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Abstract
Introduction: Gliomas, especially the glioblastomas, are one of the most aggres-
sive intracranial tumors with poor prognosis. This might be explained by the het-
erogeneity of tumor cells and the inhibitory immunological microenvironment. 
Dendritic cells (DCs), as the most potent in vivo functional antigen-presenting 
cells, link innate immunity with adaptive immunity. However, their function is 
suppressed in gliomas. Therefore, overcoming the dysfunction of DCs in the TME 
might be critical to treat gliomas.
Method: In this paper we proposed the specificity of the glioma microenviron-
ment, analyzed the pathways leading to the dysfunction of DCs in tumor mi-
croenvironment of patients with glioma, summarized influence of DC-based 
immunotherapy on the tumor microenvironment and proposed new develop-
ment directions and possible challenges of DC vaccines.
Result: DC vaccines can improve the immunosuppressive microenvironment 
of glioma patients. It will bring good treatment prospects to patients. We also 
proposed new development directions and possible challenges of DC vaccines, 
thus providing an integrated understanding of efficacy on DC vaccines for glioma 
treatment.
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1   |   INTRODUCTION

Glioma is the most common primary intracranial tumor 
with a 5-year survival rate of <10%.1 According to the 
WHO grade 2016, it can be divided into four grades, and 
the fourth grade is also known as glioblastoma (GBM).2 
Many kinds of cancer medicine have been invented over 
the past few decades. However, few of them were ap-
proved by the US Food and Drug Administration (FDA) 
to treat gliomas.3 The special inhibitory tumor microenvi-
ronment (TME) might be one of the important reason for 
the limited efficacy of current drugs.4 On the one hand, 
central nervous system (CNS) has been recognized as the 
immunological privilege site, in which the blood–brain 
barrier (BBB) prevents immune cells from infiltrating the 
CNS.5 On the other hand, some specific constituent cells 
(astrocytes, microglia, and neurons, etc.) in the CNS can 
aggravate the glioma proliferation, inhibit immune cells 
like dendritic cells and T cells, thus creating a more severe 
immunosuppressive microenvironment in patients with 
glioma.

Dendritic cells (DCs), as the most potent in vivo 
functional antigen-presenting cells, link innate immu-
nity with adaptive immunity.6 However, their function 
is suppressed in gliomas.7 Therefore, overcoming the 
dysfunction of DCs in the TME might be critical to treat 
gliomas.8 DC vaccines can play a therapeutic role by 
upregulating major histocompatibility complex (MHC), 
co-stimulator expression and the levels of cytokines or 
chemokines,9 which increase activated T cells, promote 
cell migration, and initiate the adaptive immune reac-
tion, thus improving TME of patients with glioma.10 DC 
vaccines comprise DCs sampled from the patient who 
treats in vitro and then induce an immunological reac-
tion against the tumor when reintroduces them into pa-
tients. Because the sipuleucel-T was formally approved 
by the FDA for metastatic prostate cancer and inclusion 
in the clinical protocol in 2010,11 the FDA has approved 
the successful use of autologous DC-based cancer vac-
cines for other tumors like melanoma. However, be-
cause of the tumor heterogeneity of gliomas and their 
special TME, gliomas are highly prone to antigen loss 
evasion,12 which limits the efficacy of single DC-based 
cancer vaccines. Therefore, further optimization of DC 
vaccines is of great significance to improve their effi-
cacy and patients' survival.13 In this review, we analyzed 
several pathways causing DC dysfunction in immune 
microenvironment of glioma patients, summarized in-
fluence of DC-based immunotherapy on the tumor mi-
croenvironment and proposed possible challenges of 
DC vaccines and new development directions.

