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Abstract
Background: We performed an integrated biomarker evaluation in pembrolizumab- 
treated patients with R/M HNSCC enrolled in KEYNOTE- 012 or KEYNOTE- 055. 
The relationship between biomarkers and HPV status was explored.
Methods: We evaluated PD- L1 (combined positive score [CPS]), TMB, T- cell- 
inflamed gene expression profile (TcellinfGEP), and HPV status. Associations 
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1  |  INTRODUCTION

Immunotherapies that target the programmed death- 1 
(PD- 1) axis can provide durable antitumor responses in 
multiple cancer types; however, the durable benefit is 
limited to specific patient subpopulations.1 Biomarkers 
indicative of tumor antigenicity, including tumor muta-
tional burden (TMB) and microsatellite instability (MSI), 
as well as inflammatory biomarkers related to a T- cell- 
inflamed tumor microenvironment, such as programmed 
death- ligand 1 (PD- L1) expression and T- cell- activated 
gene expression signatures, may help characterize patient 
subpopulations who can benefit from these therapies.2 
Biomarkers approved by regulatory authorities to predict 
the likelihood of response to the anti- PD- 1 monoclonal 
antibody pembrolizumab include PD- L1 expression for 
several tumor types and TMB or MSI regardless of specific 
cancer.3 An 18- gene T- cell- inflamed gene expression pro-
file (TcellinfGEP) can independently predict response to 
pembrolizumab in multiple tumor types, including head 
and neck squamous cell carcinoma (HNSCC).2,4

Oncogenic viruses such as hepatitis B virus, Merkel 
cell polyomavirus, Epstein– Barr virus, and human 

papillomavirus (HPV) generate viral antigens distinct from 
tumor- specific neoantigens that arise from somatic mutation 
and can lead to T- cell responses.5,6 In some virus- induced 
cancers, PD- L1 expression is increased. Higher response 
rates with immunotherapy have also been noted in virus- 
induced versus non- virus- induced cancers6; however, ge-
netic determinants related to response to immuno- oncology 
agents in these tumor types are not well understood. HPV 
is etiologic for a subset of HNSCC,7 and this subset is as-
sociated with greater survival than HPV- negative tumors.8 
Although HPV status is usually assessed through the detec-
tion of p16- antigen by immunohistochemistry (IHC), HPV 
genomes can also be detected through genomic methods 
(i.e., whole- exome sequencing [WES]).8,9

Pembrolizumab demonstrated durable antitumor ac-
tivity with a manageable safety profile in recurrent and/or 
metastatic (R/M) HNSCC in the phase Ib KEYNOTE- 012 
and phase II KEYNOTE- 055 studies.10– 12 In a recent analy-
sis of KEYNOTE- 012, the expression of TMB, TcellinfGEP, 
and PD- L1 each was found to be an independent predic-
tor of clinical response to pembrolizumab.13 Patients with 
high rather than low levels of TMB and inflammatory 
biomarkers (PD- L1 expression or TcellinfGEP score) had 

between biomarkers were evaluated by logistic regression (ORR) and Cox regres-
sion (PFS, OS).
Results: Two hundred and fifty- seven patients (KEYNOTE- 012, n  =  106; 
KEYNOTE- 055, n = 151) had TMB data available; of these, 254 had PD- L1 and 
236 had TcellinfGEP. TMB, PD- L1, and TcellinfGEP were each significantly associ-
ated with ORR (p < 0.01). Kaplan– Meier curves at prespecified cutoffs generally 
showed PFS and OS separation in the anticipated direction for these biomark-
ers, except for OS and TMB. TMB did not correlate with PD- L1 or TcellinfGEP 
(Spearman ρ = −0.03 and ρ = −0.13, respectively); PD- L1 and TcellinfGEP were 
moderately correlated (Spearman ρ = 0.47). In multivariate models, TMB, PD- L1, 
and TcellinfGEP were each independently predictive for ORR (p < 0.001). ORR was 
higher in patients with high versus low levels of biomarkers when dichotomized 
using prespecified cutoffs; patients with higher versus lower levels of TMB and 
PD- L1 or TMB and TcellinfGEP had the highest ORRs. Within HPV subgroups, 
higher versus lower distributions of biomarkers (PD- L1, TMB, and TcellinfGEP) 
were associated with response. HPV detection by p16- immunohistochemistry 
and WES showed good concordance (81%); results were generally similar by HPV 
status, regardless of the detection method.
Conclusions: TMB and the inflammatory biomarkers PD- L1 and TcellinfGEP, 
assessed alone or together, may be useful for characterizing clinical response to 
pembrolizumab in R/M HNSCC.
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biomarker, head and neck squamous cell carcinoma, immunotherapy, pembrolizumab, tumor 
microenvironment, tumor mutational burden
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higher responses to pembrolizumab. The present analysis 
extends those observations and evaluates the relationships 
of these biomarkers with response to pembrolizumab 
and survival using data pooled from KEYNOTE- 012 and 
KEYNOTE- 055 in patients with R/M HNSCC, including 
a descriptive evaluation of the relationship between these 
biomarkers and HPV status.

