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Abstract

Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for nu-
merous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle
mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity
and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social
costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to
improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-
derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromus-
cular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically
discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individ-
uals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the
discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions,
all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when
CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in
sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be
higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke,
and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kid-
ney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting.
CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally,
CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether
longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still
controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with
measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size
and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney
disease, that may influence the circulating concentration of this biomarker.
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Introduction

Ageing and age-associated diseases inducing
muscle wasting and weakness

In the last decades, Western countries faced a profound
demographic change, reflected in the average expectancy of
life progressively increasing up to more than 75 years.1 The
number of people over 60 has been estimated to rise from
600 million (in 2000) to about 2 billion by 2050.2 Hence,
one of the challenges of the modern society is to increase
the expectancy of healthy life.

Ageing is accompanied by a progressive decline of muscle
mass and performance, yielding increased incidence of falls,
fractures and hospitalization, consequently reducing the
quality of life and increasing the healthcare expenditures.
The clinical manifestation of this phenomenon is termed
sarcopenia.3 According to a recent meta-analysis, sarcopenia
prevalence ranges between 10% and 27% in people aged
>60 years old, widely depending on the definition used for
diagnosis.4 Even with a conservative estimate, sarcopenia af-
fects >50 million people today and will affect >200 million
people in the next 40 years.2

This impressive prevalence is due to the fact that sarcope-
nia is not only caused by ageing (primary sarcopenia) but
may be linked to the concurrent presence of other modify-
ing conditions (secondary sarcopenia), such as inactivity,
advanced organ failure (disease-related sarcopenia) or inad-
equate intake of energy/proteins.3,5,6 Importantly, ageing is
accompanied by increased inactivity7,8 and represents a ma-
jor risk factor for disease such as diabetes,9 cardiovascular,
pulmonary diseases, cancer and cancer-related cachexia.10

Cancer cachexia is a multifactorial syndrome characterized
by an ongoing loss of skeletal muscle mass not reversible
by nutritional support.11 All these conditions in turn deter-
mine an increased likelihood of secondary sarcopenia
development,10,12,13 implementing a vicious cycle.

To achieve an early diagnosis and assessment of sarcope-
nia or cachexia, screening procedures in clinical settings are
needed.10,11,14–17 Several blood biomarkers have been inves-
tigated as they represent easy-accessible and non-invasive
potential hallmarks to discriminate between individuals at
high and low risk to develop muscle wasting conditions.

Denervation and NMJ degradation have been recently pro-
posed as key determinants of age-related muscle wasting
diseases.15,18–21 NMJ dismantling may be detected by mea-
suring the serum concentration of the C-terminal agrin frag-
ment (CAF).22,23 This is a 22-kDa peptide, deriving from the
cleaved protein agrin, that has been proposed as a possible
biomarker for assessing NMJ-related muscle dysfunction.24

Ever since the first reports by Drey et al.,24 an increasing
number of studies have investigated CAF concentration in dif-
ferent populations at muscle dysfunction risk, ranging from
sarcopenic,25,26 to cachectic,27 to diseased patients.28–33

The focus of the most updated guidelines shifted from the
‘single-biomarker explains all’ to the search for a battery of
circulating biomarkers able to address and discriminate the
pathogenesis of different muscle wasting conditions.17,30

However, we believe that a narrative review summarizing
and discussing the findings concerning CAF as a biomarker
of NMJ instability and possibly of muscle dysfunction and
wasting is still lacking. This may be a useful tool for those
who intend to include CAF in the list of biomarkers assessed
both in research studies and clinical practice.

Thus, we provide, for the first time, an overview of all the
studies measuring cross-sectional and longitudinal changes in
circulating CAF levels in ageing, sarcopenia, muscle wasting
conditions such as diabetes, COPD, chronic heart failure,
stroke and cancer cachexia as well as in response to disuse
and physical activity. In addition, some methodological
aspects concerning CAF assessments and the directions that
may be pursued by future research in this regard are
highlighted.