2   |   THE PARTICULARITY OF THE 
GLIOMA MICROENVIRONMENT

Compared with the tumors in other parts of the body, the 
glioma microenvironment is unique in the special struc-
ture of CNS and its particular cell types. CNS has been 
considered as an immune privileged site because of the 
presence of blood–brain barrier (BBB) for many years.9 
BBB consists of pericytes, astrocyte foot processes, ex-
tracellular matrix, and vascular endothelial cells, which 
protect the brain from pathogenic microorganisms, and 
make it difficult for drugs and peripheral immune cells to 
penetrate into the CNS as well, thus favoring tumor infil-
tration and growth.14 However, recent studies have shown 
that immunization in the CNS is considered “unique” 
rather than “privileged”,15 and it may have lymphatic 
system where immune cells can enter the arachnoid villi 
into the central venous sinus or into the lymphatic duct 
via the sieve plate and drain into the deep cervical lymph 
nodes,16 which achieves the participation of systemic im-
mune system against glioma antigens.17 Therefore, when 
inflammation occurs, microglia recognize specific anti-
gens and present them to activated lymphocytes via the 
glial lymphoid pathway,18 after which large numbers of 
immune cells readily penetrate the BBB, inducing a strong 
inflammatory response and a subsequent immune re-
sponse. Nonetheless, both these responses must be tightly 
regulated,19 and the impaired BBB upregulates the expres-
sion of program death ligand 1/2 (PD-L1/PD-L2) to inhibit 
the effector T cell activation, thus inhibiting the adaptive 
immune response in glioma patients.

In the CNS of patients with glioma, there are some 
unique constituent cell types, including neurons, astro-
cytes, and microglia, which can aggravate the immuno-
suppression of the glioma microenvironment through 
their physical or chemical effects.20 On the one hand, 
the astrocytes form a scar surrounding the glioma cells 
through their activation, thus physically “clearing” the T 
lymphocytes on the glioma cells to form a cold tumor phe-
notype.21 On the other hand, astrocytes are activated under 
the co-drive driven by microglia and secrete interleukin 10 
(IL-10) and CSF through the JAK/STAT pathway to inhibit 
T cell activation.22 Microglia cells can upregulate GM-CSF 
and stromal derived factor-1 (SDF-1), which aggravate 
the growth and invasion of glioma cells.23 Besides, neu-
rons can secrete inhibitory cytokines vascular endothelial 
growth factor (VEGF) and express CD200, inhibiting T 
cells to initiate the immune response. Neurons can also 
release the mitogen neuroligin-3 (NLGN3) and promote 
the glioma cell proliferation via the PI3K-mTOR signal-
ing pathway,24 which is related to survival in patients with 
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high-grade glioma. Therefore, although blood-derived im-
mune cells can infiltrate into the CNS through the BBB 
and meningeal lymphatic vessels, the specificity of the 
glioma microenvironment makes immune cells' function 
suppressed, such as DCs, T cells, and NK cells.25

3   |   THE GLIOMA 
MICROENVIRONMENT CAN CAUSE 
DYSFUNCTION OF DCS

3.1  |  DCs in the glioma

Normally, peripheral circulating DCs travel through central 
lymph duct and arrive at the vascular-rich compartments 
(e.g., chorioid), so they are hardly present in the brain paren-
chyma.26 DCs originate from bone marrow hematopoietic 
stem cell (BM-HSCs) and produce myeloid dendritic cells 
(mDCs) and plasmacytoid dendritic cells (pDCs).27 DCs 
can also originate from monocytes and produce MoDCs. 
Depending on the different phenotypes, the mDCs are 
mainly divided into the cDC1 (CD141+) and cDC2 (CD1c+) 
subgroups.28 cDC1s can express Cleca9A, XCR1 and CD141, 
which are related to perform cross-presenting antigen to 
CD8+ T cells.29 cDC2s can express CD1c+ and CD172a. The 
cDC2s can stimulate CD4+ T cell differentiation and par-
ticipate in the immune response.30 Furthermore, slanDC is 
a non-classical subset of mDCs and shares several features 
with monocytes, particularly their pro-inflammatory prop-
erties and association with inflammatory diseases.31

In patients with glioma, the abundance and phenotype 
of the DC subtypes have changed. In 2019, Adhikaree J et al. 
first examined abundance of circulating DC and its associ-
ated phenotypic in GBM patients. They found that GBM pa-
tients had a decrease in circulating cDC2s (CD1c+), while 
the slanDC subset was unaffected.25 Furthermore, the circu-
lating cDC2s in the GBM patients show a significant reduc-
tion in HLA-DR and CD86 expression,32 which represents 
an immature DC phenotype that can lead to T cell tolerance. 
Therefore, DCs are in the inhibitory or immature state, 
which may be related to the severe TME.33 Glioma cells have 
intrinsic resistance to DCs and other cells with immune sur-
veillance in the CNS.34 The hypoxic environment will also 
damage the BBB and affect tumor cells metabolism, inhibit-
ing DCs from exerting their anti-tumor response, leading to 
cancer proliferation and immune escape.35

3.2  |  Intrinsic resistance effect of glioma 
cells to DCs

Differentiation of DCs is inhibited by cytokines secreted 
by glioma cells,36 such as IL-10, IL-6, prostaglandin E2 

