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Abstract
Purpose: The pathogenesis of cancers depends on the molecular background of 
each individual patient. Therefore, verifying as many biomarkers as possible and 
clarifying their relationships with each disease status would be very valuable. We 
performed a large-scale targeted proteomics analysis of plasma extracellular vesi-
cles (EVs) that may affect tumor progression and/or therapeutic resistance.
Experimental design: Plasma EVs from 59 were collected patients with colo-
rectal cancer (CRC) and 59 healthy controls (HC) in cohort 1, and 150 patients 
with CRC in cohort 2 for the large-scale targeted proteomics analysis of 457 pro-
teins as candidate CRC markers. The Mann–Whitney-Wilcoxon test and random 
forest model were applied in cohort 1 to select promising markers. Consensus 
clustering was applied to classify patients with CRC in cohort 2. The Kaplan–
Meier method and Cox regression analysis were performed to identify potential 
molecular factors contributing to the overall survival (OS) of patients.
Results: In the analysis of cohort 1, 99 proteins were associated with CRC. The 
analysis of cohort 2 revealed two clusters showing significant differences in OS 
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1   |   INTRODUCTION

Colorectal cancer (CRC) is the third most common can-
cer and the second leading cause of cancer-related death 
worldwide.1 Currently, the TNM classification,2 which 
classifies malignant cancer based on clinicopathological 
findings, including an assessment of the primary tumor 
size (T), involvement of regional lymph nodes (N), and 
metastasis (M), is the gold standard for cancer staging 
and the subsequent determination of suitable therapeu-
tic strategies. However, the field of diagnostics is shift-
ing toward more detailed, molecular biological analyses. 
Recently, a CRC subtype classification system has been 
developed based on four consensus molecular subtypes, 
emphasizing the importance of prognostic predictions 
according to the individuals' molecular background for 
more personalized therapies.2,3

Molecular analyses using tumor tissue samples gener-
ally necessitate invasive procedures, and repeat biopsies 
are often unbearable for patients. In contrast, blood col-
lection is less invasive and is accepted as a surrogate for 
biopsy specimens, which is known as a liquid biopsy.4 
A variety of targets for liquid biopsy, including circulat-
ing tumor cells, cell-free DNA or RNA, and extracellular 
vesicles (EVs), have been proposed to date. Among them, 
EVs are suggested to be used for early cancer detection 
and prognosis.5 Every living cell is known to secrete EVs 
into body fluids. EVs have a biological function in cell–
cell communication by carrying DNA, RNA, miRNAs and 
proteins, which affect tumor progression and/or treatment 
resistance.6 According to a recent report, a proteomics 
analysis of EVs is useful for cancer detection and cancer 
type determination, suggesting that EV protein profiles 
are ideal diagnostic tools.5

Mass spectrometry (MS)-based proteomics studies 
provide unprecedented insights into proteomic profiles 
of biological samples without antibodies or other label-
ing techniques. Two major approaches are available for 

proteome profiling using MS: non-targeted and targeted 
proteomics.7 Although non-targeted proteomics mainly 
aims to identify as many proteins as possible and illustrate 
comprehensive protein landscapes in samples, targeted 
proteomics is used to quantify only target proteins to be 
measured. Due to these features, the former is generally 
used for the identification of biomarker candidates, and 
the latter is used for their verification in biomarker explo-
ration studies.5,7,8

Due to the rapid progress of MS-based biomarker dis-
covery methods, there are often tens or hundreds of bio-
marker candidates. It is important to increase the number 
of proteins to be validated by targeted proteomics, which 
is one of the major challenges of this field and could lead 
to the discovery of more validated biomarkers. Targeted 
proteomics is commonly based on the technique called 
selected reaction monitoring (SRM) or multiple reaction 
monitoring (MRM).9 Data with a high signal-to-noise 
ratio are obtained by stabilizing only the ion traces with 
predefined m/z values utilizing triple quadrupole MS, en-
abling the highly sensitive detection and quantification of 
the target proteins with a wide dynamic range. For accu-
rate quantification, particularly for the absolute quanti-
fication of proteins, stable isotope-labeled (SIL) peptides 
are essential, as they have the same sequences as target 
peptides.10 However, the acquisition of SIL peptides is 
generally costly, and the preparation of various SIL pep-
tides can be a bottleneck for large-scale studies.

