Skip to main content
. 2023 Apr 1;13:5359. doi: 10.1038/s41598-023-32462-2

Table 3.

The test results of RMT-Net compared to the other four models.

Datasets Methods Size(M) Specificity (%) Sensitivity (%) Test _ acc (%) Speed (ms)
Four classes (X-ray images) ResNet-50 285 97.24 92.84 93.14 12.24
VGGNet-16 146 93.54 92.25 92.62 10.09
i-CapsNet 84 92.62 92.86 93.15 8.58
MGMADS-3 43.6 98.06 96.60 96.75 6.09
RMT-Net 40.8 98.26 98.08 97.65 5.46
Binary classes (CT images) ResNet-50 275 96.14 95.48 95.25 10.37
VGGNet-16 154 96.45 94.16 94.38 7.83
i-CapsNet 82 94.67 95.32 95.62 5.79
MGMADS-3 43.6 98.17 98.05 98.25 4.23
RMT-Net 38.5 99.34 98.76 99.12 4.12

Bold value highlights the gain effect of our method in the table.