(PGE2) and VEGF. PGE2 produced by tumor cells pro-
motes IL-10 production by DCs, thereby inhibiting ef-
fector T cell responses.37 IL-6 can reduce its MHC and 
CD80/86 expression by activating the STAT3 pathway to 
interfere with DC maturation.32

Certain products of glioma cells have been associated 
with DC dysfunction, including 2-hydroxyglutarate (2-HG), 
fibrinogen-like protein 2 (FGL2),38 Nrf2, and thymic stro-
mal lymphopoietin (TSLP) dehydrogenase. In the glioma 
patients with isocitrate dehydrogenase (IDH) mutation, 
β-ketoglutarate is converted to D-2-HG and the latter ap-
pears to drive extensive epigenetic changes that alter cell 
differentiation and possibly promote tumorigenesis.39 	
D-2-HG can lead to specifically educated, dysfunctional DCs 
by reprogramming of the lipopolysaccharide (LPS)-induced 
metabolism,38,40 promoting oxidative phosphorylation, in-
hibiting glycolysis, and inhibiting p34/IL-12A and p35/
IL-12B expression,41 thus reducing IL-12 and promoting 
immune escape from tumor cells.42 Glioma cells can induce 
Nrf overexpression in the DCs, which in turn leads to the 
inhibition of DC maturation and reduced effector T cell ac-
tivation.43 Inhibition of the Nrf2 pathway rescued the mat-
uration of both CD80+ and CD86+ DC in the conditioned 
media of glioma cells. TSLP can upregulate OX40 receptor 
expression on the DC surface, prompting the release of IL-4 
and IL-13 by Th2 cells to induce immunosuppression.44

Glioma cells can cause DCs' dysfunction in amino acid, 
carbohydrate, and lipid metabolism through the TME.45 
Glioma cells can produce tryptophan, whose tryptophan 
metabolite 3-hydroxyamino benzoic (3-HAA) can en-
hance the transcriptional activity of AHR in NCOA7+ 
cDCs,46 thus promoting the generation of Tregs and TGF-
β. Glioma cells can also cause lipid metabolism disorders 
of DCs, increase the expression of macrophage-scavenging 
receptor 1(Msr1) and scavenger receptor (SR) on DCs and 
fatty acid synthesis,47 cause excessive lipid accumulation 
in DCs, reduce their cross-antigen presentation capacity, 
and produce IL-10 to further inhibit the TME.48 The glu-
cose metabolism of glioma cells can affect DC immune 
tolerance and malignant transformation,49 in which the 
enhanced glycolysis and increased lactate acid generation 
caused by hypoxia play important roles50 (Figure 1).

3.3  |  Suppressive effect of other cells 
on DCs

Microglia, myeloid-derived suppressor cells (MDSCs), 
Treg cells, tumor-associated macrophages (TAMs) and 
other cells interfere with the normal function of DCs to 
inhibit their immune response and promote glioma inva-
sion.51 Microglia can upregulate recombinant sodium/hy-
drogen exchanger 1(NHE1) levels via colony-stimulating 
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factor 1(CSF-1),52 release TGF-β to trigger glioma cell 
production of precursor metalloproteinase 2 (pro-MMP2), 
which is cleaved into active MMP2. DCs under MMP2 ac-
tivation trigger the differentiation of immature CD4+ T 
cells into Th2 cells, thereby promoting glioma invasion.53 
The majority of the GBM-associated MDSCs in the mouse 
models are M-MDSCs, but most MDSCs found in patient-
derived are PMN-MDSCs.54 MDSCs can induce IL-23 
and Th17 generation, reduce the effects of IL-12 and NK 
cells, and inhibit Th1 and IFN-γ mediated anti-tumor im-
munity, thus increasing the immunosuppression of the 
TME.55 Tregs can inhibit DC function by expressing the 

inhibitory receptors, such as T cell immunoglobulin do-
main and mucin domain-3 (Tim-3), B-and T-lymphocyte 
attenuator (BTLA),56 cytotoxic T lymphocyte-associated 
antigen-4 (CTLA-4), and programmed cell death-1 (PD-1) 
via different mechanisms (Figure 2).