CAF: where does it come from? The agrin pathway
and its relevance in NMJ maintenance

Agrin (from the Greek ‘agrein’, meaning ‘to assemble’) was
firstly described in 1987 by Nitkin and colleagues, who puri-
fied it from the basal laminae of the electric organ of Torpedo
californica, a giant homologue of the NMJ.34 In 1990,
McMahan postulated the so-called ’agrin hypothesis’,35 stat-
ing that agrin is a nerve-derived trophic factor, responsible
for the assembly of the post-synaptic apparatus in vivo. Few
years later, the main predictions of the ‘agrin hypothesis’
were proved by experimental evidence: agrin-deficient mice
died because of a lack of NMJ formation, and forced agrin ex-
pression or injection in non-synaptic regions of innervated
muscles established the formation of an ectopic and fully dif-
ferentiated post- synaptic apparatus.36–38

To date, we have gained several insights into the structure
and roles of agrin, whose core protein is known to have a
molecular mass of about 225 kDa. However, it is extensively
glycosylated at its NH2-terminal half; thus, it migrates around
400–600 kDa on SDS-PAGE.39 Agrin can undergo differential
splicing leading to the formation of many isoforms.40

Essentially, two main different amino-terminus can be
formed: (i) one encoding for a cleaved signal sequence (SS)
and an amino (N)-terminal agrin domain (SS-NtA agrin),
which allows binding to laminins; (ii) the other encoding for
a shorter amino-acid terminus that converts the protein into
a type II transmembrane protein (TM agrin), unable to bind
to laminins.41,42 SS-NtA agrin is expressed in those tissues
containing basal lamina, such as the NMJ and the muscle,
whereas TM agrin is present in many cells of the central ner-
vous system, where basal lamina is absent.40 Additionally, in
the carboxy-terminal laminin-globular domains 2 (LG2) and
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3 (LG3), two other differential splicing sites are present,
named A/y and B/z.43 A/y site can contain 0 or a 4-amino acid
insert; B/z site can contain 0, 8, 11 or 19 (8 + 11) amino acid
inserts.43 Importantly, the B/z site inserts are crucial for agrin-
induced AChR aggregation capacity, as only the isoforms that
contain an insert are able to induce AChR clustering.44 These
isoforms are mainly expressed by neurons and motor neu-
rons (neural agrin), while being absent in skeletal muscles
that only contain agrin isoforms without B/z inserts (muscular
agrin).40

At the NMJ level, SS-NtA neural agrin is bound to the NMJ
basal-lamina laminins; it activates the single transmembrane
receptor tyrosine kinase MuSK (muscle-specific kinase), via
its binding to MuSK co-receptor low-density lipoprotein re-
ceptor-related protein 4 (Lrp4).39 Neural agrin
carboxy-terminal LG3 domain has been shown to bind the
YWTD repeat-containing β-propeller of Lrp4, inducing MuSK
phosphorylation and activation.45 From the cytoplasmic side,
the protein downstream of tyrosine kinases-7 (Dok-7) also
binds to MuSK to allow for its compete activation.46 MuSK ac-
tivation is responsible for the formation of the postsynaptic
apparatus, inducing AChR clustering and anchoring to the
NMJ postsynaptic membrane (see Figure 1).39,47

Neural agrin presence at the synaptic cleft is regulated by
its proteolytic cleavage.22 Stephan et al. showed that the
pre-synaptic held enzyme neurotrypsin, whose activity is
regulated by pH and calcium concentration,48 when released
was able to cleave agrin locally at the nervous system synap-
ses. The authors further reported that agrin cleavage by
neurotrypsin induced the release of a 90-kDa and a 22-kDa

fragment from the C-terminal end22 (Figure 1). Two years
later, Bolliger et al. demonstrated that agrin cleavage at the
NMJ determined its maturation: Overexpression of
neurotrypsin, leading to an increased agrin cleavage, caused
precocious maturation of NMJs followed by their
disassembling within few days.23

