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1  |  INTRODUC TION

Intratumoral hypoxia from severe O2 deprivation is often associated 
with resistance to radiation and chemotherapy as well as the poor 

prognosis of the patients.1,2 Understanding of the molecular mecha-
nisms of adaptation to hypoxia has progressed dramatically after the 
identification of the VHL tumor suppressor gene, the causative gene 
of VHL disease, in 1993.3 von Hippel–Lindau disease is inherited in 
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Abstract
Intratumoral hypoxia is associated with tumor progression and therapeutic resistance. 
The VHL tumor suppressor gene was identified in 1993, and later studies revealed 
that the gene product pVHL interacts with other proteins to form the VBC complex. 
The VBC complex functions as an E3 ubiquitin ligase and regulates the abundance 
of the α-subunit of the transcription factor hypoxia-inducible factor (HIF). Hypoxia-
inducible factor regulates thousands of genes required for cells to adapt and survive 
in hypoxic conditions, and thus pVHL plays a major role in oxygen-sensing pathways. 
Patients with von Hippel–Lindau (VHL) disease, harboring a germline mutation of the 
VHL gene, develop renal cell carcinomas and a series of tumors showing hypervascu-
lar phenotypes. The extensive findings that have clarified the function of VHL have 
contributed to the development of novel first-in-human drugs, including belzutifan, a 
HIF-2α inhibitor. The 2019 Nobel Prize in Physiology or Medicine was awarded to Dr. 
William G. Kaelin Jr., Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza as researchers 
contributing to clarifying the mechanism of the oxygen-sensing pathway of cells. The 
first report of VHL disease was in 1894, meaning the development of a specific drug 
for this disease took almost 125 years. In this article, we describe how researchers and 
clinician scientists successfully clarified the function of VHL and achieved a preclinical 
proof of concept to apply for clinical trials, key requirements for drug development.
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an autosomal dominant manner, and patients with germline mutations 
in VHL develop ccRCC and other types of hypervascular tumors.4–7 
The VHL gene product (pVHL) binds to Elongin-C, Elongin-B, CUL2, 
and RBX1 to form the VBC complex.8–13 This complex functions as 
an E3 ubiquitin ligase and regulates the abundance of the α-subunit 
of the transcription factor HIF through mediating proteasomal deg-
radation.14–16 Hypoxia-inducible factor transcriptionally regulates 
most of the known genes required for cell adaptation and survival 
in hypoxia, and therefore VHL plays major roles in the physiological 
oxygen-sensing pathway in cells.10,13 The discovery of oxygen-sensing 
mechanisms resulted in the development of novel first-in-human 
drugs, HIF-PH inhibitors and HIF-2α inhibitors. In 2019, the Nobel 
Prize in Physiology or Medicine was awarded to Dr. William G. Kaelin 
Jr., Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza for discoveries on 
how cells sense and adapt to oxygen availability. In 2021, the FDA 
approved the HIF-2α inhibitor belzutifan for the treatment of patients 
with VHL disease who require therapy for VHL-associated ccRCC, 
CNS hemangioblastomas, or pNET.17 Since the first report of VHL dis-
ease in 1894, the development of a specific drug for this disease took 
almost 125 years, and the extensive research clarifying the function 
of VHL to successfully achieve the preclinical proof of concept was 
pivotal for the development of belzutifan. Therefore, belzutifan could 
serve as a representative example of the success of the entire drug 
discovery process over 100 years, starting from the identification of 
the specific clinical characteristics of a rare disease and successfully 
resulting in the development of a drug for this disease.

In this review article, we discuss how researchers, including our 
group, successfully clarified the molecular pathways of oxygen-
sensing mechanisms and how these insights provided a basis for 
subsequent drug development.

