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Black queen cell virus (BQCV) is a ubiquitous honeybee virus and a significant pathogen to queen bee (Apis 
mellifera) larvae. However, many aspects of the virus remain poorly understood, including the transmission 
dynamics. In this study, we used next-generation sequencing to identify BQCV in Aedes vexans (n = 4,000) 
collected in 2019 and 2020 from Manitoba, Canada. We assembled de novo the nearly complete (>96%) ge-
nome sequence of the virus, which is the first available from North America and the first report of BQCV 
being harbored by mosquitoes. Phylogenetic tree reconstructions indicated that the genome had 95.5% se-
quence similarity to a BQCV isolate from Sweden. Sequences of a potential vector (Varroa destructor) and a 
microsporidian associated with BQCV (Nosema apis) were not identified in the mosquito samples, however, 
we did detect sequences of plant origin. We, therefore, hypothesize that the virus was indirectly acquired by 
mosquitoes foraging at the same nectar sources as honeybees.
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Highly valued as pollinators, honeybees (Apis mellifera L.) can 
be infected by a myriad of potentially detrimental viruses (Allen 
and Ball 1996, McMenamin and Genersch 2015; Grozinger and 
Flenniken 2019). Since it was first reported in 1955, Black queen cell 
virus (BQCV) is one of the most common and widespread honeybee 
viruses (Tentcheva et al. 2004, Ellis and Munn 2005, Mondet et al. 
2014). Adult bees infected with the virus remain largely asympto-
matic, however, BQCV can induce considerable mortality in the de-
veloping queen bee larvae, causing their necrotic carcasses to blacken 
pupal cells (Spurny et al. 2017). Despite its importance and preva-
lence, BQCV remains among the least understood honeybee viruses. 

BQCV is classified as a Triatovirus, within the Dicistroviridae 
family and the order Picornavirales. The viral genome is composed 
of linear single-stranded, positive sense RNA of ~8,550 nucleotides 
in length (Kubaa et al. 2020). This includes two open reading frames 
(ORFs) encoding polyproteins containing non-structural (ORF1) 
and structural (ORF2) subunits (Spurny et al. 2017). The viral ge-
nome sequence is currently available from several geographical 
locations, including Europe (Tapaszti et al. 2009, Spurny et al. 2017, 
Kubaa et al. 2020), Asia (Li et al. 2023), Africa (Leat et al. 2000), 
and Australia (unpublished). However, to the best of our knowledge, 
no BQCV genome sequence has been reported from the Americas.

The precise mode of BQCV transmission has not yet been fully 
determined, but it likely involves multiple routes. Indeed, there is 
evidence that the virus is both venereally (Prodělalová et al. 2019) 
and vertically (Chen et al. 2006b, Naggar and Paxton 2020) 
transmitted. The presence of the microsporidian Nosema apis has 
also been linked to BQCV (Leat et al. 2000), but its role (if any) in 

virus transmission is unclear. Further, Varroa infestations have been 
associated with BQCV and the virus has been isolated from these 
mites (Ribière et al. 2008). However, the capacity of mites to serve as 
vectors of BQCV remains unresolved.

Another potential mode of BQCV transmission is through the 
foraging excursions of adult bees (Spurny et al. 2017). Honeybees col-
lect nectar from flowers and orally pass it between workers, gradually 
converting the nectar into honey through biochemical processes and 
moisture loss (Leach and Drummond 2018). Although there is no direct 
evidence for nectar transmission of BQCV, honeybees have been shown 
to deposit the virus on flowers (Alger et al. 2019) and BQCV-positive 
pollen and honey have been identified (Chen et al. 2006a). Further, 
BQCV has been identified in both bumblebees (Peng et al. 2011) 
and solitary bees (Murray et al. 2018), which may be attributed to 
interspecies transfer of the virus through contaminated nectar sources.

Several methods have been employed to detect honeybee viruses, 
including enzyme-linked immunosorbent assay (ELISA), immu-
nodiffusion, reverse transcriptase PCR (RT-PCR), and enhanced 
chemiluminescent (ECL) immunoblotting (Stoltz et al. 1995, Allen 
and Ball 1996, Benjeddou et al. 2001, Milićević et al. 2018). Next-
generation sequencing (NGS) technologies are a relatively recent 
development and provide superior resolution and sensitivity to the 
aforementioned approaches. It has become increasingly used to de-
tect viruses in insects, including honeybees (Marzoli et al. 2021, Li 
et al. 2022). In this investigation, we provide molecular evidence 
via NGS of Aedes vexans mosquitoes from Manitoba, Canada, 
harboring BQCV. We further speculate that the virus originated in 
flowers foraged by nectar-feeding mosquitoes.
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Materials and Methods