2  |  METHODS

2.1 | Study design and patients

The study design and eligibility criteria of the multicohort 
phase Ib KEYNOTE- 012 (Clini calTr ials.gov, NCT01848834) 
study and the phase II KEYNOTE- 055 (Clini calTr ials.gov, 
NCT02255097) study have been reported.10– 12 In brief, 
eligible patients in KEYNOTE- 012 cohorts B and B2 had 
confirmed R/M HNSCC by Response Evaluation Criteria 
in Solid Tumors, version 1.1, by investigator review and 
Eastern Cooperative Oncology Group performance sta-
tus (ECOG PS) ≤1; cohort B enrolled 60 patients with PD- 
L1- positive tumors (≥1%, QualTek IHC), and 132 patients 
with PD- L1- unselected tumors were enrolled in cohort B2. 
Eligible patients in KEYNOTE- 055 had confirmed R/M 
HNSCC of the oral cavity, oropharynx, hypopharynx, or lar-
ynx resistant to platinum and to cetuximab; had an ECOG 
PS of 0 or 1; and provided newly obtained core or excisional 
biopsy for PD- L1 expression analysis (n = 171). Concurrent 
treatment with platinum and cetuximab was not required; 
however, patients must have experienced progressive dis-
ease (PD) or recurrence <6  months after the last dose of 
each therapy. For both studies, key exclusion criteria in-
cluded previous treatment with an anticancer monoclonal 
antibody <4 weeks of the initiation of study drug; previous 
chemotherapy, small molecule- targeted therapy, or radia-
tion therapy <2 weeks of the initiation of study drug; known 
active central nervous system metastases; and a diagnosis of 
immunodeficiency, autoimmune disease, interstitial lung 
disease, or active infection that required systemic therapy.

In KEYNOTE- 012, patients received pembrolizumab 
10  mg/kg every 2 weeks in cohort B and 200 mg every 
3 weeks in cohort B2. In KEYNOTE- 055, patients received 
pembrolizumab 200 mg every 3 weeks. In both studies, 
treatment continued for ≤2 years or until confirmed PD or 
unacceptable toxicity, investigator decision, or withdrawal 
of patient consent.

The study protocols were approved by regulatory 
boards or ethics review committees at each study cen-
ter. The studies were conducted in accordance with the 
Declaration of Helsinki and Good Clinical Practice guide-
lines. All patients provided written informed consent be-
fore study entry.

2.2 | Assessments

TMB was assessed using WES as previously described.2 
PD- L1 expression level was assessed via IHC using PD- L1 
IHC 22C3 pharmDx (Agilent) and measured by combined 
positive score (CPS), defined as the number of PD- L1- 
positive cells (tumor cells, lymphocytes, macrophages) di-
vided by the total number of viable tumor cells, multiplied 
by 100.14 For the TcellinfGEP, RNA was assessed using the 
NanoString platform and calculated as a weighted sum 
of normalized expression values for the 18 genes (TIGIT, 
CD27, CD8A, PDCD1LG2 [PD- L2], LAG3, CD274 [PD- L1], 
CXCR6, CMKLR1, NKG7, CCL5, PSMB10, IDO1, CXCL9, 
HLA.DQA1, CD276, STAT1, HLA.DRB1, HLA.E).4 HPV 
status was determined by p16- IHC for patients with can-
cer of the oropharynx. p16- IHC testing was not conducted 
for primary tumor locations outside the oropharynx, and 
such tumors were categorized as HPV negative. HPV sta-
tus was also assessed by WES regardless of the tumor site.

