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Abstract

BACKGROUND: Single nucleotide polymorphism–based heritability is a fundamental quantity 

in the genetic analysis of complex traits. For case-control phenotypes, for which the continuous 

distribution of risk in the population is unobserved, observed-scale heritability estimates must be 

transformed to the more interpretable liability scale. This article describes how the field standard 

approach incorrectly performs the liability correction in that it does not appropriately account 

for variation in the proportion of cases across the cohorts comprising the meta-analysis. We 

propose a simple solution that incorporates cohort-specific ascertainment using the summation 

of effective sample sizes across cohorts. This solution is applied at the stage of single 

nucleotide polymorphism–based heritability estimation and does not require generating updated 

meta-analytic genome-wide association study summary statistics.

METHODS: We began by performing a series of simulations to examine the ability of the 

standard approach and our proposed approach to recapture liability-scale heritability in the 

population. We went on to examine the differences in estimates obtained from these 2 approaches 

for real data for 12 major case-control genome-wide association studies of psychiatric and 

neurologic traits.
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RESULTS: We found that the field standard approach for performing the liability conversion can 

downwardly bias estimates by as much as approximately 50% in simulation and approximately 

30% in real data.

CONCLUSIONS: Prior estimates of liability-scale heritability for genome-wide association 

study meta-analysis may be drastically underestimated. To this end, we strongly recommend using 

our proposed approach of using the sum of effective sample sizes across contributing cohorts to 

obtain unbiased estimates.

Single nucleotide polymorphism (SNP)–based heritability ℎSNP
2  quantifies the proportion 

of total variance in a phenotype within a population that is attributable to the additive 

effect of tagged genetic variants. For continuously measured quantitative traits, in which 

phenotypic variation is directly observed, ℎSNP
2  estimates produced from standard methods 

such as linkage disequilibrium (LD) score regression (LDSC) (1) are directly interpretable. 

However, when the measured phenotypes are binary (e.g., for case-control psychiatric traits) 

conventional estimates of ℎSNP
2  are not easily interpreted for 2 reasons. The first is because 

of the binarized scale of the data in which ℎSNP
2  is most interpretable when taking into 

account the continuous distribution of risk in the population. The second relates to the fact 

that genome-wide association studies (GWASs) of disease traits are often performed on 

ascertained samples, in which affected individuals are overrepresented so as to increase 

statistical power for rare disorders. The standard transformation for binary traits then 

uses a liability threshold model to convert observed-scale SNP-based heritability ℎo
2  to 

liability-scale SNP-based heritability ℎl
2  to produce an estimate that both accounts for 

the continuous distribution of risk in the population and is not biased by ascertainment. 

In practice, ℎl
2 is commonly estimated with summary-based methods such as LDSC using 

results from GWAS meta-analysis across many different samples, varying in their levels of 

ascertainment.

Here, we highlight a critical error in the standard practice for calculating ℎl
2 from GWAS 

meta-analysis that can cause substantial downward bias due to variation in cohort-specific 

ascertainment, and we formally derive a simple procedure for obtaining unbiased ℎl
2

estimates. We report results from simulations that illustrate the extent of the downward bias 

across a variety of conditions and showcase the unbiased nature of the proposed procedure 

within these same conditions. We go on to quantify the extent of this bias in 12 recent 

GWAS meta-analyses of case-control psychiatric and neurologic traits. It appears that the 

biased approach has been used for ℎl
2 estimates for nearly all meta-analytic GWAS of binary 

traits.

Observed-scale heritability is estimated within univariate LDSC as

E Zj
2 = E χj

2 = N ℎo
2

M ℓ (j) + a + 1 (1)

where N is the sample size, ℎo
2 is the observed-scale heritability, ℓ (j) is the total LD score 

for SNP j, M is the total number of SNPs used to calculate the LD scores, and a is a term 

representing unmeasured sources of confounding such as population stratification (1).
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When summary data are derived from a single case-control GWAS (either of a single sample 

or of raw data that have been combined across multiple samples prior to GWAS), the 

observed-scale heritability ℎo
2  can be converted to the liability scale ℎl

2  as follows:

ℎl
2 = ℎo

2 P 2(1 − P)2

ϕ2v(1 − v) (2)

where v is the sample prevalence, P is the population prevalence, and ϕ is the height of 

the standard normal probability density function at the threshold corresponding to P (2–4). 