3.4  |  Inhibition of the hypoxic 
environment on DCs

Glioma frequently develops in the hypoxia microen-
vironment, which can alter the metabolic pathways of 

F I G U R E  1   Internal resistance pathway of Glioma cells to DC function. AHR: Anti hyaluronidase reaction; DC: Dendritic cell; D-2-HG: 
D-2-hydroxyglutarate; FGL2: Fibrinogen-like protein 2; HK2: hexokinase 2; IL-6: Interleukin 6; IL-10: Interleukin 10; IL-12: Interleukin 
12; MHC: Major histocompatibility complex; Msr1:Macrophage-scavenging receptor 1; Nrf2: Nuclear factor erythroid 2- Related Factor 
2; PHGDH: Phosphoglycerate dehydrogenase; SR: Scavenger receptor; STAT3: Signal transducer and activator of transcription 3; TGF-β: 
Transforming growth factor-β; Tregs: Regulatory T cells; Trp: Tryptophan; TSLP: Thymic stromal lymphopoietin; VEGF: Vascular 
endothelial growth factor; 3-HAA: 3-hydroxyamino benzoic; (1) By the secretion of inhibitory cytokines, such as IL-10, IL-6,TGF-β, and 
VEGF. (2) By influencing the metabolic pathway, like amino acid, carbohydrate, and lipid metabolism. (3) By affecting the expression 
products of immunomodulatory genes like Nrf2, TSLP and D-2-HG.

F I G U R E  2   The inhibitory pathway of DC function by other immune cells. BTLA: B-and T-lymphocyte attenuator; CTLA-4: Cytotoxic T 
lymphocyte-associated antigen-4; DC: Dendritic cell; GITR: Glucocorticoid-induced tumor necrosis factor receptor; IFN-γ: Interferon γ; IL-
10: Interleukin 10; IL-12: Interleukin 12; IL-23: Interleukin 23; MDSC: Myeloid-derived suppressor cells; NK cells: Natural killer cells; PD-1: 
Programmed cell death-1; pro-MMP2: Precursor metalloproteinase 2; TGF-β: Transforming growth factor-β; Tim-3: T cell immunoglobulin 
domain and mucin domain-3; The inhibitory effect of myeloid-derived suppressor cells (MDSCs), Tregs, and microglia/tumor associated 
macrophages (TAMs) on DCs will damage the function of DCs and promote tumor growth and reproduction.
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glioma cells.12 The metabolic homeostasis of the brain 
is maintained through the interactions between its 
various constituent cells (such as astrocytes, neurons, 
and microglia).57 However, this balance can be altered 
by genomic aberrations and biochemical changes.58 
On the one hand, hypoxia can disrupt the BBB through 
HIF-1 mediation, thus initiating astrocytes and peri-
cytes to resist hypoxia.21 Astrocytes maintain ATP pro-
duction mainly through the upregulation of glycolytic 
enzymes and angiogenesis factor genes.59 In addition, 
both astrocytes and pericytes can combat the damage 
from hypoxia by producing large amounts of VEGF 
and MMP9, which also interferes with DC matura-
tion.60 On the other hand, glioma cells generate pro-
inflammatory signals in response to hypoxic stress,61 
triggering the active release of ATP through junctin 
and total junctin channels expressed by endothelial 
cells.59 Glioma cells also promote the excessive ac-
cumulation of adenosine in the TME by producing 
extracellular enzymes that convert ATP into adeno-
sine,62,63 thus interfering with the function of DCs, 
allowing them to produce large amounts of immuno-
suppressive factors and upregulate IDO expression.64 
Hypoxia produces a large amount of lactate and en-
hances glycolysis functions.65 The elevated lactate not 
only activates the G protein-coupled receptor GPR81 
on DCs, which promotes the growth of tumor cells and 
thus inhibiting MHCs on DCs,66 but also inhibits the 
release of IFN-α and IFN-γ from pDCs through this 
receptor, and weakening the anti-tumor immunity 
caused by DCs.67 Moreover, the elevation of ROS can 
cause T cell dysfunction by affecting the p38-MAPK 
and ERK1/2 pathways to inhibit DC maturation and 
antigen-presenting function34,67 (Figure 3).

4   |   INFLUENCE OF DC 
VACCINES ON THE IMMUNE 
MICROENVIRONMENT OF GLIOMA 
PATIENTS

In glioma patients, DCs are maintained with low function 
or tolerance due to the inhibitory effect of immune mi-
croenvironment on DC proliferation and differentiation. 
Therefore, by injecting active DCs that mature in vitro, DCs 
can activate inhibited T cells undergoing lymphatic reflux 
into the brain, thus playing a relative compensatory role 
and enhancing the adaptive immune response in patients.