2  |  GENER AL CHAR AC TERISTIC S OF VHL 
DISE A SE AND IDENTIFIC ATION OF THE 
VH L  GENE

von Hippel–Lindau disease is an autosomal dominant inherited dis-
ease caused by germline mutation of the VHL gene. Patients with 
this disease develop multiple neoplastic lesions such as retinal he-
mangioma, hemangioblastoma of the CNS, pNET, adrenal pheochro-
mocytoma/paraganglioma, ccRCC, and endolymphatic tumor in the 
inner ear. It is also known to cause cystadenoma of the epididymis in 
men and broad uterus in women (Figure 1).4–6

The first case of VHL disease was reported as a case of famil-
ial hemangiomas of the retina by Dr. Collins in 1894.18 In 1904, Dr. 
Eugen von Hippel, a German ophthalmologist, described the famil-
ial occurrence of retinal hemangioma.19 In 1927, Dr. Arvid Lindau, a 
Swedish neuropathologist, reported the pathological findings of a 
familial case of multiple hemangiomas not only in the retina but also 
in the CNS.20

Subsequent research intensively pursued the causative gene 
of this disease. In 1988, Dr. Seizinger et al.21 used pedigree linkage 
analysis and demonstrated that the relevant gene was located on 
chromosome 3p25. Finally, the VHL gene was identified by posi-
tional cloning by a group in the United States at the NCI in collab-
oration with other groups in England and France in 1993.3 Then, it 
was revealed that the VHL gene consists of three exon regions and 
the protein translation region of the mRNA is 639 bases long.3,10,12 
Importantly, somatic mutation of VHL was identified in 57% (56 
out of 98) of tumor specimens from patients with sporadic ccRCC, 
indicating that the VHL gene was also a tumor suppressor gene of 
ccRCC.22

F I G U R E  1  Characteristic tumors that 
develop in von Hippel–Lindau syndrome.
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3  |  CLINIC AL SIGNIFIC ANCE OF VEGF IN 
THE TUMOR PROGRESSION OF CCRCC AND 
ROLES OF PVHL IN THE REGUL ATION OF 
VEGF

In the exploration of the tumor suppressive function of pVHL, Dr. 
Iliopoulos et al.23 reintroduced WT VHL into 786-O VHL−/− RCC cells 
to establish WT8 cells (Table 1) and found that these cells showed 
reduced tumor formation ability in a mouse xenograft model com-
pared with that of mock-transfected pRC3 cells. These results clearly 
indicated that pVHL harbored tumor suppressor ability in vivo. 
Importantly, ccRCC tumors harbor abundant tumor blood vessels.24 
In 1994, a group from the National Cancer Center Japan reported 
that 26 out of 27 RCC tissues showed a markedly elevated level (3–
13 fold) of VEGFA mRNA compared with adjacent normal kidney tis-
sues.25 Dr. Iliopoulos et al. compared the abundance of VEGFA mRNA 
between WT8 cells and pRC3 cells, and showed that pVHL inhibited 
the production of VEGFA mRNAs under normoxic conditions as the 
first significant therapeutic relevance of VHL in ccRCC. VEGFA is one 
of the genes upregulated in hypoxic conditions, and thus as early as 
1996, Dr. Kaelin predicted that pVHL might play a critical role in the 
transduction of signals generated by changes in ambient oxygen ten-
sion.26 In fact, this finding was quite important in the development of 
new treatment strategies targeting tumor vessels for mRCC.

A randomized, placebo-controlled phase II trial of bevacizumab, 
a humanized anti-VEGF mAb, was carried out in patients with mRCC. 
There was a significant prolongation of the time to progression of 
disease in the high-dose Ab group (10 mg/kg, given every 2 weeks) 
compared with the placebo group (hazard ratio, 2.55; p < 0.001).27 In 
addition, multiple TKIs targeting VEGF were developed and showed 
significant activity in mRCC as single agents in randomized con-
trolled trials.28–30