Importantly, muscular agrin co-localizes with AChRs at the
post-synaptic site of the NMJ and is also cleaved by
neurotrypsin. Its expression is regulated by the interactions
with neurons and collaborates with neural agrin to organize
NMJ formation.49

In 2011, Bütikofer et al.50 demonstrated in vivo that
neurotrypsin overexpression, leading to excessive agrin
cleavage, resulted in a muscle phenotype typically observed
in advanced ageing (reduced number of muscle fibres, in-
creased heterogeneity of fibre thickness, more centralized
nuclei, fibre-type grouping and an increased proportion of
type I fibres) as well as NMJ fragmentation. Such muscle phe-
notype is referred as ‘sarcopenic’. The authors also observed
that the absence of post-synaptic AChR aggregates in
neurotrypsin overexpressing mice was always linked with
the absence of C terminal agrin-22 fragment (i.e. CAF) and
that loss of CAF at the NMJ preceded AChR dispersal.
However, in neurotrypsin-null mice, the age-dependent
sarcopenic phenotype was still developed, thus highlighting
that both ageing per se and NMJ dismantling could be two
phenomena contributing to muscle wasting and weakness.
Three years later, Hettwer et al.51 treated neurotrypsin-over-
expressing mice (presenting the sarcopenic phenotype) with
a neurotrypsin-resistant compound (NT-1654) derived from

Figure 1 The agrin pathway. Agrin complex (Agrin, Lrp4, MuSK, Dok7) localization within the neuromuscular junction structure (right panel); agrin
complex detailed structure and site of proteolytic cleavage of C-terminal agrin fragment (CAF) by neurotrypsin (middle panel); schematic representa-
tion of agrin cleavage by neurotrypsin and CAF release within the blood circulation (middle and right panels).
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murine agrin. The authors showed treated animals to display
an almost full rescue of muscle weight and fibre number,
strength and NMJ morphology.

From this body of literature, the European Working Group
on Sarcopenia in older people (EWGSOP) proposed, in 2012,
that the investigation of a biomarker of NMJ stability (CAF)
might be useful when assessing sarcopenia.52

The following year, Drey et al. proved CAF to be released
and detectable within the blood circulation. The authors
measured CAF concentration in old sarcopenic and
non-sarcopenic patients by using western blot, reporting this
biomarker to be higher in the first than in the second group
and to increase with age.24,26

From 2013, many studies investigated CAF concentration
in serum and plasma from patients belonging to several pop-
ulations at risk of developing muscle wasting and weakness
by using ELISA techniques.

CAF assessment: which conditions, and
which results?

CAF in ageing and sarcopenia

The main findings concerning circulating CAF measurement in
ageing and sarcopenia are summarized in Table 1.

Hettwer et al.26 showed that ageing per se resulted
in a significant increase in CAF concentration from young
(19–29 years) to middle (30–59 years) and old-age (60–
74 years) with no significant gender differences. Similar
results were observed in a Chinese population,53 although
the age-related CAF differences were significant only among
females. A recent study reported lower, but non-significant,
CAF values in younger than healthy older people54; signifi-
cance may have not been achieved due to the small sample
size (15 young and 15 elderly).

Interestingly, in longitudinal studies, Bondoc et al.55 re-
ported a higher increase in CAF concentration within the
oldest participants over a period of 12 months, and
Gagliano-Jucá et al.56 observed CAF increments in aged indi-
viduals with lowmuscle mass and function in a 6-month study.

Taken together, these findings suggest that ageing is linked
to increased circulating CAF concentration, likely because of
NMJ degeneration and increased denervation known to ac-
company the ageing process.19,57,58

Higher circulating CAF levels have been documented also in
sarcopenia. The first paper investigating this topic, by Hettwer
et al.,26 stratified sarcopenic patients in high-CAF and low-CAF
holders. The latter group presented CAF concentration very
similar to those of the age-matched healthy counterpart in-
volved in the same study. The authors concluded that CAF
was a biomarker able to distinguish between who developed
a ‘neurogenic sarcopenia’ (high CAF) from those developing

a ‘natural muscle aging related sarcopenia’ (low CAF).26

However, all the following studies pooled together sarcopenic
participants, without considering low-CAF versus high-CAF
individuals, and this aspect was no longer investigated.