To conduct this research, we collected mosquitoes in 2019 and 2020 in 
conjunction with provincial (Manitoba) surveillance programs. CDC 
miniature light traps (Model 1012, John W. Hock, Gainesville, FL) were 
hung on trees ~1.5 m off the ground, which released carbon dioxide 
(CO2; a female mosquito attractant) at 15 pounds per square inch (PSI) 
from dusk until dawn. In 2019, we placed traps in ten locations across 
the city of Brandon (49°50ʹ54″N 099°57ʹ00″W) in coordination with 
the City of Brandon and Manitoba Public Health. Trapping took place 
two nights per week for ten weeks, from July to September. In 2020, 
one-time (July) satellite traps from nine additional locations throughout 
the central and eastern regions of the province were provided to us by 
the City of Winnipeg Insect Control Branch. The collected mosquitoes 
were sorted and Ae. vexans were identified using relevant mosquito 
identification keys (Wood et al. 1979, Thielman and Hunter 2007). 
It should be noted that only females were captured and sequenced, as 
CO2 does not elicit host-seeking behaviors in males. Mosquitoes were 
stored at −80°C in location- and date-specific Petri dishes.

A maximum of fifty mosquitoes were pooled and RNA was iso-
lated using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according 
to the manufacturer’s recommendations. We then combined the RNA 
into two pools (by year) and ~2 µg per sample was sent to the Génome 
Québec Innovation Centre (McGill University, Montreal, QC, Canada) 
for mRNA library preparation (New England Biolabs, Ipswich, MA, 
USA) and paired-read sequencing (100 bp) using the NovaSeq 6000 
System (Illumina, San Diego, CA). A total of 1,783 and 2,208 pooled 
Ae. vexans individuals were sequenced from collections in 2019 and 
2020, respectively. Raw RNA sequencing reads can be retrieved 
from the NCBI short sequence read archive under the SRA accession 
number PRJNA866544. We processed the raw reads and performed 
de novo contig assembly using the CLC Genomics Workbench ver-
sion 20 and optimized parameters: mismatch cost = 2, insertion cost 
= 3, deletion cost = 3, length fraction = 0.7, and similarity fraction = 
0.95. To identify BQCV, each contig was mapped against the NCBI 
non-redundant (nr) database using BLASTn (E-value < 1 × 10100). We 
confirmed the presence of BQCV and the viral genome assembly using 
default settings with the Chan Zuckerberg ID Metagenomic Pipeline 
v6.8 (Chan Zuckerberg Biohub; CZID), an open-sourced cloud-based 
bioinformatics platform (Kalantar et al. 2020).

To explore the evolutionary relationship among BQCV isolates, 
we constructed a maximum likelihood tree based on a 7,961  bp 
region of the genome (>93% of the complete sequence). In addition 
to our Canadian strain, BQCV genomic sequences were retrieved 
from the NCBI database to represent a breadth of geographical 
viral isolates. We retained only genomic sequences that were >99% 
complete, and when more than one isolate sequence was available 
we selected the two most divergent isolates for further analysis. 
The sequences were aligned using default parameters (pairwise gap 
opening penalty = 15, gap extension penalty = 6.66) and tested for 
the best evolutionary model in MEGA X (Kumar et al. 2018). The 
tree with the highest likelihood was selected (-35842.56) and the 
phylogeny was then inferred using a maximum likelihood approach 
and a General Time Reversible (GTR) model with discrete Gamma 
distribution (5 categories; +G, parameter = 0.1639), with 1,000 
bootstrap iterations (Nei and Kumar 2000). All codon positions 
were included in the analysis, while gaps and missing data were 
discarded from the final analysis.

Results

RNA sequencing of two pooled Ae. vexans RNA samples (2019 and 
2020) generated 91,331,949 raw sequence reads. The reads were 

assembled into 28,566 (2019) and 33,563 (2020) contigs which, 
as expected, were primarily of Aedes origin. In 2019, one contig 
matched to BQCV, which had 95.5% sequence similarity to a BQCV 
isolate from Sweden in NCBI (MH267693.1; Fig. 1). The sequence 
represented ~95% (8,122 bp) of the viral genome with ~329 bp of the 
5ʹ region not present, presumably due to low coverage of that region. 
For 2020, seven smaller BQCV contigs (between 267 and 826 bp) 
were assembled representing ~38% (3,233 bp) of the genome. We 
constructed a coverage map of the BQCV isolate from Canada using 
sequencing reads from both 2019 and 2020, which are displayed in 
Fig. 2. Genomic features of the BQCV sequence (e.g., ORFs, predicted 
proteins) were consistent with those previously reported (Leat et al. 
2000, Spurny et al. 2017, Kubaa et al. 2020). The genomic sequence 
of the BQCV isolates reported in this study has been deposited in the 
GenBank database under the accession number OP168888.

To provide insights into the possible origins of BQCV in Ae. 
vexans, we searched each contig sequence for orthologue matches 
that may be derived from potential vectors (mites), nectar (plants), 
and a microsporidian associated with the presence of BQCV in 
infected honey bee larvae (Nosema apis). For both samples, no contigs 
were identified that mapped to the most recent genome assemblies 
of Varroa destructor (Vdes_3.0) or Nosema apis (NapisBRLv01). 
However, a subset of contigs from the 2020 collections (n = 3) was of 
chloroplast origin (Table 1). All three are contigs mapped to multiple 
species with identical coverage/sequence similarity, including flow-
ering plants, trees, and shrubs.