4  |  POSSIBLE ROLES OF ANTI-VEGF 
THER APY IN THE MICRO​VA S​CUL ​ATURE OF 
CCRCC

Although previous studies on anti-VEGF therapy in mRCC have 
shown promise, the actual effect of anti-VEGF therapy on the 

tumor microvasculature in ccRCC patients has been largely obscure. 
Interestingly, previous studies validating the effect of VEGF inhibi-
tors using mice pancreatic islet tumor models revealed that VEGF-
dependent capillaries were characterized by the presence of EFs.31 
On the basis of these findings, we characterized the tumor micro-
vasculature of sporadic ccRCC tumor specimens using electron mi-
croscopy.32 The microvasculature in tumors harboring mutant VHL 
exhibited endothelium with abundant fenestrations compared with 
those with WT VHL (Figure 2A). The average number of fenestra-
tions from tumor specimens with WT and mutant VHL was 2.5 ± 0.4 
and 15.1 ± 1.7/μm,2 respectively (p < 0.001) (Figure  2B). To our 
knowledge, this was the first report that described the existence 
of EFs in the tumor microvasculature of ccRCC tumors, especially 
those harboring VHL mutation. Intriguingly, abundant EFs could be 
reproduced in a mouse subcutaneous xenograft model, and the mi-
crovasculature in tumors derived from VHL−/− pRC3 cells showed 
more abundant EFs than that from VHL-reintroduced WT8 cells 
(Figure  2C). We next examined the effect of bevacizumab in the 
tumor microvasculature of these cells (Figure 2D).

Importantly, bevacizumab significantly attenuated the number 
of EFs in VHL−/− pRC3 cells (Figure  3A). Moreover, the humanized 
anti-VEGF mAb significantly attenuated both microvessel den-
sity and tumor growth in tumors derived from VHL−/− pRC3 cells 
(Figure 3B,C).32 Collectively, these results indicated that microvas-
culature with abundant EFs on ccRCC might be VEGF-dependent 
capillaries and potent targets of anti-VEGF therapy.

5  |  BIOLOGIC AL ROLES OF PVHL IN 
SENSING AND ADAPTING TO OX YGEN 
AVAIL ABILIT Y

Multiple studies have explored the molecular mechanisms of pVHL 
in the regulation of VEGFA and the tumor suppression function of 
ccRCC. Gene product pVHL binds to Elongin-C, Elongin-B, CUL2, 
and RBX1 through its structural-function α-domain and the VBC 
complex functions as an E3 ubiquitin ligase complex (Figure 4A).8–15

Meanwhile, the groups of Dr. Semenza and Dr. Ratcliffe spent 
years searching for a transcription factor that induces erythropoi-
etin under hypoxic conditions and the former group finally identi-
fied HIF-1α as the master regulator of the hypoxic response.33–35 
Their discoveries in the early 1990s led to rapid progress in studying 
the hypoxic response. Then, in 1999, Dr. Ratcliffe and coworkers 
demonstrated that pVHL physically associated with HIFα and was 
necessary for its oxygen-regulated instability.16,36

Hypoxia-inducible factor is a transcription factor formed by 
a heterodimer of α- and β-subunits and regulates the transcrip-
tion of multiple hypoxia-responsive genes.37 The β-subunit of HIF 
(HIF-1β/ARNT) is constitutively expressed, whereas the abundance 
of the α-subunit (HIFα; HIF-1α, -2α, and -3α) varies with oxygen 
concentration. Under normoxia, specific proline residues in the N-
terminal transcriptional activation domain of HIFα are hydroxylated 
by PHD1–3.12,13,38–41 Hypoxia-inducible factor-α is ubiquitinated 

TA B L E  1  Characteristics of clear cell renal cell carcinoma cell 
lines.

