
Cancer Medicine. 2023;12:7189–7206.	﻿	     |  7189wileyonlinelibrary.com/journal/cam4

1   |   INTRODUCTION

Tumorigenesis is a complicated process not only involv-
ing genetic and epigenetic alterations of tumor cells, but 
also their surrounding non-malignant cells, interactions 
between transformed and non-transformed cells, as well 
as communications among these cellular components 
through the secretion of extracellular molecules. With our 
incremental knowledge on cancer initiation and progres-
sion, the roles of non-transformed cells in nourishing can-
cer cells and cancer stemness have been recognized. The 
term “tumor microenvironment” (TME) has thus emerged 

to describe these cells and the buffering environment they 
foster.1 The TME is known to facilitate uncontrolled pro-
liferation,2 accelerate tumor angiogenesis,3 develop cancer 
invasion/metastasis,4 promote cancer-associated inflam-
mation,5 help cancer cells escape immune surveillance,6 
and contribute to metabolic reprogramming.7 With these 
demonstrated impacts on cancer hallmarks,8 the TME has 
been considered as the driving force and therapeutic ave-
nue for conquering many clinical challenges such as can-
cer relapse and drug resistance.9,10

Through categorizing the primary TME components 
and their associated onco-therapeutic targeting modalities, 
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Abstract
With mounting preclinical and clinical evidences on the prominent roles of the 
tumor microenvironment (TME) played during carcinogenesis, the TME has been 
recognized and used as an important onco-therapeutic target during the past dec-
ade. Delineating our current knowledge on TME components and their function-
alities can help us recognize novel onco-therapeutic opportunities and establish 
treatment modalities towards desirable anti-cancer outcome. By identifying and 
focusing on primary cellular components in the TME, that is, tumor-infiltrating 
lymphocytes, tumor-associated macrophages, cancer-associated fibroblasts and 
mesenchymal stem cells, we decomposed their primary functionalities during 
carcinogenesis, categorized current therapeutic approaches utilizing traits of 
these components, and forecasted possible benefits that cold atmospheric plasma, 
a redox modulating tool with selectivity against cancer cells, may convey by tar-
geting the TME. Our insights may open a novel therapeutic avenue for cancer 
control taking advantages of redox homeostasis and immunostasis.
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we identify major TME-modulating mechanisms that ex-
isting anti-cancer strategies used and, accordingly, pro-
pose possible opportunities that cold atmospheric plasma 
(CAP) may have in the battle against cancers as an emerg-
ing TME editing tool.

2   |   PRIMARY CELLS IN TME AND 
THEIR ROLES IN CANCER

Primary TME components include immune cells such 
as tumor-infiltrating lymphocytes (TILs) and tumor-
associated macrophages (TAMs), stromal cells such as 
cancer-associated fibroblasts (CAFs) and mesenchymal 
stem cells (MSCs), and extracellular components such 
as cytokines, growth factors, hormones and extracellular 
matrix (ECM).

2.1  |  Immune cells in the TME

Immune cells residing in the TME include both players in 
the adaptive (i.e., T cells, B cells) and innate (e.g., natural 
killer [NK] cells, macrophages) immune responses. Here, 
we focus on TILs and TAMs that are dominant types of 
immune cells infiltrated to the TME.

2.1.1  |  TIL

Tumor-infiltrating lymphocytes, composed of CD8+ T 
cells, CD4+ T cells, B lymphocytes and NK cells, are lym-
phocytes infiltrated to the TME from the blood.11 CD8+ T 
cells, also known as cytotoxic T cells, are the main anti-
cancer immune cells. CD4+ T cells are represented by 
helper T cells type I (Th1), type II (Th2) and regulatory 
T (Treg) cells, where Th1 cells promote CD8+ T cell and 
NK cell proliferation by secreting IL2 and interferon, Th2 
cells enhance the proliferation and maturation of B cells 
by releasing cytokines such as IL4 and IL6, and Treg cells 
suppress the cytotoxicity of CD8+ T and NK cells.12,13 TILs 
can also be classified by disease specificity in the context 
of cancer immunity, where TILs recognizing non-cancer 
peptides or being cancer ignorant are called “bystander 
TILs”.14 There is emerging evidence that bystander TILs 
may represent dominant TILs in the TME.15–17 Bystander 
TILs can also be sub-grouped into “inactive bystander 
TILs”, “active bystander TILs”, and “false bystander TILs”, 
where inactive bystander TILs recognize tumor-unrelated 
antigens and do not contribute to the anti-cancer immu-
nity, active bystander TILs recognize tumor-unrelated 
antigens but are activated in response to concurrent infec-
tion or in a T-cell receptor (TCR)-independent manner, 

and false bystander TILs recognize both cancer-specific 
and cancer-unrelated targets such as viral or bacterial anti-
gens due to the presence of dual TCRs or cross-reactivity14 
(Figure 1). Thus, cancer-specific TILs and false bystander 
TILs are truly functional entities in the TME contribut-
ing to the anti-cancer immunity, with most types of TILs 
being tumor suppressive except for Treg.