Accordingly, most typical biomarker studies have 
quantified less than 100 proteins for validation with SRM 
analysis.5,8,11,12 Several studies have been reported as 
“large-scale” SRM analyses. Ishizaki et al. developed an 
SRM assay of 135 biomarker candidate proteins for dis-
ease activity and organ involvement in anti-neutrophil 
cytoplasmic antibody-associated vasculitis.13 Kim et al. 
developed an assay of 133 prostate cancer biomarker can-
didate proteins using 232 peptides.14 You et al. developed 
an assay of 392 CRC-related proteins using 641 peptides.15

(p  =  0.017). Twelve proteins, including alpha-1-acid glycoprotein 1 (ORM1), 
were suggested to be associated with the identified CRC subtypes, and ORM1 
was shown to significantly contribute to OS, suggesting that ORM1 might be one 
of the factors closely related to the OS.
Conclusions: The study identified two novel subtypes of CRC, which exhibit 
differences in OS, as well as important biomarker proteins that are closely related 
to the identified subtypes. Liquid biopsy assessment with targeted proteomics 
analysis was proposed to be crucial for predicting the CRC prognosis.
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Thus, in this study, we aimed to explore subtypes that ex-
plain the pathology or disease status of individual patients 
with CRC by analyzing plasma EVs, which were applied to 
the liquid biopsy assessment of the patients. Although vari-
ous biomarker proteins in EVs have been reported to date,5,16 
we aimed to elucidate more validated molecular information 
by performing a large-scale analysis with the highly sensi-
tive SRM analysis. We also aimed to verify the significance 
of the obtained biomarkers by revealing their relationships 
with diagnostic information. A previously developed MS-
QBiC method17,18 based on the multiplexed cell-free synthe-
sis of SIL peptides was applied, and over 1000 SIL peptides 
representing 457 proteins were prepared in a low-cost and 
time-saving manner. Two different cohorts were studied, 
and the analyses revealed the presence of protein biomark-
ers that could have a predictive and/or prognostic impact on 
CRC patients. Furthermore, machine learning-based analy-
sis suggested two subtypes of CRC that showed significant 
differences in overall survival (OS). Alpha-1-acid glycopro-
tein 1 (ORM1), an acute-phase protein, was suggested to be 
strongly associated with the identified CRC subtypes with 
a poor prognosis. The findings obtained using a large-scale 
targeted proteomics analysis of EVs may provide valuable 
insights into the prediction of the CRC prognosis.

2   |   MATERIALS AND METHODS

2.1  |  Sample collection

Plasma samples were collected from cohort 1 between 
April 2011 and December 2012 (patients with CRC) and 
October 2017 and July 2018 (healthy controls) at The Cancer 
Institute Ariake Hospital of Japanese Foundation of Cancer 
Research. Plasma samples were collected from cohort 2, 
comprising 150 patients with CRC of all disease stages, be-
tween September 2013 and December 2015 and were pro-
vided by Clinical Bio-Resource Center, Kyoto University 
Hospital. See the SI Materials and Methods for details.

2.2  |  Sample preparation

EVs from plasma, peptide samples for MS analysis, and 
SIL peptides were prepared for this study. They were sub-
jected to enzymatic digestion and prefractionation before 
MS analyses. See the SI Materials and Methods for details.

2.3  |  MS analyses

Two types of mass spectrometers, an Orbitrap mass spec-
trometer and a triple quadruple mass spectrometer, were 

used in this study. See the SI Materials and Methods for 
details.

2.4  |  Data analyses

Statistical analyses, random forest, consensus clustering, 
imputation of missing values, and correlation analyses 
of the obtained EV proteomic data were performed with 
R (http://cran.r-proje​ct.org/). See the SI Materials and 
Methods for details.