4.1  |  Cultivating mature DCs is 
a prerequisite for improving the 
microenvironment

Low-function DCs highly express antigen uptake re-
ceptors and show low expression of co-stimulatory 
molecules and chemokines.68 DC vaccines currently 
use cocktail therapy to cultivate mature DCs. CD14+ 
monocytes are initially isolated from peripheral blood 
mononuclear cells (PBMCs) in the patient and mix them 
with GM-CSF and IL-4 for 5–7 days to convert the mono-
cytes into immature DC cells.69 Subsequently, the DCs 
are mixed with IL-1β, IL-6, TNF-α for 16 to 20 hours 
and pulse them with tumor antigen to allow antigen 
uptake and presentation by the DCs.70 DC maturation 
is stimulated by further cocktail therapy to induce high 
expression of MHCs and positive costimulatory mol-
ecules (e.g., CD80/86), promote the secretion of inflam-
matory cytokines (e.g., IL-12, TNF-α) and chemokines 
(e.g., CXCL9/10),71 and ultimately enhance the immune 

F I G U R E  3   Inhibitory pathway of DC function by hypoxia. ATP: Adenosine triphosphate; EC: Epithelial cell; GPR81: G protein-coupled 
receptor; IFN: Interferon; IDO: Indoleamine2,3-dioxygenase 1; IL-10: Interleukin 10; MHC: Major histocompatibility complex; pDC: 
plasmacytoid dendritic cell. Hypoxia in glioma microenvironment can easily lead to the accumulation of adenosine, the increase of lactic 
acid content and production of reactive oxygen, resulting in the impairment of DC function.
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response mediated by T cells and immune cells migrate 
to the tumor site, thus improving the tumor microenvi-
ronment72 (Figure 4).

In 2001, Kikuchi et al. vaccinated glioma patients through 
fusion cells of DC and tumor cells from polyethylene glycol, 
this early exploration of clinical trials proved that DC vac-
cines can improve patients' immune response. In 2004, S 
Rutkowski et al stimulated DC maturation with GM-CSF, 
IL-4, and PGE2 and pulsed with glioma cell lysates super-
natants undergoing six freeze–thaw cycles, resulting in two 
out of six patients with complete resection a median overall 
survival greater than 35 months. With the continuous ex-
ploration of the genome, the preparation of mature DC has 
been further improved. In terms of tumor antigens used for 
pulse, glioma-associated antigens (GAA) can be selected, 
such as WT1, TRP2, and IL-13Rα2, or glioma-specific an-
tigen (GSA) EGFRvIII, while different antigen stimuli have 
discrepancy effects on DC function. Robert M. Prins et al. 
compared the efficacy of DCs loaded with tumor-associated 
antigen peptides and tumor lysates, indicating that NK cells 
in patients loaded GAA have a longer survival in the loaded 
tumor lysates, this possibly because PGE2 exists in the cy-
tokine mixture added in the GAA preparation, which has 
been shown to promote Treg cell proliferation, reducing the 
immune response. Other clinical trials of the new methods 
are still ongoing (Table 1).

4.2  |  Improving the TME by regulating  
the expression of MHCs and co-stimulators

Mature DC can exert its therapeutic effect by upregulating 
stimulant receptors (CD80/86, etc.) or reducing inhibitory 

receptors (PD-L1, CTLA-4, etc.). Among them, CTLA-4 
and PD-L1 are often used as immunodetection indica-
tors for patients with glioma after treatment.73 Chia-Ing 
Jan et al treated 27 tumor antigen-DC patients with GBM 
and found patients whose tumor-infiltrating lymphocytes 
(TIL) with a lower PD-1+/CD8+ ratio (>0.21) have a 
longer OS and PFS (median P S 60.97 months, p < 0.001 
and PFS 11.08 months) (p < 0.008 months).74 As the ef-
ficiency of cytotoxic T cells killing of tumor cells upon 
reaching the tumor microenvironment depends on the 
proportion of PD-1+ cytotoxic T cells,46 the vaccination 
of DC vaccines can significantly reduce T cell expression 
of PD-1, thus improving the tumor microenvironment 
through the above pathway.75