The differential roles of TILs in cancer have profound 
clinical implications. Sufficient tumor site infiltration 
of immune cells including, e.g., CD8+ cytotoxic T cells 
and CD4+ helper T cells, has been associated with in-
flamed TME that is characteristic of increased immune-
modulating chemokines,18 where intratumoral CD8+ T 
cell dysfunction has been proposed as a therapeutic av-
enue for immune-therapies.19 Increased CD8+ cytotoxic 
T cells and suppressed Treg activity as triggered by cur-
cumin was reported to be associated with halted head and 
neck cancer cell invasion.20 On the contrary, decreased 
CD8+ T cell density coupled with elevated Treg TME in-
filtration resulted in impaired IFNγ release from TILs 
and consequently a suppressive T cell contexture and 
accelerated colorectal cancer progression.21 Accordingly, 
low CD8+ T cell and high Treg density was suggested as 
an useful index prognostic of poor lung adenocarcinoma 
outcome, alone or coupled with other biomarkers.22 In 
addition, overproducing Treg-induced cytokines gener-
ated an immune-suppressive TME in IKKα-deficient lung 
adenocarcinomas,23 decreasing the survival of Treg cells 
enhanced the anti-tumor activity of TILs without disrupt-
ing the immune homeostasis,24 and suppressing Treg dif-
ferentiation and infiltration was proposed as a promising 
approach in breast cancer immunotherapy.25

2.1.2  |  TAM

Tumor-associated macrophages, derived from monocyte 
TME infiltration and macrophage differentiation, are 
the most abundant immune cells residing in the TME. 
Macrophages have two main states, that is, M1 and M2. 
While the M1 state is tumor suppressive by releasing pro-
inflammatory cytokines such as TNFα, IL1, IL12, and 
participating in Th1 cell responses, the M2 state is tumor 
promotive by expressing anti-inflammatory cytokines 
such as TGFβ and IL10.26 TAMs can be viewed as mac-
rophages attracted at the M2 state that provide tumors 
with an immunosuppressive microenvironment by inhib-
iting T-cell-mediated anti-tumor immunity.

Tumor-associated macrophages can promote tumor 
progression by secreting factors such as chemokines, 
cytokines, proteases, and growth factors,27–29 and estab-
lish an immune-suppressive TME by interplaying with 
Tregs.30 This has been demonstrated to involve many 
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canonical cancer-associated pathways and in varied 
types of tumors. Take studies in gastric cancers as an 
example, TAMs were shown capable of promoting can-
cer growth by activating the Wnt signaling,27 promoting 
tumor angiogenesis by enhancing VEGF expression,31 
increasing cancer cell invasiveness by stimulating the 
NFκB pathway,32 among the varied molecular mecha-
nisms reported. The promotive role of TAMs has been 
well-documented in other malignancies such as blad-
der28 and lung29 cancers for accelerated cancer cell 
growth, melanoma,33 prostate34 and lung35 carcinomas 
for elevated tumor-associated angiogenesis, and ovari-
an,36–38 breast,39 and lung29,40–42 cancers for enhanced 
metastasis.

2.2  |  Stromal cells in the TME

Stromal cells in the TME are non-transformed cells that 
develop crosstalk with tumor cells and participate in 
tumor progression. Here we focus on CAFs and MSCs, 
two primary forms of TME stromal cells responsible for 
therapeutic hurdles such as drug resistance and cancer 
stemness.

2.2.1  |  CAF

Cancer-associated fibroblasts (CAFs), stromal cells with 
a mesenchymal fibroblast-like phenotype, are originated 
from a variety of cells such as normal fibroblasts, CSCs, 
bone marrow-derived cells, and epithelial cells undergo-
ing the epithelial-mesenchymal transition (EMT) process.1 
They represent the most abundant stromal cells in the 
TME that accounts for approximately 50% cells in a tumor 
tissue.43 CAFs are inducted from their normal tissue-
resident fibroblasts or non-fibroblastic mesenchymal el-
ements by tumor cells via varied molecular mechanisms 
including, for example, direct contact between cancer cells 
and fibroblasts via Notch signaling, JAK–STAT signaling, 
inflammatory signaling as mediated via pro-inflammatory 
cytokines (such as TNFα, IL1, IL6), TGFβ family ligands, 
RTK ligands such as FGF and PDGF, physical or chemical 
ECM alterations, DNA damages triggered by chemo- or 
radio-therapies, stresses as imposed by metabolic or redox 
alterations, fibroblast stretching, epigenetic alterations 
such as histone acetylation, and SRF- or YAP1-dependent 
transcriptional programs.44,45 The diversified original and 
inductive modes of CAFs foster their heterogeneous na-
ture, as exemplified by the existence of at least three CAP 