Combining equations 1 and 2 produces the reduced form LDSC equation for binary traits:

E χj
2 = ϕ2

P 2(1 − P)2 v(1 − v)N ℎl
2

M ℓ (j) + a + 1 (3)

In Supplement 1, we show that when GWAS summary data are derived from meta-analysis 

of summary statistics from multiple, individual case-control GWASs, the appropriate 

reduced form equation for estimating ℎl
2 is

E χj
2 = ϕ2

P 2(1 − P)2 ∑vk 1 − vk nk
ℎl

2

M ℓ (j) + a + 1 (4)

which resembles equation 3 for summary statistics derived from a single GWAS, with the 

key difference being that v(1 − v)N is replaced by ∑vk 1 − vk nk .

Importantly, currently available software does not allow for direct entry of ∑vk 1 − vk nk , 

and the standard practice in LDSC analysis of meta-analytic GWAS summary data has been 

to compute a single meta-analytic v as the total sample prevalence (i.e., aggregate number 

of cases across all samples divided by the aggregate sample size and enter this quantity 

into equation 3). When samples are differentially ascertained, as is nearly always the case 

in empirical settings, such an approach is not equivalent to the correct approach given by 

equation 4. Indeed, the 2 calculations can produce very different results in the presence 

of varying levels of ascertainment across contributing cohorts, with corresponding effects 

on estimates of ℎl
2. For example, consider 2 case-control cohorts each comprising 10,000 

participants but with disparate levels of ascertainment wherein the first cohort has 10% cases 

(i.e., vk = 0.1) and the second cohort has 50% cases (correct value given by vk = 0.5 . In this 

example, v(1 − v)N = 4200, whereas the correct value given by ∑vk 1 − vk nk = 3400.

Put more formally, we can express the inequivalence of the 2 approaches as follows:

∑vk 1 − vk nk ≠ ∑vknk

∑nk

∑ 1 − vk nk

∑nk
∑nk

= NCases Total

NTotal

NControls Total

NTotal
NTotal

(5)

We refer to the quantity on the left of the inequality as the summation of cohort-specific 

ascertainments and the quantities on the right of the inequality as the total sample 

ascertainment.
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In Supplement 1, we describe a simple procedure in which the correct estimate of ℎl
2 (as 

would be obtained via equation 4) can be obtained for meta-analytic summary statistics 

using standard software (i.e., implementing equation 2) [e.g., LDSC (1), genomic structural 

equation modeling (Genomic SEM) (5), MTAG (6), LDAK (7)]. First, the effective sample 

size, EffN is computed for each study, k, as

EffNk = 4vk 1 − vk nk (6)

where EffNk represents the sample size for an equivalently powered GWAS within a 

balanced sample (i.e., 50% cases, 50% controls)1. Because the EffNk values are directly 

comparable across GWAS samples they can be summed. The sum of EffNk across 

all contributing GWASs ∑EffNk  is then entered for N along with the v = 0.5, so as 

to represent the balanced nature of the design. Relatedly, we note that multiplying the 

quantity vk 1 − vk nk by 4 when calculating effective sample counterbalances the fact that 

entering v = 0.5 results in the quantity 0.5 (1–0.5) (i.e., 1
4 ). This proposed solution of using 

the ∑EffNk is applied at the point of estimating the SNP-based heritability and does 

not require redoing the GWAS meta-analysis. The population prevalence from collateral 

epidemiological data is entered for P as usual. As with the quantities described in equation 

5, the effective sample size calculated using total sample prevalence is not equal to the sum 

of effective sample sizes calculated using cohort-specific sample prevalence. This inequality 

can be expressed as

∑4vk 1 − vk nk ≠ 4v(1 − v)N (7)

In addition to being pragmatically appealing, given current available software, this 

approach has 3 additional advantages. First, a number of statistical pipelines adopted by 

major, genomic research consortia default to outputting ∑EffNk in the GWAS summary 

statistics output. In recognition of the fact that the RICOPILI (Rapid Imputation and 

Computational Pipeline for GWAS) pipeline implemented by the Psychiatric Genomics 

Consortium (1) defaults to outputting ∑EffNk
2 . We have updated the GenomicSEM 

software to automatically double this column (typically labeled as Neff_half) and use 

it as input for subsequent heritability calculations (of course, for other software, the 

researcher can easily double this quantity prior to running analyses). Second, this allows 

the researcher to account for both cohort-specific and SNP-specific information. That 

is, when participant sample size varies by SNP, as is often the case given different 

genotyping platforms used by cohorts, it is preferrable to use this SNP-specific information. 