Cell line
VHL 
status

Transactivity 
of HIF-1

Transactivity 
of HIF-2

786-O Null (−) (+)

A498 Null (−) (+)

RCC4 Null (+) (+)

UMRC2 Null (+) (+)

WT8 WT (−) (−)

WT8 + HIF2αP531A WT (−) (+)

pRC3 Null (−) (+)

Abbreviation: HIF, hypoxia inducible factor.
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by the VBC complex, leading to proteasomal degradation, and the 
HIF-mediated hypoxia response is repressed (Figure  4A). Under a 
hypoxic environment, the activity of PHDs decreases as the enzyme 
requires molecular oxygen for its enzymatic activity. Under hypoxia, 
HIFα escapes from ubiquitination-dependent proteasomal degra-
dation and binds to HIF-1β. This heterodimer complex recognizes a 
specific sequence (hypoxia response element, 5′-R(A/G)CGTG-3′) 
on genomic DNA and induces the transcription of hypoxia-related 
genes (Figure 4B).2,42,43

Three PHD genes have been identified in mammals and are 
thought to have unique functions because their gene products are 
expressed in different organs and exhibit different subcellular local-
izations.44,45 All three PHDs hydroxylate specific proline residues 
of HIFα in vitro.46 In them, PHD2 is the major prolyl hydroxylase 
of HIFα in vivo and is an essential molecule for development.47,48 
Furthermore, our data revealed that PHD2 negatively regulates the 
HIF-mediated hypoxia response by hydroxylating the proline resi-
dues of HIFα in cooperation with two other PHDs (Figure 4C).49

Three HIFα isoforms have been identified that are transcribed 
from three distinct genes: HIF1A, EPAS1, and HIF3A. Dr. Semenza 

and colleagues identified FIH-1 and revealed that specific asparagine 
residues in the CTADs of HIF-1α and HIF-2α were also hydroxylated 
by this enzyme in an oxygen concentration-dependent manner.50 
Hydroxylation of this asparagine residue suppresses the transcrip-
tional activity of the CTAD by inhibiting the binding of p300, a tran-
scriptional coactivator with histone acetyltransferase activity. Prolyl 
hydroxylase regulates the expression level of HIFα, and FIH-1 regu-
lates the transcriptional activity of HIFα, both doubly regulated by 
the hydroxylation of amino acid residues (Figure 4A,B).

We and others revealed that the Km value of FIH-1 for molecu-
lar oxygen is much lower than that of PHDs.46–49,51 As oxygen con-
centration decreases, the enzymatic activity of PHD is suppressed, 
and the protein expression of HIFα increases, which activates HIF. 
A further reduction in oxygen concentration reduces the enzymatic 
activity of FIH-1, which allows p300 binding to CTAD and increases 
the transcriptional activity of HIF to its maximum (Figure  4B). 
Hypoxia-inducible factor-3α not only lacks the CTAD and is consid-
ered less transcriptionally active than HIF-1α and HIF-2α but it also 
competitively inhibits HIF-1α and HIF-2α functions through several 
known splicing variants,52,53 including IPAS and NEPAS. The splicing 