3   |   RESULTS

3.1  |  Selection of the target proteins

Two cohorts were analyzed according to our experimental 
design (Experimental design in the SI Results and discus-
sions and Figure  S1). The initial target proteins for the 
analysis of cohort 1 were selected from three datasets, 
including the literature search dataset (LS), experimen-
tal dataset (EP) and a dataset from a public database (PB) 
(Figure  1). LS contained 893 CRC biomarker candidate 
proteins that were reported in previous studies. The se-
lection was performed for those published between 2003 
and 2016, according to the same criteria as described pre-
viously.11 EP contained 1303 proteins, which were iden-
tified by non-targeted proteomics analysis based on the 

F I G U R E  1   Selection of target proteins for the SRM analysis. 
A Venn diagram that includes the three datasets is shown. The 
selected proteins are boxed in red. The underlined number of 
proteins indicates the proteins selected for further analysis in 
cohort 2.
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mixtures of plasma samples in cohort 1. PB was addition-
ally prepared to capture EV proteins not identified in the 
non-targeted proteomics analysis. A total of 5397 proteins 
were collected from ExoCarta, a public database of exo-
somal proteins, RNA and lipids.19 All the proteins listed 
in the database as of June 2015 were collected after the 
removal of duplicates.

Further selection was performed principally based on 
the proteins listed in LS. LS proteins were prioritized be-
cause they have been reported to be functionally involved 
in CRC. Proteins identified in both LS and PB or LS and 
EP were selected as proteins to be analyzed (Figure 1). In 
addition, four proteins were added to the list, which were 
suggested to be putative CRC biomarker candidates in 
EVs,11 resulting in 457 proteins for the cohort 1 study.

For the SRM-based targeted proteomics study, 1344 
target peptides representing 457 proteins were designed 
(Data  S2). Three peptides per protein were designed for 
all proteins. Peptide sequences registered in the public 
SRMAtlas database20 and those listed in EP were prefer-
entially applied. Other peptides were designed according 
to the criteria used for peptide design in the MS-QBiC 
method.17 All the designed SIL peptides were successfully 
synthesized with a reconstituted cell-free protein synthe-
sis system21 and used for SRM method development for 
the optimized monitoring of each peptide transition.

3.2  |  Identification of 99 CRC biomarker 
candidates through a large targeted 
analysis of cohort 1 EV samples

A total of 563 peptides representing 282 proteins were 
detected in the mixtures of plasma samples in cohort 1. 
Among them, 230 peptides representing 162 proteins were 
successfully quantified in the individual samples from 
cohort 1 (Datas  S2, S3). The quantification limit of the 
endogenous signal was set to a < 1500 signal intensity to 
ensure quantification accuracy.

Peptides that showed significant changes in the level 
quantified in plasma EVs between patients with CRC and 
healthy controls or patients with stage I and IV tumors 
were selected by statistical analyses, where the Mann–
Whitney-Wilcoxon (MWW) test was applied to the quan-
tified values in each group. Comparisons were performed 
between Stage I and HC1 (A), Stage IV and HC2 (B), and 
Stage I and Stage IV (C). Peptides with p-values less than 
0.05 in the three comparative groups were listed as bio-
marker candidates (Figure 2).

Additionally, an unsupervised random forest (RF) anal-
ysis was performed on the quantified data from cohort 1 to 
evaluate the effect of the level of each peptide on each in-
dividual's status. Unsupervised RF was performed for two 

datasets, patient data (Stages I and IV) and all acquired 
data (Stages I, IV and HC1, 2). Multi-dimensional scaling 
plots according to the similarities between samples in each 
dataset showed clustering of Stages I and IV (Figure S5a) 
and of patients and healthy controls (Figure S5b), respec-
tively, suggesting the presence of factors that affect the 
differences between cancer stages or between patients and 
controls. The top 50 peptides in the feature importance 
score derived from two datasets, Stages I and IV (D) and 
Stages I and IV, and HC1 and 2 (E), were added to the 
candidates (Figure  2). Finally, 139 peptides representing 
99 proteins were selected as biomarker candidates for the 
cohort 2 study (Data S2). The selected markers included 
proteins that may correlate with early diagnosis (A, E), dis-
tant metastasis (B, C, D), and disease progression (C, D).

3.3  |  Consensus clustering of proteomes 
in plasma EVs

To clarify the molecular backgrounds underlying disease 
status in each patient, that is, to investigate the relation-
ships between each selected protein and clinicopathologi-
cal observations, 99 selected biomarker candidates were 
further quantified in plasma EVs from 150 CRC patients 
in cohort 2 (Data  S3). The patients were selected from 
another hospital over a certain period of time, regardless 
of the tumor stage; this external validation of candidate 
biomarkers aided in determining reproducibility and 
generalizability.