Marzetti et al.32 and Sanchez-Castellano et al.59 reported
higher CAF serum levels in old to very old sarcopenic
hip-fractured patients than in non-sarcopenic ones. Similarly,
sarcopenic individuals with chronic heart failure or COPD
were shown to have higher CAF than disease-matched, non-
sarcopenic ones.29,30

Landi et al.,25 in 2016, observed higher CAF concentrations
in sarcopenic versus non-sarcopenic people within a prospec-
tive cohort of 332 participants, also when adjusting the
values for age, sex and different pathological conditions and
confounding factors, including congestive heart failure, lung
disease, diabetes and renal failure. Following studies con-
firmed these findings.30,60

Interestingly, a well-designed, recent study searching for a
battery of sarcopenia-associated biomarkers reported that,
based on the data collected and the mathematical model
employed, CAF might be a reliable sarcopenia-associated
biomarker only in males.17

From the above-mentioned studies, a trend for higher se-
rum CAF concentration in sarcopenic versus non-sarcopenic
individuals emerges, although not always significant. Likely,
this is due to the fact that (i) the studies evaluating CAF in
sarcopenic patients do not report whether this was likely pri-
mary or secondary.6 Participants enrolled in these studies
were neurological, inflammation and cardiovascular-disease
free (unless otherwise stated), or a correction for these
conditions was applied. Hence, disease-related secondary
sarcopenia is not expected to significantly influence the re-
sults reported. On the other side, it is well known that ageing
is accompanied by a decreased physical activity7 a recent sur-
vey showed that in 16 European countries, the overall preva-
lence of inactivity among individuals aged 55 or older is
12.5%, ranging from 4.9% (Sweden) to 29% (Portugal).8

Because inactivity seems to enhance CAF concentration (see
next section), this should be considered as an important
factor to be used for CAF concentration corrections. (ii) It is
important to emphasize that the definition of sarcopenia
has been changing over time, shifting the focus from the sole
‘loss of muscle mass’61 to similar importance of loss of muscle
mass and strength or functionality,62 to finally emphasize
more the loss of muscle force than that of muscle mass or
quality.3 Recently, sarcopenia has also been recognized as a
disease.63 Coherently, the criteria to diagnose sarcopenia
have been modified to meet its updated definition.3 As such,
the studies reported over time defined ‘sarcopenic’ partici-
pants with different features, thus potentially explaining the
partial discrepancies between the reported results.

Nonetheless, it seems worth pointing out that most
reports suggest that CAF might be a good candidate, if in-
cluded in a clinical routine together with other biomarkers,
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to distinguish between non-sarcopenic and sarcopenic peo-
ple. This finding supports the concept of an important role
played by increased NMJ dismantling and muscle denervation
as co-factors for sarcopenia.15,18,19,21

CAF in cancer cachexia and other muscle wasting
diseases

A recent study investigating the possible mechanisms of
cancer-induced muscle wasting (i.e. cachexia) in colorectal
and pancreatic patients reported for the first time fibre-type
grouping and increased CAF concentration in pre-cachectic
and cachectic patients when compared with age-matched
controls. These findings suggest that early instability of the
NMJ precedes the marked atrophy and the higher amounts
of denervated fibres present in cachectic patients.27 Accord-
ingly, in a preclinical murine model of cancer cachexia, the au-
thors observed that denervation and NMJ morphological al-
terations preceded the onset of muscle atrophy. Moreover,
NMJ functional alterations were observed in the muscles of
cachectic mice.27 These results, supporting and further devel-
oping the denervation issue described in a previous report,64

propose the concept of denervation and NMJ impairment as
factors potentially involved in the pathogenesis of muscle
wasting in cancer cachexia, even if only longitudinal studies
in humans will confirm a causality link. On the other hand,
Boehm et al.65 showed NMJs to be morphologically stable
among 10 oesophageal patients with cancer cachexia; how-
ever, CAF concentration was not measured in this study.