F I G U R E  1   Types of tumor infiltrating lymphocytes and their primary roles in cancer. Primary tumor-infiltrating lymphocytes (TILs) 
include CD8+ T cells, CD4+ T cells, B cells and natural killer (NK) cells, where CD4+ T cells are sub-categorized into Th1, Th2 and Treg 
cells. CD8+ T cells are the primary TILs taking on the cytotoxicity function against cancer cells. Th1 cells and Treg cells take opposite roles, 
i.e., while Th1 cells activate CD8+ T and NK cells, Treg cells suppress them. Th2 cells activate B cells. These TILs can be categorized into 
four subclasses based on their contributions to anti-cancer immunity. (A) Cancer-specific T cells are activated in a T-cell receptor (TCR)-
dependent way and kill tumor cells upon TCR binding of major histocompatibility complex-presented antigens. (B) False bystander TILs 
recognize antigens from both cancer cells and cancer-unrelated pathogens as they have dual TCRs and viral or bacterial antigens may 
also be present in tumor cells. (C) Active bystander TILs recognize tumor-unrelated antigens in response to concurrent infection or in a 
TCR-independent manner. (D) Inactive bystander TILs recognize tumor-unrelated antigens. Both active and inactive bystander TILs do not 
contribute to the anti-cancer immunity.
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sub-cohorts, that is, inflammatory CAFs (iCAFs), myofi-
broblastic CAFs (myCAFs) and antigen-presenting CAFs 
(apCAFs).46–48 Given the aforementioned complexity of 
CAF, the concept of stromagenesis emerges that refers 
to a dynamic pro-tumorigenesis stromal ECM editing 
process comprised of varied bi-directional stromal fibro-
blastic crosstalks through the secretion of a variety of cy-
tokines and metabolites in, mostly, a paracrine manner.49 
Such a temporal–spatial heterogeneity of CAFs and the 
co-evolvement of CAFs with tumor cells towards strom-
agenesis and tumorigenesis make CAF a critical contribu-
tor to cancer hallmarks and one possible determinant 
of many clinical challenges such as drug resistance, and 
thereby been considered as a critical roadblock in solid 
cancer therapy.43 Accumulated evidence has suggested 
the roles of CAFs in developing solid tumor therapeutic 
resistance. For example, CAFs were intrinsically resistant 
to gemcitabine, a standard of care for pancreatic cancer 
patients, and capable of secreting exosomes accelerat-
ing such a chemo-resistance on gemcitabine exposure.50 
A CD10+GPR77+ CAF cohort defined a chemo-resistant 
lung cancer population due to persistent NFkB activa-
tion.51 Suppressed CAF proliferation reduced the resist-
ance of pancreatic ductal adenocarcinomas to oxidative 
stress and the growth of these tumor cells.52

2.2.2  |  MSC

Mesenchymal stem cells are stromal cells capable of self-
renew and multi-lineage differentiation. MSCs can differ-
entiate into CAFs with compelling supportive evidences 
favoring their pro-tumorigenic roles, among which main-
taining cancer stemness through the secretion of a variety 
of regulatory factors is the most frequently reported.53,54 
Specifically, CSCs can recruit and activate cells including 
MSCs that, in turn, modify the stroma to establish a unique 
microenvironment favorable for CSC maintenance and 
transit cancer cells from the bulk tumor state to the CSC 
state through the establishment of a crosstalk with can-
cer cells.55 For instance, TGFβ-stimulated MSCs induced 
EMT and a CSC phenotype by activating Notch signaling 
in pancreatic cancers56 and hepatocellular carcinomas57; 
MSCs from the TME increased cancer stemness and the 
metastatic phenotype of prostate cancer cells through al-
tering the CCL5-androgen receptor pathway,58 promoted 
the tumorigenic phenotype of glioma CSCs through ac-
tivating IL6/STAT3 signaling,59 increased the number of 
CSCs in ovarian tumor cells via altering bone morphoge-
netic protein signaling,60 enhanced the stem-like proper-
ties of gastric cancer cells by upregulating Tregs,61 and 
polarized macrophages to the M2 phenotype in gastric 
cancers.62

3   |   EXISTING ONCO -THERAPIES 
TARGETING TME

3.1  |  Onco-therapeutic strategies relying 
on immune cells in the TME

3.1.1  |  Targeting immune checkpoints 
towards restored immune surveillance

Immune checkpoints are signals capable of suppressing 
the immune response through regulating the antigen rec-
ognition of TCR. Cancer cells take advantages of immune 
checkpoints to reduce the efficacies of cytotoxic CD8+ T 
cells in the TME and thus evade the immune surveillance 
for uncontrolled cancer progression. Such an immune-
suppressive TME arrests many solid tumors in the “cold” 
state and imposes a great challenge to immune-therapies 
in treating solid tumors.

Antibodies against programmed cell death 1 (PD1) 
and PD1 ligand (PD-L1) have shown great promises 
in fighting against cancers and thus attracted much 
attention during recent years61,63,64 (Figure  2). PD1 is 
a transmembrane protein expressed on T cell surface, 
and CD8+ T cells loose cytotoxicity when PD1 binds to 
PD-L1 that is expressed on the surface of cancer cells. 
Antibodies of PD1 and PD-L1 allow CD8+ T cells to kill 
cancer cells by blocking interactions between PD1 and 
PD-L1.65 Several onco-therapeutics of this kind have 
been made commercially available. For instance, pem-
brolizumab (PD1 antibody) was shown effective in treat-
ing many types of malignancies such as triple negative 
breast cancers,66 cervical cancers,67 prostate cancers,68 
gastric cancers,69,70 esophageal cancers,71 gastroesoph-
ageal junction cancers,70 bladder cancers,72 pancreatic 
cancers,73 non-small lung cancers,74,75 melanomas,75 
head and neck cancers,76 endometrial cancers,77 col-
orectal cancers,78 urothelial cancers79; and was approved 
by the USA Food and Drug Administration (FDA) for 
treating tumor mutational burden-high solid tumors,80 
microsatellite instability-high solid tumors,81 advanced 
urothelial carcinomas ineligible for cisplatin-containing 
chemotherapy,82 recurrent or metastatic head and neck 
squamous cell carcinomas with disease progression on 
or after platinum-containing chemotherapies,83 recur-
rent locally advanced or metastatic merkel cell carcino-
mas,84 recurrent locally advanced or metastatic gastric 
or gastroesophageal junction adenocarcinomas express-
ing PD-L1,85 cervical cancers expressing PD-L1,86 BCG-
unresponsive non-muscle invasive bladder cancers,87 
metastatic non-small cell lung cancers expressing PD-L1 
(as a first-line therapy),88–90 MSI-H/dMMR advanced un-
resectable or metastatic colorectal carcinomas (as a first-
line therapy),91 metastatic melanomas (as a second-line 
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therapy),92 and locally recurrent unresectable or meta-
static triple negative breast cancers through combined 
use with chemotherapies.93 As an example of PD-L1 
antibodies, nivolumab was shown effective for treating 
recurrent squamous-cell carcinomas of the head and 
neck,94,95 advanced renal-cell carcinomas,96 metastatic 
melanomas,97 advanced squamous-cell non-small cell 
lung cancers98; and was approved by FDA in the treat-
ment of relapsed or progressive classical Hodgkin lym-
phomas,99 advanced renal cell carcinomas,100 metastatic 
non-small cell lung cancers with progression on or after 
platinum-based chemotherapies,101 bladder cancers,102 