During the preparation of DC vaccines, immature DCs 
can be exposed to mature signals via stimulation with 
certain medicine to obtain a mature phenotype, which 
further upregulates positive costimulatory molecules 
such as CD40, CD86 and OX40L.76 These stimulatory 
drugs include a TriMix (a mixture of TLR4, CD40 and 
CD70),77 a Toll-like receptor (TLR) agonist, tetanus tox-
oid, Flt3L and STING.78 One of the most common protein 
is TLR, which activates the MAPK and NF-κB pathways 
to induce multiple costimulatory molecules,79 CCR7 and 
pro-inflammatory cytokines to promote multiple inflam-
matory cascades, thus enhancing the body's immune 
response.69 In the glioma patients vaccinated with imiqui-
mod adjuvant DC pulsed by tumor lysate, Robert M. Prins 
et al. found that the median overall survival in patients 
newly diagnosed and receiving DC vaccines was signifi-
cantly higher at 35.9 months than before treatment (over-
all survival was 15.9 months).80 The number of CD3+ and 
CD8+ TIL combined with DC increased significantly and 

F I G U R E  4   Mature DC were cultured to improve the patient's tumor microenvironment. DC: Dendritic cell; IL-1β: Interleukin 1β; 
GM-CSF: Granulocyte macrophage colony stimulating factor; IL-4: Interleukin 4; IL-6: Interleukin 6; poly-IC: Polyinosinic polycytidylic 
acid; TGF-α: Transforming growth factor-α. DC maturation is stimulated by further cocktail therapy to induce high expression of MHC 
and positive costimulatory molecules, promoting the secretion of inflammatory cytokines and chemokines, and ultimately enhancing the 
immune response mediated by T cells.
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was associated with clinical outcomes, thereby improv-
ing the tumor microenvironment and median survival.69 
CD40 is a member of the TNF receptor superfamily on 
APC, which can enhance the expression of MHCs,81 the 
production of costimulatory molecules, and the interac-
tion between T cells and DCs to improve the tumor micro-
environment.78 In addition, the combination of different 
immune stimulators might affect their anti-tumor im-
mune response differently.82 The combination of immune 
stimulators of CD40 and TLR highly inhibited the tumor 
growth in mice,83 whereas the combination of TLR7 with 
an activator of TLR9 reduces NF-κB activation and com-
promises vaccine efficacy.84 The use of imiquimod, based 
on GM-CSF, also results in an increase in MDSCs and 
Tregs. Therefore, we should choose the combination of 
different stimulators carefully.

4.3  |  Improving the TME by regulating  
cytokines

After pulsing through tumor antigens, the DCs regulate 
the expression of proinflammatory cytokines, reduce neg-
ative cytokines, and regulate the migration of other im-
mune cells,85 thus enhancing the anti-tumor immunity of 
the body and improving the tumor microenvironment.86 A 
study showed that intra tumoral (IT) injection of antigen-
pulse DC cells improves the TME by reducing TGF-β,87 
increasing TNF-α and IFN-γ, promoting proliferations 
of CD8+ T cells, reducing Tregs activation, and increas-
ing the survival rate of mice with glioma.88 Moreover, it 
was shown in clinical trials that DC vaccines can signifi-
cantly increase the patient serum levels of NK cells, IL-2 
and IL-12, reduce the levels of CD133+ tumor stem cells 
to improve the microenvironment, and this is associated 
with improved survival.89 Nine months after vaccination, 
the tumor control rate and patient survival rate improved 
significantly compared with the control group (p < 0.05), 
while the time to relapse was significantly longer than the 
control group (p < 0.05).90 However, the rise in IFN-γ only 
occurred after the first vaccine, indicating that IFN-γ may 
improve patients' immune microenvironment by induc-
ing an adaptive immune response.8 DC vaccines pulsed by 
the cocktail method are more obvious for IFN-γ and IL-12 
mediated T cell activation, which illustrates an important 
role of IFN-γ in DC vaccine treatment.91

4.4  |  Improve the TME by regulating 
immune cell migration

Mature DC cultured in vitro can induce other immune 
cells to migrate to the tumor site by chemokines, thus 

improving the immune microenvironment of patients.92 
The mRNA levels of both CCL10 and TLR3 were signifi-
cantly upregulated after the first and fourth DC vacci-
nation, and CCL10 could guide CD8+ T cells into brain 
tumor sites,93 thus improving the inhibitory immune 
microenvironment in glioma patients.94 Hirokazu Ogino 
et al. pretreated DCs with poly-ICLC and found that in 
addition to upregulating cytokines such as IFN-γ, TNF-
α, and IL-10,95 the migration of effector memory CD8+ T 
cells in the TME may be mediated through the CXCL10/
CXCR3 axis,96 which showed the activating DCs can ef-
fectively improve the migration of other immune cells 
and improve the tumor microenvironment by regionaliza-
tion factors. In addition, other studies had applied Td and 
TNF-α to promote DC migration in lymph nodes. Td pre-
treatment for 4–6 h before DC vaccination followed by DC 
vaccination with albumin RNA showed a 3-fold increase 
in inguinal lymph node afferent DCs,97 possibly caused by 
the Td recall response and increased CCL3 levels, which is 
associated with prolonged patient survival, thus improv-
ing immune function by promoting DC migration into 
lymph nodes.98