2.3 | Statistical analysis

Statistical testing of biomarker and response relation-
ships, prespecified in the statistical analysis plans for 
KEYNOTE- 012 and KEYNOTE- 055, was performed 
using data pooled from both studies. TMB, PD- L1 expres-
sion, and TcellinfGEP score relationships with objective 
response rate (ORR; defined as the proportion of pa-
tients achieving complete response or partial response), 
progression- free survival (PFS), and overall survival 
(OS) with pembrolizumab were assessed in all patients 
and by HPV status. Associations between TMB, PD- L1, 
TcellinfGEP, neoantigen load, and clonality- weighted 
TMB (TMB × clonality as calculated using a published al-
gorithm15) and ORR were assessed by logistic regression. 
Associations of TMB, PD- L1, and TcellinfGEP with PFS 
and OS were assessed by Cox regression. Associations 
of neoantigen load and tumor clonality (an estimate 
of TMB restricted to clonal mutations) with ORR were 
also evaluated. An appropriate transformation for TMB, 
PD- L1, neoantigen load, and clonality- weighted TMB, 
either log or square root, was applied when needed. 
Models were adjusted for ECOG PS and study or cohorts. 
One- sided nominal p values were reported for ORR, 
PFS, and OS because a positive association was hypoth-
esized. Significance was determined at the 0.05 level, 
unadjusted for multiplicity. The area under the receiver- 
operating characteristic (AUROC) curve was used as a 
measure of the discriminatory ability of TMB, PD- L1, 
and TcellinfGEP biomarkers to distinguish responders 
from nonresponders. The following cutoffs were used 
to assess the clinical utilities of the biomarkers with 

http://clinicaltrials.gov
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the response (1) 175 mutations/exome (mut/exome) for 
TMB, derived from TMB and GEP data across multiple 
cohorts16 (previously shown to be concordant with 10 
mut/Mb [FoundationOne®CDx])17; (2) CPS 1 for PD- L1 
expression14; and (3) – 0.318 for GEP score, defined using 
multiple tumor types18 and preceding the availability of 
gene expression data from KEYNOTE- 055.

Correlations between TMB and inflammatory biomark-
ers (PD- L1 and TcellinfGEP) were assessed using Spearman 
correlation. A contingency table was used to evaluate the 
concordance of HPV status (WES versus p16 IHC). Boxplots 
were used to descriptively illustrate the distribution of each 
biomarker (TMB/TcellinfGEP/PD- L1) by HPV status; the 
mean difference of each biomarker in HPV- positive versus 
HPV- negative subgroups was tested using a two- sample t 
test, and the adjusted p values are reported for multiple test-
ing across the three biomarkers (TMB/TcellinfGEP/PD- L1). 
The Hochberg step- up procedure was used for multiplicity 
to control the family- wise error rate. Testing for differential 
biomarker relationships according to HPV status was per-
formed with an interaction term between the biomarker 
(TMB/TcellinfGEP/PD- L1) and HPV status in a logistic re-
gression model (other terms were ECOG PS, study/cohort, 
the biomarker itself [TMB/TcellinfGEP/PD- L1], and HPV 
status) and was similarly adjusted for multiplicity.

3  |  RESULTS

3.1 | Patients

Of 363 total patients from the KEYNOTE- 012 and 
KEYNOTE- 055 trials, 257 patients had evaluable TMB 

data (106, KEYNOTE- 012; 151, KEYNOTE- 055); of these, 
254 had available PD- L1 data and 236 had available 
TcellinfGEP data. The baseline characteristics of the pa-
tients with available TMB data were generally similar to 
those of the total population (Table 1). Median follow- up 
in KEYNOTE- 012 was 14 months (interquartile range, 4– 
14) in cohort B and 9 months (interquartile range, 3– 11) in 
cohort B2, and median follow- up in KEYNOTE- 055 was 
7 months (range, 0– 17).10– 12

3.2 | Association of biomarkers 
with ORR

TMB, PD- L1, and TcellinfGEP were each significantly asso-
ciated with ORR (p ≤ 0.001) (Figure 1). Clonality- weighted 
TMB and neoantigen load were highly correlated with 
TMB (Spearman ρ  =  0.90 and ρ  =  0.85), and increas-
ing neoantigen load and clonality- weighted TMB were 
positively associated with ORR in all patients (p = 0.009 
and p = 0.004) (Figure 1). Predictive discriminatory util-
ity scores for ORR of TMB, PD- L1, and TcellinfGEP by 
AUROC analysis were similar: 0.63 (95% CI, 0.53– 0.73), 
0.64 (95% CI, 0.55– 0.73), and 0.71 (95% CI, 0.62– 0.80), 
respectively (Figure  2); the AUROC was 0.62 (95% CI, 
0.52– 0.72) for clonality- weighted TMB. Of importance, 
the TcellinfGEP score was initially identified with a mul-
titumor, 220- patient training data set that included 40 pa-
tients from KEYNOTE- 012 cohort B1 and that later was 
independently validated using data from KEYNOTE- 012 
cohort B24; thus, some upward bias in the TcellinfGEP 
AUROC estimate might have occurred because of the in-
clusion of training data.

