indicates the anterior 
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somite boundary of Hoxa5 expression. F: A E12.5 Hoxa5+/+ (WT) whole-mount embryo 

in left lateral view and dorsal view. Abbreviations: WT, wild-type; LHA and RHA, left 

and right homology arm; Forw, forward; Rev, reverse; bGH, bovine growth hormone; FG, 

foregut; NT, neural tube; Sc, scapula; S, stomach; Som, somite. Scale bars: 500 μm (C-F).
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Figure 2. Mesenchymal Hoxa5eGFP expression in the respiratory system during embryogenesis.
A-D: Frontal (A), sagittal (B) and transverse (C-D) sections of Hoxa5eGFP/+ embryos at 

E12.5 and E13.5. E-F: Transverse sections of the trachea (E) or main bronchi (F) of 

a Hoxa5eGFP/+ embryo at E16.5 co-stained with antibodies against SOX9 (magenta) and 

SMAα (red), and nuclear DAPI staining (grey). Abbreviations: Sc, scapula; Tr, trachea; L, 

lung; D, diaphragm; NT, neural tube; Vb, vertebrae; E, esophagus; Br, bronchus; RB, right 

main bronchi; LB, left main bronchi. Scale bars: 500 μm (A-B); 200 μm (C-D); 100 μm 

(E-F).
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Figure 3. Hoxa5eGFP localization and Hox5 null mutant phenotypes in the embryonic 
gastrointestinal tract.
A: A frontal section of a Hoxa5eGFP/+ embryo at E12.5. B: A transverse section of 

a Hoxa5eGFP/+ embryo at E12.5 co-stained with antibody against PDX1 (magenta), a 

pancreatic epithelial marker. C: A transverse section of a Hoxa5eGFP/+ embryo at E13.5. A’: 
A higher magnification of the boxed region in A. D-E: Whole-mount E13.5 or E16.5 lung 

and guts in GFP and brightfield view. F-I: Whole-mount stomach and guts of control and 

Hox5aabbcc E18.5 embryos in brightfield view. Abbreviations: D, diaphragm; P, pancreas; 

Du, duodenum; J, jejunum; HG, hindgut; S, stomach; Fs, forestomach; Hs, hindstomach; L, 

lung; Fu, fundus; Co, corpus; A, antrum; App, appendix; Ce, cecum; C, colon. Scale bars: 

500 μm (A-C); 1000 μm (D-E); 2000 μm (F-G); 5000 μm (H-I).
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Figure 4. Hoxa5eGFP-positive cells co-localizing with mesenchymal and endothelial cell markers 
in the Hoxa5eGFP/+ postnatal mouse lung.
A-G: Lung cryosections of 7-day-old Hoxa5eGFP/+ animals were immunostained for GFP, 

DAPI and T1α (A), SPC (B), SMAα (C), ADRP (D), PDGFRα (E), ERG (F), and WT1 

(G). In each figure, the red channel represents a cell marker antibody, the green channel 

represents Hoxa5eGFP+ cells, and the grey channel marks nuclear DAPI staining. A’-G’: 
Higher magnification of boxed regions in A-G. White arrowheads in C-F and C’-F’ indicate 

double-positive cells. Abbreviations: a, airway; v, vascular. Scale bars: 20 μm (A-G).
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Figure 5. Expression of Hoxa5eGFP in mouse lungs continues through the adult stage.
A-F: Lung cryosections of 10-week-old Hoxa5eGFP/+ animals were immunostained for GFP, 

DAPI and T1α (A), SPC (B), ADRP (C), PDGFRα (D), ERG (E), and WT1 (F). In each 

figure, the red channel represents a cell marker antibody, the green channel represents 

Hoxa5eGFP+ cells, and the grey channel marks nuclear DAPI staining. A’-F’: Higher 

magnification of boxed regions in A-F. White arrowheads in C-E and C’-E’ indicate 

double-positive cells. Abbreviations: a, airway; v, vascular. Scale bars: 20 μm (A-F).
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Figure 6. Hoxa5eGFP expression in lung fibroblasts in vitro and via flow cytometry analysis.
A-C: GFP and phase contrast field of lung fibroblasts isolated from postnatal Hoxa5+/+ (A), 
postnatal Hoxa5 eGFP/+ (B), and adult Hoxa5eGFP/+ (C) mice in 6-well plates at passage 0. 

D: Flow cytometry dot plots demonstrate that 94.05% of the isolated 10-week-old adult lung 

fibroblasts are Hoxa5eGFP-positive at passage 8. Abbreviation: AF, autofluorescence. Scale 

bars: 200 μm (A-C).
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Table 1.

List of antibodies used for immunostaining

Antibody Host species Conjugate Dilution Supplier Catalogue number

ADRP Rabbit N/A 1:200 Abcam ab78920

ERG Rabbit N/A 1:200 Abcam ab92513

GFP Chicken N/A 1:300 Abcam ab13970

PDGFRα Rabbit N/A 1:50 Cell Signaling 3174S

PDX1 Guinea Pig N/A 1:200 Abcam ab47308

SMAα Mouse Cy3 1:500 Sigma C6198

SOX9 Rabbit N/A 1:500 Sigma AB5535

SPC Rabbit N/A 1:500 Seven Hills WRAB-9337

T1α Syrian Hamster N/A 1:100 DSHB 8.1.1

WT1 Rabbit N/A 1:200 Invitrogen MA5-32215
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