5   |   EXISTING CHALLENGES AND 
FUTURE APPROACHES TO DC 
IMMUNOTHERAPY

Although clinical trials have demonstrated that DC vac-
cines can improve the glioma immune microenvironment 
and prolong patient survival,99 some of them did not entry 
phase III or improve recurrent GBM patients probably 
because of the limited ability of DC vaccines to improve 
the powerful inhibitory microenvironment of glioma.100 
Therefore, we could further optimize DC vaccines from 
perspectives of improving the microenvironment.

5.1  |  Challenge and Methods 1: 
Standardizing DC maturation methods

There are marked differences in the maturation pro-
cesses and methods of DCs in different clinical trials, 
and we lack mature processes to guide them. Commonly 
used cytokine mixtures for maturation include IL-4, 
GM-CSF, IL-1β, IL-3, IL-6, TNF-α, and IFN-γ,101 and 
some also add PGE2, which has been shown to cause 
proliferation of Tregs.102 Differences in HLA typing be-
tween patients mean that the T cell response caused by 
mature DCs prepared by different methods are also dif-
ferent. Therefore, formulating a standardized DC prep-
aration process will be conducive to produce a better 
treatment effect.103
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T A B L E  1   Clinical trials of glioma DC vaccines from the perspective of cultured mature DC DTH: Delayed type hypersensitivity; GAA: 
Glioma associate antigen; GM-CSF: Granulocyte-macrophage colony-stimulating factor; IFN-α: Interferon-α; IFN-γ: Interferon-γ; IL-4: 
Interleukin-4; IL-6: Interleukin-6; IL-1β: Interleukin-1β; OS: Overall Survival; PFS: Progression-free survival; PGE-2:Prostaglandin E2; 
poly-IC: Polyinosinic- Polycytidylic acid; TNF-α: Tumor necrosis factor-α; TTP: Time to progression. ICT-107↑: DC pulsed with MAGE-1, 
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A mixture of cytokines that induce 
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Kikuchi et al. 2001 I Recurrent malignant glioma Tumor cells were fused with the DC GM-CSF+ IL-4+ TNF-α The percentages of CD16+ and CD56+ lymphocytes 
increased slightly in the peripheral blood, and the 
IFN-γ concentration in the supernatant increased
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Rutkowski et al. 2004 I Recurrent malignant glioma Tumor lysates GM-CSF, IL-4, PGE2 Two out of six patients 
had a median overall 
survival greater than 
35 months

Six out of eight of the patients receiving the DTH 
experiment were positive
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Yamanaka et al. 2005 I/II Recurrent malignant glioma, III Recurrent 
malignant glioma, IV

Tumor lysates GM-CSF+ IL-4 OS: 480 days Initiates a specific T-cell response 125

Okada et al. 2011 I/II Glioblastoma, Anaplastic astrocytoma, 
Anaplastic Oligodendroglioma, Anaplastic 
Oligoastrocytoma

EphA2
IL-13Rα2
YKL-40
gp100

TNF-α, IFN-α, IL-1β, IFN-γ, poly-IC TTP: 4 months αDC1 produces IL-12 and induces an epitope-specific 
immune response against GAA, and IFN-γ 
upregulation might be related to the induction of 
an adaptive immune response
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associated with prolonged patient survival

80
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Anaplastic Oligoastrocytoma, 
Oligodendroglioma

WT-1 Saphlin OK-432, PGE2, IL-4, GM-CSF OS: 26 months Demonstrated that prolonged survival was associated 
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months, methylated 

MGMT
group OS: 34.7 months
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Systemic cytokine-response IFN-γ and TNF-α 
occurred in 33% of the patients and were 
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129
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Not yet recruiting 130
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5.2  |  Challenges and Methods 2: 
Monocyte-derived dendritic cells (MoDCs) 
have limited function—exploring cDCs, 
pDCs, and exosome-based vaccines