Third, when cohort-level information is not available to compute ∑EffNk, the sum 

of effective sample sizes can be approximated directly from GWAS summary statistics 

1We note that we have observed different, statistically equivalent versions of calculating effective sample size in the literature, any of 
which may be used as long as they are calculated at the cohort-level prior to summation. At the cohort-specific level, these equivalent 

versions can be expressed as either 
4ncases, kncontrols, k

ncases, k + ncontrols, k
or 4

1
ncases, k

+ 1
ncontrols, k

.
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(see Section S6 of Supplement 1) (8,9). Annotated code and examples for applying 

this proposed procedure can be found in a new section on how to calculate sample 

size on the GenomicSEM GitHub (https://github.com/GenomicSEM/GenomicSEM/wiki/

2.1-Calculating-Sum-of-Effective-SampleSize-and-Preparing-GWAS-Summary-Statistics ). 

Note that we also describe in Section S5 of Supplement 1 how to extend this approach 

to produce unbiased, SNP-based heritability estimates for meta-analyses that combine binary 

and continuous measures of the same trait.

METHODS AND MATERIALS

Simulation and Recovery of SNP Heritability for Binary Traits

Simulation of Summary Statistics.—Each simulation began by generating genome-

wide summary statistics for binary traits for 10 individual cohorts. We began with a series 

of simulations that specified a population prevalence of 1%, a liability-scale heritability 

of 15% in the population, cross-trait intercepts of 0 to reflect no sample overlap across 

the 10 cohorts, and a univariate intercept of 1.0 to reflect no uncontrolled for population 

stratification. Each cohort was specified to have a sample prevalence of either 10% (low 

ascertainment) or 50% (high ascertainment), with the balance of cohorts with low and high 

ascertainment varying across 11 simulation conditions (see Table 1 for details on each 

condition). Note that when liability-scale heritability is equal, but sample prevalence differs 

across cohorts, observed-scale heritability will differ across cohorts.

We went on to perform a second set of simulations that aimed to systematically characterize 

the effect of different population generating parameters on liability-scale heritability 

estimates. For all conditions in this second set of simulations, the 10 cohorts consisted 

of 5 cohorts with 10% sample prevalence and 5 cohorts with 50% sample prevalence. 

The same population generating parameters from the first set of simulations were used 

(population prevalence = 1%; liability-scale heritability = 15%; cohort-level sample size 

= 5000; univariate LDSC intercept = 1) with the exception that one of these values was 

changed within each condition. This second set of simulations then consisted of 12 distinct 

conditions that examined the downstream consequences of changing the cohort-level sample 

size (1000, 10,000, 20,000, or 25,000), the liability-scale heritability (5%, 10%, 20%, or 

25%), the population prevalence (1%, 5%, 10%, or 15%), or the LDSC univariate intercept 

(1.04) (see Table S1 in Supplement 2).

Data Generating Model.—For all simulations, data were simulated using European 

population LD scores provided by the original LDSC developers (10) for 1,184,461 

HapMap3 SNPs, excluding the major histocompatibility complex region and sex 

chromosomes, according to simulation procedures first described in de la Fuente et al. 
(11). More specifically, summary statistics were simulated following the multivariate LDSC 

equation:

Z1j, Z2j, …Z10j ∼ N [0, 0, …0], cov Z1j, Z2j, …Z10j (8)

where
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cov Z1j, Z2j, …Z10j =

N1
ℎl

2

M ℓ (j) + 1 + a1

N1N2
σg1, 2

M ℓ (j) + ρ1, 2Ns1, 2

N1N2
N2

ℎ2
2

M ℓ (j) + 1 + a2

⋮ ⋮ ⋱

N1N10
σg1, 10

M ℓ (j) + ρ1, 10Ns1, 10

N1N10
N2N10

σg2, 10

M ℓ (j) + ρ2, 10Ns2, 10

N2N10
… N10

ℎ10
2

M ℓ (j) + 1 + a10

(9)

and Z1j, Z2j, …Z10j  reflects the Z statistics for the 10 GWAS cohorts (expressed in 

condensed form, not depicting cohorts 3 to 9 from the current simulations for display 

reasons), M is the number of SNPs from the LD file (1,184,461), Ns is the number of 

overlapping individuals, N is the sample size of the individual GWAS, ℓ (j) is the LD score 

of SNP j, and a + 1 reflects the univariate LDSC intercept that picks up on unmeasured 

confounds, such as population stratification. The bivariate LDSC intercept, expressed as 
ρ1, 2Ns1, 2