Characteristic
Overall study 
populationa N = 363

WES populationb 
n = 257

Age, years, median (range) 61 (20 to 90) 61 (25 to 90)

Male, n (%) 297 (82) 207 (81)

ECOG PS (1 or 2), n (%) 258 (71) 178 (69)

Stage M1 disease, n (%) 321 (88) 230 (89)

No. of previous lines of therapy, n (%)

0 37 (10) 24 (9)

1 80 (22) 49 (19)

2 113 (31) 93 (36)

≥3 133 (37) 91 (35)

HPV positive by p16- IHC, n (%) 82 (23) 57 (22)

HPV positive by WES, n (%) — 79 (31)
aOverall study cohort was composed of 192 (KEYNOTE- 012) and 171 patients (KEYNOTE- 055).
bPatients with available WES data included 106 (KEYNOTE- 012) and 151 patients (KEYNOTE- 055).

T A B L E  1  Baseline characteristics of 
biomarker population
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3.3 | Joint assessment of biomarkers

No notable correlation was observed between TMB and 
inflammatory biomarkers (Spearman ρ = −0.03 for PD- L1 
and ρ = −0.13 for TcellinfGEP) (Figure 3A), whereas PD- 
L1 and TcellinfGEP were moderately correlated (Spearman 
ρ = 0.47) (Figure 3A). When TMB was assessed in a multi-
variate model with either PD- L1 or TcellinfGEP, TMB and 
each marker of inflammation remained significantly pre-
dictive (all p ≤ 0.001) (Table S1).

Clinical response was also evaluated based on pre-
specified cutoffs for each biomarker. The response was 

higher in the TMB ≥175 mut/exome subgroup than in the 
TMB <175 mut/exome subgroup (18/61 patients [30%] 
vs. 27/196 patients [14%]), in the PD- L1 CPS ≥1 subgroup 
than in the PD- L1 CPS <1 subgroup (40/211 patients 
[19%] vs. 5/43 patients [12%]), and in the TcellinfGEPnonlow 
(≥−0.318) subgroup than in the TcellinfGEPlow (<−0.318) 
subgroup (34/157 patients [22%] vs. 7/79 patients [9%]). 
The response was highest in the subgroup of patients with 
both TMB ≥175 mut/exome and PD- L1 CPS ≥1 (17/50 pa-
tients [34%]) (Figure 3B) and in the subgroup of patients 
with TMB ≥175 mut/exome and TcellinfGEPnonlow (13/38 
patients [34%]) (Figure 3C).

F I G U R E  1  Association between biomarkers and response in all patients. (A) TMB, (B) TMB weighted by clonality, (C) neoantigen load, 
(D) PD- L1 CPS, and (E) TcellinfGEP
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3.4 | Association of biomarkers with 
PFS and OS

Median PFS was 114 days (95% CI, 63– 180) in the TMB 
≥175 mut/exome subgroup versus 64 days (95% CI, 63– 64) 
in the TMB <175 mut/exome subgroup, 64 days (95% CI, 
63– 71) in the PD- L1 CPS ≥1 subgroup versus 63 days (95% 
CI, 61– 66) in the PD- L1 CPS <1 subgroup, and 64.5 days 
(95% CI, 64– 111) in the TcellinfGEPnonlow subgroup versus 
60 days (95% CI, 58– 64) in the TcellinfGEPlow subgroup 
(Figure 4).

Median OS was 301 days (95% CI, 178 to not evaluable) 
in the TMB ≥175 mut/exome subgroup versus 259 days 
(95% CI, 240– 354) in the TMB <175 mut/exome sub-
group, 302 days (95% CI, 256– 365) in the PD- L1 CPS ≥1 
subgroup versus 199 days (95% CI, 134– 255) in the PD- L1 
CPS <1 subgroup, and 310 days (95% CI, 259– 540) in the 
TcellinfGEPnonlow subgroup versus 167 days (95% CI, 136– 
246) in the TcellinfGEPlow subgroup (Figure 4).