Exploratory cluster analysis was performed to visualize 
and interpret the cluster structures of the obtained data. 
To this end, consensus clustering (CC), a machine learn-
ing algorithm, was applied. CC has increased in popular-
ity in cancer genomics, where new molecular subtypes 
of diseases have been identified to date.22,23 This method 
involves multiple sub-samplings from a set of data to form 
multiple clusters and determines the specified clusters. 
Therefore, it is a more robust approach that relies on mul-
tiple clustering for unsupervised samples even if noise, 
outliers or variations are included in the data.

We used the dataset of absolute levels of 99 proteins in 
110 patients with CRC, after excluding data from 40 pa-
tients based on the eligibility criteria (see the Methods). 
Missing values that were not successfully quantified with 
the SRM analysis were replaced with half of the mini-
mum protein level. The missing data mechanism in tar-
geted proteomics is regarded as “missing not at random” 
values24 due to the limitations of MS detection sensitivity 
and specificity.

A clear partitioning was observed in the consensus 
matrix (CM) plots at k = 2, where k represents the maxi-
mum number of clusters (Figure 3A). New small clusters 
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appeared when k was increased from 3 to 5 (Figure S6a–c, 
g), and the two large clusters observed at k < 6 were di-
vided into several clusters when k was further increased 
(Figure  S6d–g). Empirical cumulative distribution func-
tion (CDF) plots showed a flat middle portion at k  =  2 
(Figure  3B). The proportion of ambiguous clustering 
(PAC), defined as the fraction of sample pairs with con-
sensus index values falling in the specific intermediate 
sub-interval (x1, x2), has been proposed to infer the opti-
mal k,25 in which a low PAC value indicates a flat middle 
segment in CDF plots. As in the previous report, x1 and 
x2 were set to 0.1 and 0.9, respectively, and the PAC was 
calculated (Data  S4), which showed the lowest value at 
k = 2, suggesting that the two major clusters observed at 
k = 2 are stable. Multiple methods of missing value im-
putation were further tested to confirm the clustering re-
sults. Reanalysis with several approaches showed almost 
the same clustering results, where two major stable clus-
ters were observed (Figure S7–S9). From these results, we 
concluded that the obtained proteome data in cohort 2 
contained two major clusters.

3.4  |  Clinical relevance of the two 
identified clusters

Characterization of the two major clusters identified in 
cohort 2 analysis was performed by investigating the re-
lationship between the clustering and TNM stage of each 
individual. The results showed no apparent relationship 
with the clinicopathological classification, although more 
stage IV patients were included in cluster 1 (Figure S10). 
Patients of all stages were included in both clusters, sug-
gesting that the proteomes in EVs are factors that are inde-
pendent from clinical staging that can be used to classify 
CRC disease status.

The correlation between clustering and OS was analyzed 
by comparing Kaplan–Meier OS curves between clusters 1 
and 2 to clarify this issue. Surprisingly, patients in cluster 
1 experienced significantly shorter OS than those in cluster 
2 (p = 0.017) (Figure 4A). Stage IV is the most important 

F I G U R E  2   CRC biomarker candidate proteins identified in cohort 
1. Comparisons of the relative amount of each protein in plasma EVs 
in the two groups, namely, between Stage I and HC1 (A), Stage IV and 
HC2 (B), and Stage I and Stage IV (C), are shown as a heat map. Colors 
ranging from blue to red represent log 2 (fold change), and asterisks 
indicate significance in the MWW tests (*p-value <0.05. **p-value 
<0.003). The top 50 proteins in the feature importance score in the RF 
analysis, derived from two datasets, Stages I and IV (D) and Stages I, IV, 
and HC1 and 2 (E), are shown in green panels.
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predictor of survival in CRC patients. The 5-year relative 
survival rate for patients with stage IV CRC is approximately 
one-sixth worse than that for patients with localized disease 
(14% vs. 90%).26 Because stage IV patients were more in-
cluded in cluster 1 and it was possible that this difference af-
fected the difference in OS between the two clusters, further 
analysis was performed with a focus on stage IV patients. 
Patients in cluster 1 experienced shorter OS than those in 
cluster 2 (Figure S11e, p = 0.245). Moreover, the rate of cura-
tive resection in cluster 1, which is strongly associated with 
better prognosis in Stage IV patients, was lower than that in 
cluster 2 (Data S5, Fisher's exact test, p = 0.14). Taken to-
gether, these results suggested that factors other than TNM 
staging may have been included in the clustering.

