Table 2.
Datasets | Methods | Train_ loss | Train_ acc (%) | Val_ loss | Val_ acc (%) |
---|---|---|---|---|---|
Four classes (X-ray images) | ResNet-50 | 0.1987 | 98.56 | 0.2018 | 93.29 |
VGGNet-16 | 0.2145 | 98.14 | 0.2453 | 93.05 | |
i-CapsNet | 0.1584 | 98.86 | 0.1862 | 93.25 | |
MGMADS-3 | 0.0139 | 99.62 | 0.0140 | 96.25 | |
RMT-Net | 0.0132 | 99.64 | 0.0126 | 98.84 | |
Binary classes (CT images) | ResNet-50 | 0.1454 | 99.01 | 0.1752 | 96.25 |
VGGNet-16 | 0.1463 | 98.95 | 0.1568 | 93.75 | |
i-CapsNet | 0.1285 | 98.98 | 0.1366 | 95.37 | |
MGMADS-3 | 0.0025 | 99.93 | 0.0136 | 98.09 | |
RMT-Net | 0.0102 | 99.87 | 0.0114 | 99.24 |
Bold value highlights the gain effect of our method in the table.