3.5 | Distribution of biomarkers and by 
HPV status

Of 363 patients, 256 (71%) had evaluable WES and p16- 
IHC data. Despite p16- IHC analysis being restricted to 
oropharyngeal tumors and WES analysis performed on all 
tumor sites, detection of HPV status by p16- IHC and WES 
showed good concordance (208/256 [81%]) (Table S2) in 
the analysis population of patients with evaluable WES 
data. Similar proportions of patient tumors were classified 

as HPV negative (78% and 69%) and HPV positive (22% 
and 31%) by p16- IHC and WES, respectively.

The distribution of biomarkers (TMB/PD- L1/
TcellinfGEP) was comparable in HPV- positive and HPV- 
negative subgroups, defined by either WES or p16- IHC 
(Figure S1A– C). Two- sample t testing showed no signif-
icant difference between HPV- positive and HPV- negative 
subgroups, defined by either WES or p16- IHC for any of 
the biomarkers (adjusted p > 0.3).

3.6 | Association of biomarkers with 
ORR by HPV status

Evaluating trends for TMB, PD- L1, and TcellinfGEP within 
HPV status suggested consistency in the positive asso-
ciation between each biomarker and response in HPV- 
positive and HPV- negative subgroups (Figures  S2A– C). 
Some associations with outcome appeared to be stronger 
in one HPV subgroup than another. For example, TMB 
distribution was more separated for responders than 
nonresponders in the HPV- negative group and the HPV- 
positive group. Conversely, PD- L1 CPS and TcellinfGEP 
distributions showed stronger trends with response sta-
tus for the HPV- positive group than the HPV- negative 
group. Statistical interaction testing was conducted for 
HPV- specific associations for these three biomarkers with 
ORR, albeit in a manner outside the statistical analysis 
plan of each study, to gauge the evidence supporting dif-
ferences in the relationship between TMB and inflamma-
tory biomarkers with clinical outcome according to HPV 
status based on a more powered analysis offered by the 
combined two- study data package. The results of this 
interaction testing, with multiplicity adjustment for the 
three biomarkers within HPV assay type, provided some 
indication that the association between the inflammatory 
markers PD- L1 and TcellinfGEP might have been stronger 
in the HPV- positive subgroup, although the two versions 
of the HPV assays were not consistent in their testing con-
clusions with regard to adjusted P values achieving signifi-
cance at the 0.05 level (Table S3).

4  |  DISCUSSION

In this exploratory analysis of patients with R/M HNSCC 
enrolled in KEYNOTE- 012 and KEYNOTE- 055 who had 
evaluable WES data, TMB and the inflammatory bio-
markers PD- L1 CPS and TcellinfGEP were independently 
predictive of ORR to pembrolizumab. Patients with high 
levels (based on a prespecified cutoff) of TMB, PD- L1, 
and TcellinfGEP versus low levels of these biomarkers had 
higher response rates to pembrolizumab, and patients 

F I G U R E  2  AUROC curve of TMB, PD- L1 CPS, and TcellinfGEP 
in all patients
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whose tumors expressed high levels of dual biomarkers 
(both TMB and PD- L1 CPS and TMB and TcellinfGEP) had 
the best responses to pembrolizumab. Taken together, 
the data suggest that these biomarkers reflect comple-
mentary measures of tumor antigenicity and an inflamed 
tumor microenvironment and that, used alone or jointly, 
have the potential to characterize responses to anti- PD- 1 
therapy in HNSCC. However, outlier responses, such as 
patients whose tumors express low levels of TMB and PD- 
L1, suggest that additional biology or dynamic changes 
may also contribute to these effects, necessitating further 
evaluation in additional studies.