Discussion

The results of our study strongly suggest the presence of BQCV in 
Ae. vexans is due to nectar foraging behaviors. This may seem coun-
terintuitive as females of this mosquito species are hematophagous, 
primarily feeding on the blood of large mammals (e.g., deer, horses, 
and cows) (Nasci 1984). The nutrients in vertebrate blood are re-
quired for egg production by the vast majority of mosquito species, 
including iron and amino acids (Goldstrohm et al. 2003, Zhou et 
al. 2007). However, nectar represents a key source of nutrition for 
adult mosquitoes of both sexes (Barredo and DeGennaro 2020). For 
females, sugar deprivation has been associated with both reduced 
survival and fecundity (Foster 1995, Fernandes and Briegel 2005, 
Chadee et al. 2014). Since all of the plant sequences identified in 
our Ae. vexans samples were derived from chloroplasts, which are 
highly conserved (Cheng et al. 2020), we were unable to resolve 
the nectar sources to the species level. Plant preferences differ by 
mosquito species and availability, with a variety of semiochemicals 
elicited by plants that serve as attractants (Barredo and DeGennaro 
2020). There is currently no evidence that BQCV can replicate in 
mosquitoes or be transmitted by mosquitoes, indicating Ae. vexans 
is likely a dead-end host for the virus. However, our findings of the 
virus in the same mosquito species across multiple years suggest 
that BQCV may be commonly associated with nectar foraging Ae. 
vexans.

To our knowledge, this is the first report of BQCV detected in 
mosquitoes or any other dipteran. In addition to mites, the virus 
has been identified in several Hymenopterans including ants (Payne 
et al. 2020), bumblebees (Peng et al. 2011), solitary bees (Murray 
et al. 2018), and wasps (Singh et al. 2010). Interspecies transmis-
sion of BQCV has been hypothesized to be due to direct (e.g., par-
asitism, predation, and scavenging) and/or indirect (foraging at the 
same nectar sources) interactions between honeybees and these 
arthropods (Grozinger and Flenniken 2019, Payne et al. 2020). 
Future studies aimed at directly sampling nectar-feeding Ae. vexans 
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and validating the presence of BQCV in both the nectar and mos-
quito would better implicate foraging behaviors as a direct source of 
this virus in mosquitoes.

Our study also highlights the capabilities of massive parallel NGS 
technologies to characterize aspects of the host microbiome. Although 
it requires considerable integration of bioinformatics (Conesa et 
al. 2016), many limitations of traditional approaches for pathogen 
identification (e.g., PCR-based methods and serological testing) can 
be overcome using NGS. In addition to its greater resolution and 
sensitivity, NGS does not require a priori knowledge of the nucleic 
acid to be sequenced or specific antibodies (Díaz Cruz et al. 2019). 

Indeed, we had no expectation of identifying BQCV in Ae. vexans 
or isolating the near complete viral genome sequence. It is conceiv-
able that NGS could be harnessed to determine the prevalence of key 
pollinator pathogens (e.g., Deformed wing virus, Acute bee paralysis 
virus, Kashmir bee virus, and Sacbrood virus) in a given region, either 
by sequencing the animal or the nectar. Moreover, if the virus can be 
readily obtained from nectar, it could serve as a biomarker to deter-
mine pollinator plant preferences and/or potential outbreaks.

In conclusion, we present the first report of BQCV detected in 
mosquitoes as well as the first comprehensive genome sequence of 
the virus from North America. While other studies have detected 

Fig. 1. Maximum likelihood inference of evolutionary relationship amongst BQCV isolates worldwide. BQCV sequences were retrieved and aligned to the 
Canadian isolate (OP168888) genomic sequences in MEGA X (see methods). The tree is drawn to scale with branch lengths representing the average number of 
substitutions per site analyzed. Numbers near branches represent the percentage of trees supporting the proposed topology between isolates.

Fig. 2. Coverage map of the BQCV genome of the Canadian isolate. The map was generated by mapping sequencing reads from both positive Aedes vexans 
samples to the most similar BQCV genome in NCBI (MH267693.1). The mapping was carried out using CLC and default settings.
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the virus in arthropods using traditional approaches (e.g., PCR), 
we demonstrate that BQCV can also be readily detected using NGS 
technologies. We hypothesize that Ae. vexans acquired BQCV by 
foraging at the same nectar sources as honeybees harboring the virus. 
Future research is needed to investigate whether mosquitoes are ca-
pable of transmitting BQCV to honeybees, either directly or indirectly. 
Further, studies aimed at determining the pervasiveness of BQCV in 
mosquito species and the contaminated nectar sources would provide 
added insights into the transmission dynamics of this virus.
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