BRAF(V600) wild-type unresectable or metastatic mel-
anomas (as a first-line therapy),103 advanced hepato-
cellular carcinomas,104,105 and unresectable malignant 
pleural mesotheliomas when combined with lpilim-
umab (antibody of CTLA4).106

3.1.2  |  Targeting TAM

Being an essential TME component, TAMs are tumor-
promotive. As the M2 state of TAMs is responsible for pro-
moted tumor growth, current strategies targeting TAMs 

F I G U R E  2   Current onco-therapeutic strategies utilizing properties of primary tumor microenvironment (TME) cellular components. 
(A) Onco-therapeutic strategies utilizing tumor-infiltrating lymphocyte (TIL) properties largely rely on blocking immune checkpoints. (B) 
Onco-therapeutic strategies targeting tumor-associated macrophages (TAMs) either eradicate TAMs or repolarize TAMs from the M2 to 
the M1 state. (C) Onco-therapeutic strategies targeting cancer-associated fibroblasts (CAFs) mainly target myofibroblastic CAFs (myCAFs) 
and inflammatory CAFs (iCAFs). As myCAFs are featured by ‘high α-SMA and low IL6’ and are activated by TGFβ/SMAD signaling, 
therapeutics against myCAFs are designed to target the TGFβ/SMAD axis. As iCAFs are characterized by ‘low α-SMA and high IL6’ and 
are activated by JAK/STAT signaling, therapeutics killing these cells are designed to target the JAK/STAT axis. Therapeutics have also 
been proposed to target miRNAs in CAF-derived exosomes. (D) Onco-therapeutic strategies targeting mesenchymal stem cells (MSCs) can 
be either targeting MSCs or their derived exosomes. MSCs of different origins and their derived exosomes can be used for delivering drugs, 
including chemotherapies, nano-based chemotherapies, nanoparticles, and oncolytic viruses. MSC-derived exosomes can also be genetically 
modified to deliver cytokines, tumor suppressors, or miRNAs to tumors or the TME towards desirable therapeutic outcome.
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largely rely on eradicating TAMs or converting TAMs 
from the M2 state to the M1 state (Figure 2).

Consecutive efforts have been devoted to develop tech-
nologies targeting TAMs taking advantages of nanotech-
nologies. For example, desirable therapeutic outcome has 
been achieved in triple negative breast cancers by deliv-
ering doxorubicin, a chemotherapeutic agent, to TAMs 
using DOX-AS-M-PLGA-NPs (surface-functionalized 
by acid-sensitive sheddable PEGylation and modified 
with mannose).107 As another example, PLGA nanopar-
ticles encapsulating baicalin and melanoma antigen 
Hgp peptide fragment 25–33 were fabricated and fur-
ther loaded with CpG fragments to conjugate M2pep 
and α-pep peptides on their surfaces, and the fabricated 
nano-complexes were capable of transforming the M2-
like TAMs into the M1-like phenotype.108 Also, the M1/
M2 ratio was increased by over four folds through dual 
transfection of polyplexes into both tumors and TAMs in 
pancreatic cancer cell models.109 Several other approaches 
for TAM repolarization have also been proposed includ-
ing, for example, m@Au-D/B nanoparticle (a cancer cell 
membrane-camouflaged gold nanocage loading doxorubi-
cin and l-buthionine sulfoximine)-mediated photothermal 
therapy combined with ROS production,110 TAM-targeted 
delivery of microRNAs with redox/pH dual-responsive 
sPEG/GLC nanovectors,111 Ru-based nanoparticles (Ru@
ICG-BLZ NPs),112 and iron chelated melanin-like nanopar-
ticles (Fe@PDA-PEG).113

Several Chinese herb medications have also been pro-
posed to repolarize TAMs. For instance, Astragaloside IV, 
a main component of nontoxic Chinese herb, was shown 
capable of rewiring M2 TAMs to the M1 phenotype, and 
thus been proposed to be combined with immune check-
point inhibitors for colorectal cancer management.114 
Hydrazinocurcumin repolarized TAMs to the M1 pheno-
type via blocking STAT3 signaling in breast cancers.115 
Glycyrrhiza Radix et Rhizome prevented TAM M2 po-
larization in murine breast cancer cells via, partially, 
suppressing STAT6 signaling.116 Exosomes derived from 
Epigallocatechin gallate (EGCG) decreased TAM infil-
tration and M2 polarization in breast cancers by down-
regulating IL6 and TGFβ.117 Resveratrol inhibited lung 
cancer cell growth via suppressing STAT3-triggered M2 
polarization.118 HangAmDan-B attenuated the growth of 
Lewis lung carcinoma (LLC) cells via inhibiting M1 po-
larization of TAMs.119 The water extract of ginseng and 
astragalus (WEGA) inhibited LLC cell growth by pro-
moting M1 polarization of TAMs.120 PHY906, a four-herb 
Chinese medicine formula (Scutellaria baicalensis Georgi, 
Paeonia lactiflora Pall, Ziziphus jujuba Mill, Glycyrrhiza 
uralensis Fisch), improved the efficacy of Sorafenib in trig-
gering lung cancer cell apoptosis in vivo by increasing M1 
TAMs.121