N1N2
 for cohorts 1 and 2, was 0 owing to setting the sample overlap (Ns) to 0 for all 

simulations. GWAS z statistics were simulated following the equation above and using the 

mvrnorm R function from the MASS package for each SNP. For each condition, 100 sets of 

summary statistics were simulated (i.e., 1000 cohort-level summary statistics per condition 

for a total of 11,000 simulated cohorts across the 11 conditions).

From the simulated cohort-level GWAS z statistics, we computed logistic betas as follows:

blogitk, j = Zk, j

nkvk 1 − vk σSNP, j
2 (10)

where vk and nk reflects the cohort-specific sample prevalence and sample size, respectively, 

and σSNP, j
2  reflects the variance of a given SNP j calculated as 2 × MAF × (1 − MAF), where 

MAF is the minor allele frequency. The logistic standard errors for a given SNP j and cohort 

k were then calculated as

SEblogitc, j = blogitk, j

Zk, j
(11)
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These logistic betas and standard errors were used to calculate the inverse-variance weighted 

meta-analytic beta across the 10 contributing cohorts as described in Supplement 1. This 

procedure then produced a single summary statistics file reflecting the meta-analyzed output 

across the 10 simulated cohorts. This summary statistics file was finally analyzed in LDSC 

in 1 of 2 ways, as described in the section below.

Analysis of Simulated Summary Statistics.—We compared the ability to recover 

the population liability-scale heritability ℎl
2  for 2 approaches: the standard procedure 

of inputting the total sample prevalence vTotal  and the total sample size NTotal , versus 

our proposed approach of inputting the sum of effective sample sizes ∑EffNk  and a 

sample prevalence (v) of 0.5 to reflect the fact that the effective sample size equation 

already accounts for cohort-specific sample ascertainment. For each simulation condition 

and liability correction approach, we report the mean liability-scaled heritability estimate, 

standard deviation across the 100 simulations, the range of parameter estimates, and the 

mean proportional bias relative to the population generating parameter, calculated as

Mean % Bias = 1
100 ∑

r = 1

100 ℎl, r
2

ℎl, True
2 − 1 (12)

where ℎl, r
2  is the parameter estimate for a given run, r, and ℎl, True

2  was the population 

generating value of 15%.

Simulating Ascertainment Variability

The key error in the field standard approach is that it does not account for variation in 

ascertainment across cohorts. As such, the expectation for the degree of bias in liability-

scale heritability for the field standard approach can be indexed using the ratio of the sum 

of effective sample sizes (our proposed approach) over the effective sample size calculated 

using the total number of cases and controls (statistically equivalent to the field standard 

approach). In other words,

%Bias = ℎl
2 Estimate for vTotal

ℎl
2 estimate for ∑EffNk

− 1

= ∑vk 1 − vk nk
∑vknk
∑nk

∑ 1 − vk nk
∑nk

∑nk

− 1
(13)

Note that equation 13 makes it explicit that bias with respect to the heritability estimate is an 

inverse function of bias with respect to the computation of EffN.

We went on then to perform a series of simulations that relied on this property by 

generating a wide variety of cohort-specific sample sizes and analytically computing bias 

in the heritability estimate, rather than generating GWAS summary statistics and estimating 

heritability. We began by performing a set of simulations that mirrored the simulating 

conditions when GWAS summary statistics were generated (i.e., mixtures of cohorts 

consisting of 50%/50% and 10%/90% cases/control ratios) to confirm the equivalence of 

the 2 approaches. We then expanded the range of simulating conditions to consider the full 
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scope of potential bias within a plausible range. This involved running 1000 simulations that 

all consisted of generating 10 cohorts of 1000 participants, with each cohort set to randomly 

contain a proportion of cases between 5% and 95%.