F I G U R E  2  Endothelial fenestrations on microvasculature from VHL mutant clear cell renal cell carcinoma (ccRCC) might be vascular 
endothelial growth factor-dependent and sensitive to bevacizumab. (A) Electron micrographs of tumor capillaries in VHL WT ccRCC and 
VHL mutated ccRCC. Representative data are shown. Capillaries from tumors with mutant VHL exhibit endothelium with more abundant 
endothelial fenestration (EFs) compared with those with WT VHL. SEM, scanning electron microscope. (B) Quantification of EFs in tumor 
capillaries with or without VHL mutation. The numbers of EFs were calculated per square micrometer. (C) Electron micrographs of tumor 
capillaries in xenografts from WT8 and pRC3 cells. Representative data are shown. Capillaries from VHL−/− pRC3 xenografts exhibited 
abundant EFs. (D) Electron micrographs show a reduction of EFs in VHL−/− pRC3 xenografts by the bevacizumab (BEV) treatment. CTR, 
control.
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regulatory mechanism of HIF-3α remains to be elucidated. Activated 
HIF transcribes PHD3 (and PHD2 in some cell types), negatively 
regulating HIF. It is as if the expression level of PHDs is trying to 
compensate for the weakened enzymatic activity of PHDs because 
of the decrease in oxygen concentration. Thus, a negative feedback 
mechanism exists to prevent HIF from being activated in an unreg-
ulated and constitutive manner (Figure 4C). Chronic HIF activation 
leads to detrimental effects, such as myocardial mitochondrial in-
jury, resulting in severe heart failure, similar to dilated cardiomyop-
athy.48,54,55 Three distinct genes encode three hydroxylases that 
negatively regulate HIF. Taken together, it seems that our bodies 
somehow avoid the constant activation of HIF. Prolyl hydroxylase 
inhibitors (HIF-PH inhibitors), small compounds that inhibit PHD 
enzyme activities, were developed on the basis of this molecular 
mechanism of the hypoxic response. These inhibitors stimulate EPO 
production in the kidney and liver and iron absorption from the gas-
trointestinal tract and its transport and utilization in the body and 
have been used to treat renal anemia in the clinic.56,57

In ccRCC cancer cells, the O2 sensing mechanism is disrupted be-
cause of VHL mutation, and HIFα escapes from proteasomal degra-
dation. Therefore, HIF is constitutively activated and its target gene 
VEGFA is upregulated even under normoxic conditions. Consistent 
with these events, ccRCC exhibits hypervascular phenotypes, and 
multiple TKIs targeting VEGF have demonstrated significant activity 
as single agents for mRCC.30 Therefore, HIF could represent an ideal 
therapeutic target for ccRCC.

6  |  HYPOXIA- INDUCIBLE FAC TOR-2α 
PL AYS A CRITIC AL ROLE A S A DRIVER IN 
PVHL- DEFEC TIVE RENAL C ARCINOMA 
CELL S

When considering therapeutic strategies targeting HIF in ccRCC 
cells, it is critical to clarify whether HIF is the driver for the tumor. 
We examined whether tumor suppression by pVHL could be 

F I G U R E  3  Microvasculature with abundant endothelial fenestration (EFs) on VHL null clear cell renal cell carcinoma (ccRCC) might be 
vascular endothelial growth factor (VEGF)-dependent capillaries and sensitive to anti-VEGF therapy. (A) The graph shows a significant 
reduction of EFs in VHL−/− pRC3 xenografts by the bevacizumab treatment. (B) Effects of bevacizumab treatment on microvessel density. 
Significant reduction was observed in VHL−/− pRC3 xenografts. HPF, high power filed. (C) Antitumor effects of bevacizumab in ccRCC tumors 
established in nude mice. Each time point represents the mean ± SE of the fold of tumor volume in each group. Statistically significant 
differences were observed in the tumor size of VHL−/− pRC3 xenografts between the bevacizumab treatment mice and controls. NS, not 
significant.
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overridden by a HIF-2α variant that could not be recognized by the 
VBC complex. We produced HIF-2α in which the proline residue 
at 531 was substituted to alanine, resulting in escape from binding 
to pVHL. The construct was introduced to WT8 cells to establish 
WT8 + HIF2αP531A cells (Table  1). WT8 + HIF2αP531A cells fully 
restored their ability to form tumors in nude mice irrespective of 
their positive status of pVHL.58 Because tumor suppression by pVHL 
could be overridden by a HIF-2α variant that escapes pVHL control, 
our results strongly suggested that HIF-2α might be a driver in the 
tumor progression of ccRCC.