3.2  |  Onco-therapeutic strategies relying 
on stroma cells in the TME

3.2.1  |  Targeting CAF

Cancer-associated fibroblasts are recognized players in 
cancer progression, with the primary contribution to car-
cinogenesis, among others, being therapeutic resistance. 
CAFs have been shown to convey resistance to radio-
therapies in colorectal cancers,24,26,122,123 nasopharyngeal 
carcinomas,124 and esophageal squamous cell carcino-
mas125,126; to promote chemotherapeutic resistance in 
breast cancers,127 gastric cancers,42,128–131 head and neck 
cancers,132 pancreatic cancers,133 lung cancers,134,135 
bladder cancers,136 gastric cancers,42,128–131 colorectal 
cancers,137,138 and ovarian cancers139,140; to contribute to 
targeted therapeutic resistance in breast cancers,141,142 
prostate cancers,143 hepatocellular carcinomas,144 
melanomas,145–151 and lung cancers152,153; to enhance im-
munotherapeutic resistance in pancreatic cancers,48,154,155 
lung cancers,154,156 breast cancers,157 melanomas,158 intra-
hepatic cholangiocarcinomas,159,160 urothelial cancers,161 
esophageal cancers,162 and hepatocellular carcinomas.163

Cancer-associated fibroblasts are heterogeneous that 
include myCAFs,47 iCAFs,47 and apCAFs.48 The myCAF 
cohort resides in the peri-glandular region and is featured 
by high level of α-SMA and low IL6 expression. The iCAF 
cells are located away from tumor cells and are character-
istic of α-SMA low and IL6 high expression. The apCAF 
cells are featured by the presence of major histocompati-
bility complex (MHC) class II (MHC II) family genes such 
as CD74, H2-Aa, and H2-Ab1 for antigen processing and 
presentation. While the first two subcategories of CAFs 
are tumor-promotive, apCAFs play a tumor-suppressive 
role. Thus, out of the three CAF forms, myCAF and iCAFs 
are the primary onco-therapeutic targets.

As myCAFs are activated by TGFβ/SMAD signaling 
with elevated expression of α-SMA, Ctgf, Col1α1, TAGLN, 
MYL9 and TPM1, therapeutic design against myCAFs 
largely relies on targeting TGFβ signaling (Figure  2). 
Galunisertib was the first oral inhibitor of TGFβ receptor 
with demonstrated efficacy in substantially enhancing the 
overall survival of unresectable pancreatic cancer patients 
receiving gemcitabline.164 M7824 was a double-fusion 
protein against tumorigenesis that took action by blocking 
both TGFβ and PD-L1 signalings.165 Several herbal medi-
cines were reported with suppressive roles on myCAFs via 
blocking α-SMA expression including, e.g., docosahexae-
noic acid,166 resveratrol,167 curcumin,168 and silibinin.169

Since iCAFs are stimulated by the JAK/STAT3 axis 
and are featured by up-regulated expression of IL6, IL8, 
IL11, CXCL1, CXCL2, CXCL12, and LIF, current strate-
gies killing iCAFs include targeting the JAK/STAT3 axis 
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as well as chemokines/cytokines elevated in these CAFs 
(Figure  2). Ruxolitinib, an inhibitor of the JAK/STAT 
pathway, has been shown capable of overcoming cispla-
tin resistance in non-small cell lung cancers,170 sensitizing 
pancreatic cancer cells to oncolytic vesicular stomatitis 
viruses when coupled with polycation,171 restoring the 
sensitivity of tamoxifen-resistant breast cancer cells,172 
and thus been undergoing clinical trials for the treat-
ment of metastatic HER2-positive breast cancers173 and 
metastatic triple negative breast cancers.174 Blocking IL6 
signaling was shown capable of rewiring the chemother-
apeutic resistance of pancreatic cancers in vivo,175 with 
a clinical trial involving 140 advanced pancreatic cancer 
patients being launched to examine the efficacy of tocili-
zumab (an IL6R inhibitor) in improving the chemother-
apeutic outcome (NCT02767557). In addition, combined 
blockage of IL6 and PD-L1 signalings reduced pancreatic 
cancer progression in vivo,176 with the efficacy being clin-
ically investigated (NCT04191421). Anakinra, an IL1R 
antagonist, improved the overall survival of pancreatic 
cancers in vivo,177 and is now under clinical investigation 
(NCT02021422). IL1β blockage rewired the drug resis-
tance of pancreatic tumors in vivo,178 and IL1β inhibitors 
are being actively examined in clinics (NCT04581343). In 
addition, suppressing TGFβ receptors decreased STAT3 
activation in pancreatic tumors in vivo,179 suggestive of 
the crosstalk between myCAFs and iCAFs as well as the 
possibility of concomitantly suppressing both cell cohorts 
using one agent.