Analysis of Real Data

We examined liability-scale heritability estimates for publicly available, European only 

summary statistics for 12 major disorders: attention-deficit/hyperactivity disorder (12), 

alcohol dependence (13), Alzheimer’s disease (ALZ) (14), anorexia nervosa (15), autism 

spectrum disorder (16), bipolar disorder (17), cannabis use disorder (18), major depressive 

disorder (19), obsessive-compulsive disorder (20), posttraumatic stress disorder (21), 

schizophrenia (22), and Tourette syndrome (23). For each set of summary statistics, we 

followed the standard quality control procedure of filtering out SNPs with an imputation 

quality (INFO) score < 0.9 and minor allele frequency <1% and filtering to SNPs present 

in the HapMap3 file excluding the major histocompatibility complex region and sex 

chromosomes. In line with prior work for ALZ, we also removed the APOE region prior 

to calculating heritability. In addition, for ALZ we confirmed that the GERAD (Genetic 

and Environmental Risk in Alzheimer’s Disease) consortium was analyzed as a single 

cohort while the remaining contributing consortia (ADGC [Alzheimer’s Disease Genetics 

Consortium], CHARGE [Cohorts for Heart and Aging Research in Genomic Epidemiology], 

and EADI [European Alzheimer’s Disease Initiative]) reflected meta-analyzed summary 

statistics obtained from individual cohorts. Thus, a single EffN was calculated for GERAD 

while EffN was calculated for each of the contributing cohorts for the other consortia 

prior to summing them all together to produce a single ∑EffNk for ALZ. For all traits, 

the liability-scale heritability was then calculated using either our proposed approach of 

inputting ∑EffNk or the field standard approach of using vTotal. For ∑EffNk, the SNP-

specific sum of effective sample sizes was used when available. Similarly, when using vTotal, 

the SNP-specific total sample size was used when this information was available. Bias was 

calculated here as the proportion of the ∑EffNk estimate captured by vTotal:

ℎl
2 Estimate for vTotal

ℎl
2 estimate for ∑EffNk

− 1 (15)

RESULTS

Simulation results using GWAS summary statistics are presented in Figure 1, Table 1, 

and Table S1 in Supplement 2. Simulation results that directly simulated ascertainment 

variability are presented in Figure S1 in Supplement 1. These results reveal 3 primary 

findings. First, the field standard approach of using vTotal can produce substantial, downward 

bias for liability-scale heritability estimates, with bias increasing as a function of the 

degree of variability in ascertainment across contributing cohorts (Figure 1A; Figure S1 

in Supplement 1). Thus, bias was greatest for those conditions when the ascertainment 

variability was highest across cohorts. Indeed, holding ascertainment variability constant 

resulted in the same level of bias for different population SNP-based heritability estimates, 

cohort sample sizes, population prevalence, and levels of unaccounted for population 
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stratification (Table S1 in Supplement 2). For simulations using GWAS summary statistics 

within a relatively narrow range of conditions and those directly simulating ascertainment 

variability across a wider range of conditions, the downward bias was as much as 

approximately 20% and approximately 50%, respectively (Table 1; Figure S1 in Supplement 

1). Second, both the field standard and our proposed approaches produce the same estimates 

when ascertainment is equivalent across all cohorts (Figure 1B, L). Importantly, the standard 

procedure of using total sample prevalence (vTotal) is not biased as a function of the overall 

degree of ascertainment. Rather, the bias is attributable to the level of ascertainment 

variability across cohorts. Third, our proposed procedure of using ∑EffNk removes this 

bias, producing accurate estimates of the population-level, liability-scale heritability (Table 

1 and Figure 1) across a range of population generating conditions (Table S1 in Supplement 

2). Having established that using P EffNk produces an accurate estimate of ℎl
2, we went on to 

examine the difference across using vTotal and ∑EffNk in real data.

We compared the field standard procedure of using vTotal versus our proposed approach of 

using ∑EffNk for 12 major, binary traits for which sufficient cohort-level information was 

available: We used the same population prevalences from the original GWAS publications 

from which the summary statistics were derived. We quantified bias here as the proportional 

difference across ∑EffNk and vTotal (i.e., ℎl
2 Estimate for vTotal

ℎl
2 estimate for ∑EffNk

− 1). Consistent with 

simulation findings, real data results revealed that in all cases using vTotal produced a deflated 

estimate of liability-scale heritability relative to ∑EffNk. This bias ranged from as little 

as 1.3% for autism spectrum disorder to as much as 28.1% for alcohol use disorder and 

31.8% for bipolar disorder (17) (Table 2). In all but one instance, the heritability estimates 

reported in the corresponding manuscripts most closely matched those produced from using 

vTotal (Table S2 in Supplement 2). The exception was the most recent release (Freeze 3) 

of the Psychiatric Genomics Consortium bipolar summary statistics (17), which reports a 

liability-scale heritability consistent with using ∑EffNk.