Proteins that showed significant differences in their 
levels in EVs between the two clusters were studied with 
a volcano plot analysis. Twelve upregulated proteins were 
found in cluster 1, in which fold changes were more than 
two and p-values were less than 0.05, whereas no down-
regulated proteins were found (Figure 4B). Among the 12 
proteins, 5 proteins, alpha-1-acid glycoprotein 1 (ORM1), 
alpha-1-antitrypsin (SERPINA1), leucine-rich alpha-2-
glycoprotein (LRG1), complement C3 (C3), and fibronec-
tin (FN1), were successfully quantified in all samples from 
cohort 2 (Data S3); thus, they were further analyzed to re-
veal their correlations with OS.

All individuals in cohort 2 were divided into two 
groups based on whether each protein amount in the EVs 
was above the median value of the corresponding protein. 
Kaplan–Meier curves were applied for five proteins, and 
ORM1, SERPINA1, and LRG1 showed OS differences be-
tween the two groups (Figure 4C–G). In particular, ORM1 
showed a statistically significant difference (p < 0.003), 
suggesting that ORM1 contributes greatly to OS.

Finally, Cox proportional hazards regression analysis, a 
multivariate analysis of OS, was performed on 110 patients 
in cohort 2, and variables including age, sex, TNM stage, 
and five proteins were examined. Two variables, TNM stage 
and ORM1, were significantly associated with shorter OS 
(p < 0.01) (Data S6). Because stage IV was the most import-
ant factor for OS, according to the statistical value in the 
multivariate analysis, ORM1 was further examined with 
only stage IV patients in cohort 2. The analysis again showed 
the importance of ORM1 in predicting shorter OS (Data S7), 
indicating that ORM1 in plasma EVs might be a factor inde-
pendent of TNM staging that is closely related to shorter OS.

4   |   DISCUSSION

The present study revealed that a large-scale targeted pro-
teomics analysis identified several biomarker proteins in 

F I G U R E  3   Consensus clustering of cohort 2 patients. The results of consensus clustering analysis are shown. (A) Consensus matrix 
plots when the maximum number of clusters (K) is set to two. (B) Empirical cumulative distribution function plots when the maximum 
number of clusters (k) is increased from two to eight.
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EVs that affect the prognosis of patients with CRC. We 
believe that the technical developments reported in the 
current study will further facilitate future exploratory 
studies in the field (See the SI Results and discussions). 
Furthermore, the machine learning-based analyses iden-
tified two novel subtypes of CRC in patients that resulted 
in significant differences in OS. Because an apparent rela-
tionship between this classification and TNM staging was 
not observed, as patients with all stages of tumors were 
included in both subtypes (Figure  S10), the developed 
subtyping method distinguish early-stage patients who 

may transition to a more serious stage. Previous studies 
of biomarkers in tumor tissues have shown that the muta-
tion status of genes known to be associated with CRC car-
cinogenesis (NRAS, KRAS, and BRAF) and defects in the 
DNA mismatch repair system, exert substantial effects on 
the treatment decision.27 However, obtaining such useful 
information requires invasive procedures that are difficult 
to perform at the first visit. Thus, the developed classifica-
tion through a quantitative measurement of EV proteins 
in plasma might provide useful information to reinforce 
the gold standard TNM classification in determining the 

F I G U R E  4   Characterization of the 
two clusters identified by consensus 
clustering. Differences between the two 
clusters were analyzed, with a focus on 
the overall survival (OS) of patients. (A) 
Kaplan–Meier OS curves of patients in 
two clusters. (B) Volcano plot for the 
comparison of protein levels between 
two clusters. The X axis is log 2 (fold 
change), and the Y axis is log 10 (p-value). 
Twelve proteins in which the fold change 
was more than two and the p-value was 
less than 0.05 are indicated by the red 
dots. (C–G) Kaplan–Meier OS curves of 
patients analyzed with a focus on specific 
proteins. The patients were divided into 
two groups based on whether (C) ORM1, 
(D) SERPINA1, (E) LRG1, (F) C3, or (G) 
FN1 was above or not the median level 
for each protein. The red and black curves 
indicate the groups with protein levels 
that were more or less than the median 
level, respectively.
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patient's future treatment plans. More detailed cell biolog-
ical and biochemical analyses for elucidating the relation-
ships between the identified biomarker proteins and the 
disease status are necessary to achieve this goal.