Emerging therapeutics have been established to target 
exosomal microRNAs secreted by CAFs (Figure  2). For 
example, CAFs suppressed gastric cancer cell ferroptosis 
by secreting exosomal microRNA-522, and cancer cells de-
veloped chemo-resistance to cisplatin and paclitaxel as a 
result of increased exosome secretion in response to these 
two drugs.129

3.2.2  |  Therapeutics relying on MSC

Mesenchymal stem cells, another important component 
in the TME, orchestrate pro-tumor responses by sup-
porting CSCs and interacting with non-malignant TME 
components. Accumulated evidences have indicated the 
contribution of MSCs to cancer progression and chemo-
therapy resistance by maintaining cancer stemness. For 
instance, MSCs enhanced the self-renewal ability of gas-
tric cancer cells and promoted their chemo-resistance 
both in vivo and in vitro through fatty acid oxidation 
(FAO), suggesting the feasibility of combining FAO inhib-
itors with chemotherapy regimens in restoring cell drug 
sensitivity.180,181 MSC-derived exosomes prevented 5-FU 
triggered gastric cancer cell apoptosis both in vivo and in 

vitro via calcium/calmodulin-dependent protein kinases 
and Raf/MEK/ERK signaling,182 suggestive of a promising 
anti-cancer strategy by targeting MSC-derived exosomes 
coupled with conventional chemotherapies (Figure 2).

The story of applying MSCs in cancer treatment is not 
restricted to direct targeting. One of the earliest interac-
tions between MSCs and cancer cells is the natural hom-
ing of MSCs to the cancer milieu.183 The high tropism of 
MSCs to tumors has enabled them to be a promising tool 
for delivering onco-therapeutics such as chemotherapies, 
nanoparticles, and oncolytic viruses184 (Figure  2). For 
example, by delivering paclitaxel using MSCs, the prolif-
eration capacity of multiple myeloma cells was remark-
ably hampered,185 and the tumor angiogenetic ability of 
acute lymphoblastic leukemia was substantially reduced 
in vivo.186 The high anti-cancer activity of nanoparti-
cles has once attracted lots of focus in cancer treatment 
that, however, suffers from low tumor-homing efficiency. 
Loading nano-based chemotherapies on MSCs showed a 
great promise in cancer treatment. Increased drug access 
to the tumor site was observed by loading nano-docetaxel 
on MSCs that led to potent induction of lung cancer cell 
death.187 In agreement with this, enhanced quantum dots 
uptake by breast cancer cells was observed when they 
were loaded on MSCs,188 and 37-fold increased tendency 
of gold nanoparticles to the tumor site was reported when 
delivered by MSCs.189 Oncolytic viruses such as herpes 
simplex virus (HSV), adenovirus and lentivirus have been 
used to deliver anti-cancer agents. Manipulated MSCs 
were shown capable of delivering HSV thymidine kinase 
(HSV-TK) to the tumor site and significantly reducing the 
size and progression of glioma in vivo,190 suggestive of the 
efficacy and safety this onco-therapeutic approach. MSCs 
expressing HSV-TK have also been shown to reinforce the 
therapeutic value of some agents such as fluorouracil (5-
FU) in a prostate cancer xenograft model,191 implicative of 
a potential therapeutic synergy.

In addition, MSCs can secrete exosomes that possess 
similar properties to the source MSCs. Since exosomes 
can readily fuse with and evacuate cargos into the tar-
get tumor cells, they have been considered as an ideal 
tool for anti-cancer agent delivery184 (Figure 2). For ex-
ample, through incubating MSC-derived exosomes with 
Dox·HCl, the drug-loaded exosomes (Exo-Dox) showed 
higher cellular uptake and anti-tumor efficiency in os-
teosarcoma cells without observable cytotoxicity to 
normal cells.192 Besides, by genetically manipulating 
MSCs, exosomes capable of reconstructing the TME 
towards an unfavorable environment for the survival 
of neoplastic cells can be obtained. For instance, engi-
neered MSCs with amplified INFβ expression reduced 
the angiogenesis capacity of prostate cancer cells by 
releasing INFβ to cancer cells that suppressed VEGF 

https://clinicaltrials.gov/ct2/show/NCT02767557
https://clinicaltrials.gov/ct2/show/NCT04191421
https://clinicaltrials.gov/ct2/show/NCT02021422
https://clinicaltrials.gov/ct2/show/NCT04581343
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expression.193 Similarly, MSCs with enhanced INFγ ex-
pression induced glioma cell death,194 and hampered 
the proliferation of chronic myeloid leukemia cells.195 
Apart from cytokines, attempts have also been made to 
express tumor suppressor genes in MSCs. For instance, 
MSC-derived exosomes over-expressing Pten eliminated 
glioblastoma cells196; exosomes originated from MSCs 
and over-expressing apoptin substantially reduced the 
metabolic activity and remarkably diminished the size 
of liver tumors in vivo.197 Lastly is the modification of 
microRNA contents of MSCs. For example, through co-
delivery of microRNA-124 and microRNA-145 to glio-
blastoma cells via MSC-derived exosomes, significant 
reduction of cancer cells was observed due to concomi-
tant suppression on Sox2 and Oct4.198,199

Intensive clinical efforts have been devoted to MSC-
based onco-therapeutics, most of which focused on 
tissue-derived MSCs (over 50%) followed by engineered 
MSCs (approximately 23%) and only 1 trial was desig-
nated to evaluate the safety and efficacy of MSC-derived 
exosomes.200