DISCUSSION

SNP-based heritability is a fundamental quantity in complex trait genetics. As such, 

SNP-based heritability estimates from GWAS summary statistics are standard results to 

report in any major GWAS meta-analysis effort. For binary traits, such as case-control 

disease traits, SNP-based heritability estimates must be converted to the liability scale 

to be meaningfully interpreted. We demonstrate here that the field standard approach 

for estimating liability-scale heritability from meta-analytic GWAS summary data can 

downwardly bias liability-scale heritability estimates by as much as approximately 50% 

in simulations and approximately 30% in real data. We have therefore proposed a simple 

procedure for obtaining unbiased estimates of liability-scale SNP-based heritability in these 

contexts.

Downwardly biased estimates of SNP-based heritability will propagate to produce 

downwardly biased estimates of genetic covariance, which may in turn bias methods 

that rely on these estimates [e.g., MTAG (6), GenomicSEM (5)]. Importantly, genetic 
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correlations are expected to be unaffected by this bias because they standardize genetic 

covariance estimates relative to heritability estimates, thereby canceling out the bias. 

Another issue that merits further investigation is the presence of ascertainment differences 

that stratify by meaningful covariates across cohorts. For example, it is currently unknown 

how estimates may be biased when ascertainment varies across GWAS cohorts more for one 

sex than the other. In addition, it will be important to examine the effect of ascertainment 

differences when cohorts systematically vary with respect to the severity of cases, as may be 

observed for meta-analyses of inpatient and community samples.

Genomic-relatedness matrix restricted maximum likelihood (2,24) is a major alternative to 

LDSC that estimates heritability using raw genotypes among unrelated individuals. While 

LDSC has the advantage of requiring only summary-level data, and is thus especially 

applicable to GWAS meta-analysis results, genomic-relatedness matrix restricted maximum 

likelihood is often considered preferable when raw data are available (25,26) because it 

is typically found to produce larger SNP-based heritability estimates than those obtained 

from LDSC (27). One potential explanation for this discrepancy includes the possibility 

that, because LDSC is typically applied to meta-analytic GWAS data, it will only detect the 

portion of heritable signal that is consistent across contributing GWAS datasets. A second 

potential explanation for this discrepancy is that LDSC may produce attenuated heritability 

estimates because of discrepancies between LD structure in the reference data used to 

construct the LD scores and the samples from which the GWAS estimates were derived. In 

addition to these issues, the present findings highlight another, easily correctable, source of 

discrepancy across LDSC and genomic-relatedness matrix restricted maximum likelihood 

for binary traits.

In summary, the field standard approach to estimating SNP-based ℎ2 for GWAS meta-

analysis of binary traits results in a downward bias because it fails to account for variation 

in the proportion of cases (i.e., variable levels of ascertainment) across contributing cohorts. 

Our proposed solution of using ∑EffNk corrects for this bias and is applied at the stage of 

SNP-based ℎ2 estimation such that it does not require rerunning the GWAS meta-analysis. 

For most psychiatric traits, ∑EffNk is already available in the GWAS summary statistics 

or can be straightforwardly computed from information provided in the original publication 

reporting the GWAS meta-analysis. In addition, we have shown that when ∑EffNk cannot 

be obtained, it can be straightforwardly approximated from the GWAS summary data. Thus, 

the use of ∑EffNk can be widely applied for the liability correction going forward so as to 

produce more accurate estimates of SNP-based heritability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation results across conditions. Panel (A) depicts the mean percentage bias on the 

y-axis across the 11 simulation conditions on the x-axis. Error bars depict ±1 SD. Panels (B–
L) depict the individual point estimates from the 100 simulations per condition across the 11 

conditions. The red dashed line indicates the liability-scale ℎ2 of 15% in the population. All 

panels depict the results from using ∑EffNk to account for cohort-specific ascertainment in 

green and the results from using vTotal for the liability correction in blue, which denotes using 

the total sample prevalence calculated using the aggregate number of cases and controls 

across cohorts. Because vTotal and ∑EffNk produced equivalent solutions for panels (B) and 

(L), the blue and green distributions are entirely overlapping.
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