The analysis of cohort 1 provided a valuable list that 
may aid in investigating several aspects of CRC, includ-
ing early diagnosis (A and E), distant metastasis (B, C, 
D), and disease progression (C, D), as shown in Figure 2. 
For example, TFRC, S100A8, MYD88, and IGF2 were 
suggested to be upregulated in EVs from patients with 
CRC, particularly in patients with stage IV tumors, with 
p-values less than 0.01 in three MWW tests, and compar-
atively higher importance scores were obtained in either 
or both of the RF analyses. These proteins all have been 
previously reported to be upregulated in patients with 
CRC or other cancers,28–32 indicating the reliability of the 
present analyses. Considering that the cohort 1 analysis 
was performed with a highly sensitive SRM, which corre-
sponds to a validated analysis in conventional integrative 
studies, the listed proteins are likely sufficient biomarkers 
to indicate disease status. Further analysis of the proteins 
showing significance in the statistical analyses, as well as 
those with large fold changes or high importance scores in 
the RF analysis, can provide more detailed information on 
the pathophysiological aspects of CRC from a molecular 
viewpoint.

The cohort 2 analysis showed that patients could be 
classified into two clusters, in which cluster 1 patients 
showed worse OS (Figures  3, 4). The difference in OS 
appears to be greater for stage IV patients than for other 
stage patients (Figure S11). the rate of achieving curative 
resection in patients with stage IV tumors was lower in 
cluster 1 (Data S5). These results indicate that this clas-
sification might be useful for predicting prolonged OS 
in stage IV patients by multidisciplinary approaches. 
Further studies with a larger cohort are needed to verify 
this aspect.

Twelve proteins were demonstrated to be upregulated 
in cluster 1, which had a shorter OS (Figure 4B). Among 
them, ORM1 was strongly suggested to be a significant 
protein to explain the shortened OS (Figure  4, Data  S6, 
S7). ORM1 or alpha-1-acid glycoprotein 1 is a type of 
acute-phase protein mainly biosynthesized and secreted 
by hepatocytes in response to an inflammatory systemic 
reaction.33 ORM1 expression and secretion have been 
reported to be increased in patients with several types 
of cancer, including hepatic carcinoma, gastric adeno-
carcinoma, epithelial ovarian cancer, lung cancer, and 
CRC.34–37 ORM1 is one of the major serum glycoproteins 
and this protein may have been carried over in our iso-
lated EV fractions. However, ORM1 is registered as an 
exosomal protein in ExoCarta19 because it was detected in 
urinary exosomes isolated via ultracetrifugation38; ORM1 

has also been identified as one of the abundant proteins 
in EVs isolated via membrane affinity spin column from 
relapsed pediatric patients with Hodgkin lymphoma,39 
and one of the tumor-enriched EV proteins isolated via 
ultracentrifugation is present in patients with pancreatic 
adenocarcinoma.5 These previous studies strongly suggest 
that observed ORM1 upregulation in cluster 1 originated 
from EVs in the present study.

ORM1 mainly functions in acute-phase reactions 
through its inflammatory and immunomodulatory prop-
erties,33 including the inhibition of neutrophil chemotaxis 
and superoxide production,40 lymphocyte proliferation,41 
and platelet aggregation.42 It also antagonizes the capil-
lary leakage caused by vascular permeability factors such 
as histamine and bradykinin.43 Thus, ORM1 in plasma 
EVs might modulate the immune system, which may be 
associated with the poor prognosis of patients with CRC.