4   |   CAP AS AN EMERGING TME 
EDITING TOOL

Cold atmospheric plasma is composed of varied re-
active oxygen and nitrogen species (RONS) includ-
ing short-lived species such as hydroxyl radical (OH·), 
singlet oxygen (O), superoxide (O2−), and nitric oxide 
(NO·), and long-lived species such as hydrogen perox-
ide (H2O2), ozone (O3), anionic (OONO−), and proto-
nated (ONOOH) forms of peroxynitrite. Since the first 
discovery on the anti-cancer efficacy of CAP in 2007, 
consecutive efforts have been devoted to investigate 
its onco-therapeutic impacts in varied types of cancers 
with demonstrated efficacies already been proven in, 
for example, triple negative breast cancers,201 bladder 
cancers,202 prostate cancers,203 melanomas,204 and pan-
creatic cancers.205 Differential cell death events can be 
triggered by CAP in a dose-dependent manner206 that 
include, for example, cell cycle arrest,203 autophagy,207 
apoptosis,201 ferroptosis,208 immunogenic cell death 
(ICD),209 and necrotic cell death.210 It has also been 
proposed that CAP can modulate the immunogenic re-
sponse211 and drug sensitivity212 of cancer cells, halt can-
cer invasion and metastasis,202 and rewire the metabolic 
reprogramming of malignant cells,213 among others. 
With accumulated evidences on the selectivity of CAP 
against cancers and its diversified anti-cancer proper-
ties keep being discovered, CAP has been proposed as 
an emerging onco-therapeutics214 capable of controlling 
cancer cell states.215

Besides these preclinical studies showing the 
efficacy201–203,215–218 and safety219 of CAP in cancer treat-
ment both in vitro and in vivo, the first clinical trial using 
CAP as an oncotherapy had been approved by FDA on 
July 30, 2019, in the USA (NCT04267575). Among the 20 
stage IV solid tumor patients recruited in this trial, 17 pa-
tients were still alive by the study completion on 14 April 
2021, suggestive of the safety and efficacy of CAP as a 
novel onco-therapeutic modality.220

Before introducing the roles of CAP relevant to TME 
immune cells, we need to firstly review the cancer immu-
nity cycle. Cancer cells in a healthy individual can be ef-
fectively killed by the cancer immunity cycle. Specifically, 
neoantigens are secreted by dying cells and captured by 
DCs, where immunogenic signals including, e.g., proin-
flammatory cytokines, are also released in accompany. 
Then, DCs present these captured antigens on MHC 
class I (MHCI) and MHCII molecules to T cells, which 
are primed to recognize and kill malignant cells carrying 
cancer-specific antigens. Activated T cells then home to 
tumor sites and infiltrate to the TME to recognize cancer 
cells and take on the cytotoxic effect, where the killing 
of cancer cells releases additional tumor-associated anti-
gens to sustain the cancer immunity cycle. In cancer pa-
tients, this cycle may fail at any step. For instance, tumor 
antigens may not be detected, DCs may fail in presenting 
these antigens to T cells, T cells may not treat cancer an-
tigens as foreign materials and thus not activated, T cells 
may not properly traffic to tumors, succeed in infiltrating 
the TME, or take on the cell killing effect due to various 
suppressive factors residing in the TME such as M2 TAM 
and CAF.221 Below, we characterize the possible roles of 
CAP in fixing the abnormal cancer immunity cycle in 
cancer patients by focusing on the impact of CAP on pri-
mary components aforementioned in the TME.

4.1  |  Onco-therapeutic opportunities of 
CAP relevant to TME immune cells

4.1.1  |  CAP enhances tumor antigen 
release and CD8+ T cell priming

The presentation of cancer antigens by MHCI is essential 
for CD8+ T cells to take on their anti-cancer cytotoxicity, 
where elevated intracellular ROS production can promote 
antigen cross presentation.222 CAP is a known redox mod-
ulating tool capable of enhancing cellular ROS level, and 
thus is possible to sensitize CD8+ T cells towards improved 
anti-cancer activities (Figure  3). Indeed, several studies 
have already reported the ability of CAP in triggering ICD 
that is featured by enhanced cancer cell emission of danger 
associated molecular patterns and CD8+ T cell priming.223
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4.1.2  |  CAP repolarizes TAM from the M2 
to the M1 state

It has been long and well-acknowledged that the M1/M2 
polarization of TAMs is a dynamic process in response 
to multiple physical factors as exemplified by oxygen 
tension, and the M1 TAMs are featured by an enhanced 
RONS forming capacity for tumoricidal activities.224 CAP, 
by definition, is a RONS generator. Thus, it is natural to 
assume that CAP may function as an excellent tool for 
TAM repolarization toward the M2 state, the study of 
which deserves intensive efforts (Figure 3).

4.2  |  Onco-therapeutic opportunities of 
CAP relevant to TME stromal cells

4.2.1  |  CAP restores drug sensitivity by 
modulating p53-driven CAF hierarchy

Before we can understand how CAP may restore the 
drug sensitivity of resistant cancer cells via modulating 
the TME, we should firstly be acknowledged with the 
role of p53 mutation on CAF functionalities. The p53-
driven CAF hierarchy of pancreatic cancer cells toward 
a pro-metastatic and chemo-resistant TME has been 

established.225 Specifically, cancer cells with a gain-of-
function p53-mutant educated a dominant CAF cohort 
for a pro-metastatic microenvironment that delayed 
cancer cell response to gemcitabine/abraxane, and re-
programmed the rest CAF populations towards the acqui-
sition of more invasive features.225

Cold atmospheric plasma has been demonstrated capa-
ble of activating genes involved in p53 signaling in cancer 
cells226 and modulating p53 in keratinocytes.227 Given the 
essential roles played by p53 in maintaining the therapeutic-
responsive CAF hierarchy and thus cancer cell drug sensi-
tivity, it is plausible to assume that the demonstrated efficacy 
of CAP in restoring the therapeutic response of many resis-
tant cancer cells is, at least partially, attributable to the re-
modeled p53-driven CAF hierarchy in the TME (Figure 3).