In a subsequent study in 2005, Dr. Raval et al. infected 786-O 
VHL−/− RCC cells with retroviruses expressing HIF-1α, HIF-2α, or 
GFP alone and implanted cells subcutaneously into nude mice. 
While four of the five animals with injections of 786-O cells ex-
pressing GFP formed tumors, none with injections of 786-O cells 
expressing HIF-1α formed tumors. In contrast, those injected with 
cells expressing HIF-2α formed tumors that grew at an enhanced 
rate compared with control animals injected with cells infected 

with the control virus.59 In a later study in 2008, Dr. Gordan et al. 
analyzed the VHL genotype and HIFα expression among primary 
tumors and found that VHL−/− RCC expressed either both HIF-1α 
and HIF-2α or HIF-2α alone. No tumors showed the HIF-1α alone 
phenotype.60 In 2011, Dr. Shen et al. reported that downregula-
tion of HIF-1α by shRNA promoted the growth of VHL−/− RCC4 
renal carcinoma cells orthotopically implanted in the kidneys of 
nude mice. Downregulation of HIF-1α in VHL−/− UMRC2 renal car-
cinoma cells also dramatically enhanced tumor growth in vivo.61 
As for the reasons why HIF-1α inhibited the tumor growth of RCC 
cells, Dr. Gordan et al. examined the roles of both HIF-1α and 
-2α on the transcriptional activity of c-Myc. They clarified that 
HIF-1α antagonized c-Myc function; in contrast, HIF-2α enhanced 
its transcriptional activity.62 This result strongly suggested that 
HIF-1α inhibited the tumor growth of RCC through the repression 
of the cell-cycle progression regulated by c-Myc.

Collectively, the results of our group and others clearly indicated 
that HIF-2 might be a possible driver of RCC.

F I G U R E  4  Regulation of hypoxia inducible factor (HIF) protein abundance by VHL gene product pVHL. (A) pVHL forms an E3 ubiquitin 
ligase complex with Elongin-B/C, Cul2, and Rbx1. The β-domain of pVHL recognizes one or two hydroxylated proline residue(s) in the N-
terminal transcriptional activation domain (NTAD) of HIFα, binds to HIFα, and targets HIFα for ubiquitin-dependent protein degradation at 
the proteasome. (B) Molecular mechanism of oxygen sensing and adaptation. Prolyl hydroxylases (PHDs) negatively regulate the protein 
abundance of HIFα via the prolyl-hydroxylation-mediated ubiquitin-proteasome pathway, and factor inhibiting HIF-1 (FIH-1) negatively 
regulates the transcriptional activity of HIF through asparaginyl hydroxylation. Both regulate the hypoxic response. (C) Fail-safe negative 
feedback regulation of HIF by PHD2-3. PHD1 hydroxylates HIFα independent of HIF activation. All three PHDs cooperatively hydroxylate 
HIFα to suppress constitutive activation of HIF.
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7  |  DRUG DE VELOPMENT FOR 
TARGETING HIF-2α  BY ALLOSTERIC 
BLOCK ADE OF THE DIMERIZ ATION 
OF HIF-2α  AND HIF-1β

Based on these results, an attempt was made to develop inhibi-
tors targeting HIF-2. Importantly, Dr. Wallace et al. succeeded in 
developing a series of orally active small molecules, PT2399 and 
PT2385, that allosterically block the dimerization of HIF-2α and 
HIF-1β.63–65 Inhibition of the HIF-2α/HIF-1β interaction by PT2399 
was confirmed by coimmunoprecipitation assay using an anti-
HIF-1β Ab. Hypoxia inducible factor-2α was coimmunoprecipitated 
from whole cell extracts from 786-O, A498, and UMRC2 pVHL null 
ccRCC cells by the Ab. Hypoxia inducible factor-1β coprecipitating 
with HIF-2α protein was diminished under PT2399 treatment in a 
dose-dependent manner. The effect of PT2399 was also examined 
in Hep3B VHL+/+ cells cultured under hypoxic conditions. The com-
pound specifically inhibited the mRNA expression of HIF-2-specific 
genes (EPO, PAI-1) but not those regulated by HIF-1, indicating that 
PT2399 specifically inhibits HIF-2α signals. PT2399 inhibited the in 
vivo tumor growth of VHL−/− RCC such as 786-O and A498 cells as 
well as ccRCC patient-derived xenografts.65