Interestingly, among the 11 proteins upregulated in 
cluster 1, except for ORM1, 8 proteins (BST2, FN1, LRG1, 
OLFM4, PSMA5, SERPINA1, C3, and KIT) were shown to 
share the exact same Gene Ontology (GO) biological pro-
cess terms (acute-phase response, inflammatory response, 
neutrophil degranulation, and platelet degranulation), 
according to the GO analysis using QuickGO (https://
www.ebi.ac.uk/Quick​GO/) (Data S9). Nine proteins also 
had immune-related GO terms (Data  S9), suggesting 
their associations with ORM1 in biological processes. 
Furthermore, the protein–protein interaction (PPI) net-
work analysis performed with STRING (Search Tool for 
the Retrieval of Interacting Genes/Proteins) (https://strin​
g-db.org/) indicated the presence of a cluster consisting of 
six proteins, including ORM1, with the highest confidence 
for the minimum required interaction score (Figure 5A). 
The cluster including ORM1 was further linked to the 
cluster including PSMA4, 5, and 7 via CLDN1 when the 
minimum required interaction score was set to medium 
confidence (Figure 5B).

Functional associations of these proteins were also 
suggested by the correlation analysis results of protein lev-
els in the cohort 2 study. Correlation coefficients between 
all pairs in 99 proteins showed 181 (4.1%) significant 
positive correlations, where the false discovery rate was 
less than 1.0 × 10−4 (Figure  5C). Among them, 18 pairs 
were derived from 12 upregulated proteins (Data  S10). 
The network structure visualized with nodes and edges 
(Figure  5D) showed good agreement with the GO and 
PPI network analyses. In particular, ORM1 has a strong 
correlation with LRG1 and SERPINA1 (r = 0.80 and 0.72, 
respectively), both of which share the same GO term (neu-
trophil degranulation) as ORM1 and have links in the PPI 
network analysis. Hence, both the informatics and exper-
imental data strongly suggest that ORM1 collaboratively 
functions with cluster-1 upregulated proteins.

https://www.ebi.ac.uk/QuickGO/
https://www.ebi.ac.uk/QuickGO/
https://string-db.org/
https://string-db.org/
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EVs secreted from tumor tissues have been recently 
shown to play essential roles in remodeling the tumor 
immune microenvironment.44 Immunosuppressive sig-
naling molecules in tumor-derived EVs regulate the pro-
liferation, maturation, and anti-tumor capacity of targeted 
immune cells. Thus, immune-related proteins in EVs 
might modulate the tumor immune microenvironment, 
potentially promoting CRC progression.

The results of the present study suggest that ORM1 
is a strong biomarker that predicts the prognosis of CRC 
patients. Importantly, ORM1 and LRG1 are expressed 
at high levels in the urine of patients with adult-onset 
Still's disease.45 EVs are known to be present in urine,46 
and ORM1 in EVs may even be detected in the urine of 
patients with CRC. Thus, the evaluation of ORM1 lev-
els in patient urine samples using high-sensitivity SRM 

analysis has the potential to be a non-invasive diagnos-
tic method. Further studies are necessary to make SRM-
based quantitative proteomics applicable to clinical 
practice.

5   |   CONCLUSIONS

In this study, we described the relationships between di-
agnostic information, OS of patients with CRC, and the 
classified subtypes based on the quantitative molecular 
information. We consider that this linkage is important 
to achieve progress in determining the CRC diagnosis 
based on the identified biomarker proteins and tumor 
subtypes using our developed machine learning analy-
sis and might predict prognosis of the patients; it might 

F I G U R E  5   Predicted networks and correlation of upregulated proteins in cluster 1. Relationships among the 12 upregulated proteins 
in cluster 1 patients are shown. (A, B) Predicted PPI networks obtained using the STRING database71 with (A) high confidence and (B) 
medium confidence, respectively. (C) A histogram of the correlation coefficients between all pairs of 99 proteins analyzed in cohort 2. Purple 
pairs indicate the distribution of correlations with false discovery rate (FDR) < 1.0 × 10−4. (D) A correlation network of the upregulated 
proteins in cluster 1 according to the correlation analysis. Pairs with FDR < 1.0 × 10−4, including 12 upregulated proteins, were extracted and 
visualized with nodes and edges. The colors and thicknesses of the edges correspond to the correlation coefficients, indicating the strength of 
the correlation.
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provide useful information to determine the patient's 
treatment plans. The mechanism underlying the as-
sociations between the identified proteins, including 
ORM1, with the prognosis of the patients remains un-
clear and we plan to elucidate this mechanism by per-
forming cell biological and biochemical experiments in 
the future.
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