4.2.2  |  CAP blocks the differentiation of 
MSC to CAF

Mesenchymal stem cells can be considered as the nour-
ishing cells of CSCs and can differentiate into CAFs 
that are known capable of promoting tumorigenesis.228 
The transition of MSCs into CAFs is at least partially 
attributable to the active secretome in the TME that in-
cludes, for example, pro-angiogenetic factors such as 

F I G U R E  3   Onco-therapeutic opportunities of cold atmospheric plasma (CAP) utilizing properties of primary tumor microenvironment 
(TME) cellular components. (A) For tumor-infiltrating lymphocytes (TILs), CAP can possibly enhance tumor antigen secretion and enhance 
CD8+ TIL cytotoxicity. (B) For tumor-associated macrophages (TAMs), CAP can potentially repolarize TAMs from the M2 to the M1 state. 
(C) For cancer-associated fibroblasts (CAFs), CAP may modulate p53-driven CAF hierarchy towards enhanced drug sensitivity. (D) For 
mesenchymal stem cells (MSCs), CAP may block MSCs differentiation to CAFs that is associated with reduced cancer stemness. (E) CAP 
can function as the cargo of MSCs or their derived exosomes for enhanced delivery to the tumor loci, where MSCs are not necessarily 
originated from the TME.
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VEGF and PDGF, pro-metastatic factors such as TGFβ, 
pro-inflammatory factors such as CXCL12 and IL6, 
and ECM modulators such as matrix metalloproteases 
(MMPs).229,230

Accumulated evidences have suggested the selectiv-
ity of CAP against triple negative breast cancers,201,216,231 
where significantly reduced expression of MMP1, MT-
MMP and uPA (a critical player in the plasminogen activa-
tion system that activates MMPs and degrades most ECM 
proteins) in response to CAP treatment was reported,232 
suggestive of the causal relationship between the sup-
pressive role of CAP on MMPs and its anti-cancer effects. 
Interestingly, this study also reported retarded CD44 ex-
pression,232 the high level of which is characteristic of 
CSCs, associating the blocked transition from MSCs to 
CAFs (as indicated by reduced MMPs) with reduced can-
cer stemness. In agreement with this, our previous inves-
tigations in triple negative breast cancers also embraced 
the suppressive role of CAP on cancer stemness.202 In 
addition, another study reported reduced expression of 
MMP2/9 and VEGF on CAP exposure that restored the 
chemo-sensitivity of breast cancer cells,233 implicative of 
a less retarded drug response as a result of blocked differ-
entiation from MSCs to CAFs (Figure 3).

4.2.3  |  CAP creates synergies with 
MSC or MSC-derived exosomes for enhanced 
tumor homing

Although having been considered as a promising onco-
therapeutic strategy, the clinical application of CAP was 
hindered by the limited lifespan of its short-lived species. 
CAP can be prepared in the form of liquid, for example, 
plasma activated Ringer emulsion, and can be made as 
the cargo of delivery vehicles alone or mixed with, e.g., 
hyaluronic acid234 for improved stability or with, e.g., hy-
drogel235 for extended release. MSCs (not necessarily orig-
inated from the TME) and their derived exosomes may 
function as the ideal vehicle for CAP delivery given their 
excellent tumor-homing and cargo protection properties, 
which is expected to concentrate CAP in the tumor milieu 
or the TME for improved drug utility (Figure 3). Besides, 
as exosomes can easily pass through the blood brain bar-
rier, MSC-derived exosomes may offer additional benefits 
by delivering CAP to the brain tissues to kill tumor cells 
originated from or metastasized to the brain that currently 
lack effective and safe cure (Figure  3). In addition, it is 
worthwhile to explore the potential of delivering CAP in 
the form of oral capsules with the aid of MSC-derived ex-
osomes for cancer treatment that can tolerate gastric acid-
ity (Figure 3).

5   |   CONCLUSION

This paper delineates the functionalities of the TME in 
tumorigenesis by classifying their primary cellular com-
ponents into “immune cells” (as represented by TILs and 
TAMs) and “stromal cells” (as exemplified by CAFs and 
MSCs), reviewing current onco-therapeutic strategies tar-
geting these components as well as the existing clinical 
endeavors. Importantly, we advocate the possible roles of 
CAP in modulating the TME towards an environment fa-
vorable for cancer management, and identify possible mo-
lecular mechanisms driving the demonstrated selectivity 
of CAP against cancer hallmarks.

Cold atmospheric plasma has been proposed as an 
emerging tool for TME editing given its role in modulating 
key indexes of the TME, that is, hypoxia, acidosis, hypo-
nutrition, and inflammation.236 From a complementary 
perspective, we focus on potential impacts of CAP on the 
primary cellular components in the TME here. We identify 
and forecast the functions of CAP in enhancing tumor an-
tigen secretion and CD8+ T cell cytotoxicity, repolarizing 
TAM from the M2 to the M1 state, modulating p53-driven 
CAF hierarchy toward enhanced drug sensitivity, and 
blocking the differentiation of MSCs to CAFs for reduced 
cancer stemness. We also propose possible synergies be-
tween CAP and MSCs (not restricted to those residing in 
the TME) for efficient drug delivery and tumor homing. 
These insights may offer additional views on what redox 
modulation can do to resolve tumors that calls for exper-
imental validations and deserves future attention. We do 
not exclude other possible impacts of CAP on the TME that 
may be unveiled in the future given our incremental under-
standings on the cellular system and the properties of CAP.
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