Most vaccine experiments have been performed through 
MoDCs. However, the in vitro culture is functionally dif-
ferent from native MoDC growth in vivo.104 Long-term 
culture might lead to decreased migration capacity and 
loss of function, and it is associated with T lymphocyte 
depletion.105 Therefore, MoDCs may not be the most ap-
propriate DC cell subtype for vaccine preparation.106 In 
the future, vaccines based on natural circulating DCs, 
such as cDCs, pDCs, or exosomes should be explored 
to achieve improved results.107 Actually, the cDCs have 
been shown to elicit a stronger CD8+ T cell response 
than pDCs.108

5.3  |  Challenges and Methods 3: Limited 
loading methods of tumor antigens--  
Optimizing loading methods for 
tumor antigens

Different loading methods of tumor antigens can lead to dis-
crepancies in treatment efficacy. At present, the commonly 
used tumor antigens include tumor lysates, peptides,109 
nucleic acids and neoantigen, etc. Tumor lysates contain 
varieties of tumor antigens and unique neoantigens,110 but 
other unrelated antigens existing in the lysate may dilute 
specific immunogenic antigen, thus reducing the antigen 
uptake and presentation of DCs.111 Peptides are widely ap-
plied in the clinical trials, including GAA-derived peptides 
and GSA-derived peptides.102 However, peptide-pulsed DC 
vaccines may activate some effector T cells that are not ex-
pressed yet, interfering with the activity of other anti-tumor 
T cells, so it still need to be further explored. Besides the 
common electroporation methods,112 mRNA can also be 
loaded with lipid nanoparticles (LNP). Nanocarriers is able 
to effectively prevent RNA degradation and increase its sta-
bility,113 simultaneously package the immune adjuvant to 
increase the immunogenicity of the vaccine, increase the 
cross-presentation of antigen, and induce DC maturation 
and increase the CTL response.114 Therefore, the use of 
LNP can shorten the time needed to produce a personal-
ized vaccine, and extend the shelf life of the vaccine, which 
has a relatively broad development prospect.115

As for the new technique of personalized antigens,97 
patient tumor individualized sequencing, analysis, iden-
tification, and screening are time-consuming process.116 
Therefore, new antigen sequencing and screening tech-
nology should be developed to further promote its wider 
application in the future,117 such as using full exon 

sequencing technology, high throughput sequencing 
screening and identification, and choosing automated, 
rather than manual, super high efficiency liquid chroma-
tography (UPLC).118

5.4  |  Challenges and Method 4: Single 
use of a DC vaccine with limited efficacy — 
using combinatorial therapy

Targeting multiple pathways through DC vaccines com-
bined with other therapies might be an important method 
to combat immunosuppression in the TME. Currently, the 
treatment of GBM comprises firstly using surgical resec-
tion to reduce the tumor load and prolong the survival 
time.119 Then combine DC vaccines with radiotherapy, 
chemotherapy, or both to induce DNA damage and en-
doplasmic reticulum stress to stimulate cell death, release 
chemokines and cytokines to increase the DC stimulation 
signals, thus supplementing the effect of anti-tumor DC 
vaccines. We can also combine specific targeted therapy 
to block the pathways besides activating DC, such as tar-
geting the BBB to increase drug delivery, targeting signal-
ing pathways such as p53, RTK and Rb,94 or cytokines to 
specifically block MDSCs, Tregs and microglia. For exam-
ple, BLZ945 can block CSF-1R to reduce the activity of mi-
croglia and the activation of M2 macrophages,120 thereby 
enhancing the body's immune response and the median 
survival. If combined with DC vaccines, it would be help-
ful to decrease tumor cell immune evasion and provide 
new directions to prolong median survival.121

6   |   CONCLUSIONS

DC vaccines can upregulate the expression of MHCs and 
co-stimulators, and promote the secretion of cytokines 
and chemokines, thus increasing the number of activated 
effector T cells and promoting the migration of immune 
cells to improve the immunosuppressive microenviron-
ment of glioma patients. It will bring good treatment pros-
pects to patients. Although existing studies have shown 
that DC vaccines have a role in improving the tumor mi-
croenvironment, such effects are not entirely consistent 
with the improvement in clinical outcomes of patients. 
Possible reasons for this result are imperfect immune de-
tection endpoints and the lack of corresponding adminis-
tration standards, etc. Some studies also show that the age 
of GBM patients may also be a reason as they found that the 
use of DC vaccines in the GBM population younger than 
ordinary patients can show some correlations. Therefore, 
if further studies can overcome above deficiencies, DC 
vaccines will have promising development prospects.
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