Dr. Chen et al. evaluated the effects of PT2399 in a panel of 22 
independently generated RCC patient-derived xenografts and found 
that the compound decreased tumor growth by 60% across all tumor 
grafts (p < 0.0001). The authors also compared the antitumor effect 
of PT2399 and sunitinib, a representative anti-VEGF TKI, and found 
that PT2399 compound was more active than sunitinib (p = 0.0126). 
Moreover, PT2399 inhibited tumor growth in some sunitinib-
resistant tumors.64 Similarly, Dr. Wallace et al. revealed that the 
other orally active HIF-2α inhibitor, PT2385, significantly reduced 
tumor weight in both 786-O and A498 xenograft models in vivo.63

8  |  DRUGS TARGETING HIF-2 SHOWED 
ANTITUMOR AC TIVIT Y IN CLINIC AL TRIAL S

From the results of these preclinical studies, a phase I dose-escalation 
trial of the HIF-2α inhibitor PT2385 was undertaken in 51 patients 
with advanced ccRCC, 50 of whom were evaluable for the response. 
All patients had been previously treated with VEGF-targeted ther-
apy and the median number of prior systemic therapies was four, 
indicating that these patients were refractory to most existing drugs 
to ccRCC. Among the overall 50 patients, one patient (2%) had CR, 
six (12%) had PR, and 26 (52%) had SD. The disease control rate (CR 
plus PR plus SD) was as high as 66% (Table 2).66

Among the HIF-2α inhibitors, belzutifan is the most advanced 
compound in clinical development, and a phase II trial has been un-
dertaken in VHL patients in the United States and Europe. A total of 
61 patients with VHL disease were enrolled. Most of them (56/61, 
91.8%) showed a reduction in RCC tumor size after treatment, and 
30 cases (49%) achieved a reduction in tumor size (PR) of >30%. The 
effect of the drug on CNS hemangioblastomas was also evaluated; TA
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the results showed that 3/50 patients (6.0%) achieved CR and 12/50 
(24%) achieved PR. In addition, all patients with retinal hemangioma 
(n = 12) showed improvement in their condition. Belzutifan also im-
proved pNET in VHL patients, with 3/22 (13.6%) and 17/22 (77.3%) 
patients achieving CR and PR, respectively (Table  3).17 Based on 
these results, in 2021, FDA approved belzutifan for adult patients 
with VHL disease who require therapy for RCC, CNS hemangioblas-
toma, or pNET, not requiring immediate surgery. Thus, 127 years 
after the first case report of VHL disease by Dr. Collins, an effective 
drug for this disease was established.

Several clinical trials combining belzutifan with other drugs are 
ongoing or in planning. These combination therapies might be intro-
duced into the clinic for advanced ccRCC.30 Importantly, VHL muta-
tion was also reported in colorectal cancer.67 Moreover, it had been 
reported that HIFα was stabilized in tumor cells harboring mutations 
in the genes encoding a series of succinate dehydrogenase as the 
activity of PHDs was inhibited by the accumulation of succinate in 
these cells.68 Although the exact roles of HIF-2 in those tumors have 
not been elucidated, these results indicate the possibility of clinical 
application of HIF-2α inhibitors against those tumors.

In addition, we, our colleagues, and other groups have suc-
cessfully identified novel pVHL target proteins other than HIF.69–76 
Moreover, molecules exhibiting synthetic lethality against VHL−/− 
RCC cells have been identified.77–79 Therefore, these novel mole-
cules might be ideal candidates for new drug targets and possible 
new combination therapies. Together these findings indicate the 
potential for the successful development of additional drugs against 
diseases caused by mutated VHL and/or the activation of HIF-2 with 
the aim of improving the prognosis of patients.
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