The results of this analysis are consistent with those 
of previous studies showing that TMB, PD- L1, and 
TcellinfGEP are related to response to anti- PD- 1 therapy 

in multiple cancers2 and with those of a recent analysis 
of the KEYNOTE- 012 trial in patients with HNSCC.13 
PD- L1 is a US Food and Drug Administration- approved 
diagnostic biomarker that is related to response to pem-
brolizumab monotherapy in several cancers, including 
HNSCC when used as first- line therapy,3 and is consid-
ered to be driven by interferon- gamma signaling as partly 
indicative of a T- cell- inflamed tumor microenvironment. 
In a similar fashion, TcellinfGEP, a signature composed 
of genes related to multiple cell types involved in the cy-
tolytic process, including PD- L1 and PD- L2 as member 
genes whose levels are coexpressed with those of other 
genes in the signature, is related to response to pem-
brolizumab.4 Hence, as expected and as demonstrated 
previously,19 PD- L1 and TcellinfGEP were moderately 

F I G U R E  3  Correlation between (A) PD- L1 CPS and TMB, or TcellinfGEP and TMB, or PD- L1 CPS and TcellinfGEP and the response rate 
(95% CI) of the dual biomarkers (B) TMB and PD- L1 CPS, (C) TMB and TcellinfGEP, and (D) TcellinfGEP and PD- L1 CPS in all patients. Data 
in panels B, C, and D are shown for patients who had data available for both biomarkers
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positively correlated in this analysis. Similar to other 
published data,2,13 this combined HNSCC cohort shows 
TMB did not correlate with PD- L1 or TcellinfGEP but 
rather indicates mutational load acted as an additional 
explanatory axis for objective response to pembrolizumab 
in this pooled analysis. Pembrolizumab was recently ap-
proved by the US Food and Drug Administration to treat 
patients with unresectable or metastatic TMB- high (≥10 

mut/Mb) solid tumors who experienced PD after previ-
ous treatment.3,20

Using prespecified biomarker cutoffs, trends of lon-
ger median PFS were observed with higher versus lower 
levels of TMB but not PD- L1 or TcellinfGEP. Evaluation 
of the Kaplan– Meier curves shows a fairly similar level 
of progression early, regardless of biomarker status, but 
later separation in PFS curves in the anticipated direction 

F I G U R E  4  Association between biomarkers and PFS and OS in all patients at prespecified cutoffs. (A) TMB and PFS, (B) TMB and OS, 
(C) PD- L1 CPS and PFS, (D) PD- L1 CPS and OS, (E) TcellinfGEP and PFS, and (F) TcellinfGEP and OS
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according to the biomarker cutoff (Figure 4). Longer me-
dian OS was associated with higher rather than lower lev-
els of PD- L1 and TcellinfGEP but not of TMB. However, OS 
data from single- arm studies should be interpreted with 
caution; a more informative evaluation of the relation-
ship between OS and TMB will require larger randomized 
studies.

HPV infection is a risk factor for some HNSCC sub-
types,21 and its presence can be determined by p16- IHC, 
DNA/RNA- in situ hybridization, or genomic methods 
(e.g., WES). In our study, both p16- IHC and WES showed 
good concordance (81%) in HPV detection, and results 
in the HPV subgroups identified by either method were 
generally similar. When evaluating the response to pem-
brolizumab by HPV status in patients with HNSCC in 
KEYNOTE- 012 and KEYNOTE- 055, both studies previ-
ously reported that response rates were similar regardless 
of HPV status.10– 12 In the current analysis, the distribu-
tions of TMB, PD- L1, and TcellinfGEP were similar among 
the HPV- positive and HPV- negative subgroups. The in-
flammatory biomarkers PD- L1 and TcellinfGEP, TMB, 
neoantigen load, and clonality- weighted TMB were each 
associated with response to pembrolizumab regardless of 
HPV status detected by p16 or WES. Higher response rates 
were observed in patients with high levels of TMB or either 
of the inflammatory biomarkers in both HPV subgroups. 
It is possible that biomarker trends with the clinical out-
come may vary by HPV status. For the trends observed 
here, statistical significance and clinical relevance were 
not clear but may be worth additional follow- up as further 
data accumulate.

In conclusion, TMB and the inflammatory biomarkers 
PD- L1 CPS and TcellinfGEP were each significantly and 
independently predictive of response to pembrolizumab 
in patients with HNSCC. Greater responses to pembroli-
zumab were associated with higher levels of the inflam-
matory biomarkers and TMB than were lesser responses, 
an observation that was consistent regardless of HPV sta-
tus, suggesting that biomarkers representing complemen-
tary measures of tumor antigenicity and a T- cell- inflamed 
tumor microenvironment may be useful in characterizing 
clinical response to pembrolizumab in HNSCC. Larger 
randomized studies are required to better identify and un-
derstand biomarkers of response and resistance to pem-
brolizumab monotherapy and combination therapy in 
patients with HNSCC.
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