Hence, cachexia-induced muscle wasting might derive, at
least in some cancer types, also from denervation and NMJ
instability, thus highlighting CAF as a potential biomarker to
assess disease progression towards cachexia in some cancer
patients.

CAF was shown to be higher than controls also in other dis-
eases where mild-to-severe muscle wasting or dysfunction is
developed such as chronic heart failure29,30 and acute stroke31

and patients with COPD or other pulmonary diseases.28,30,66,67

A recent work reported CAF to be higher in patients affected
by type 2 diabetes compared with pre-diabetic and control
volunteers; in this context, CAF also positively correlated with
the concentration of glycated haemoglobin, a marker of dia-
betes progression.68 The authors reported diabetic patients
to present lower muscle strength and quality, also correlating
with higher CAF concentration. Thus, CAF might be a useful
marker also when assessing muscle dysfunction in different
muscle-wasting-inducing diseases.

CAF and inactivity

Given the increased attention that CAF has gained as a
biomarker of muscle dysfunction, recent studies have

considered the sole inactivity-related changes of CAF in
young, healthy populations undergoing unloading protocols.

In a recent short-term (10 days) bed rest study, we found
that CAF concentration raised by about 19% in healthy young
males and that this was accompanied by initial and partial
signs of denervation in their muscle biopsies.69 Conversely, a
study by Ganse et al. assessed CAF variations through a longer
bed rest (60 days) with or without 30 min/day of continuous
or intermittent permanence in human centrifuges generating
gravity forces similar to those experienced on Earth. CAF
was unaltered at the end of the 60-day bed rest independently
from the experimental condition.70 Accordingly, the authors
observed no changes in muscle wasting biomarkers. Impor-
tantly, 60 days of bed rest represent a very long-term
unloading, and the acute CAF increments observed after
10 days in our study may have been blunted by the end of
the 2-month observation time. Indeed, CAF cleavage could
have been stabilized because the NMJ remodelling due to
unloading reached a steady state. In the study by Ganse
et al.,70 CAF concentrations were much lower (about 10 times)
than those reported in all the other papers investigating this
biomarker and had a high variability among the three groups
(average mean of controls, continuous or intermittent centri-
fugation: 129, 344 and 65 pg/mL, respectively) and the time
course considered, thus the comparison results to be difficult.
Another recent work from Narici’s group showed a 5.5% in-
crease in CAF after 10 days of unilateral lower limb
suspension.71 This seems reasonable as unilateral lower limb
suspension is considered a milder unloading model compared
with bed rest, due to the smaller amount of muscle mass sub-
jected to inactivity.

In conclusion, it seems likely that whole-body unloading in-
duces acute increase in CAF concentration also in healthy,
young people, which we observed to rapidly decrease already
after 2 days of reloading (unpublished data). This concept
would support the evidence of an early-induced morphologi-
cal NMJ remodelling with unloading, although whether such
phenomenon would precede (and cause) or accompany mus-
cle atrophy is currently unknown. Further, such observed CAF
raising induced by inactivity may corroborate the findings
showing CAF to be higher in the more prone-to-inactivity
sarcopenic population. As no longitudinal studies have deter-
mined the effects of inactivity-related CAF variations in el-
derly, this aspect remains to be investigated.

CAF and physical exercise

As one of the most effective strategies to counteract muscle
wasting and weakness is physical exercise, which is also well
known to have positive effects on NMJ72 and reinnervation,73

it is not surprising that many research groups focused their
attention on the effects of different training modalities on cir-
culating CAF levels, especially in the ageing population. The
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results of the studies conducted so far, together with the
training mode and duration, are summarized in Table 2.

Overall, these studies report less coherent results than the
ones focusing on CAF and sarcopenia. Here, we provide a
comprehensive overview of those studies and the specifics
of each training regime employed in order to contribute
new tools for the interpretation of the data reported in the
literature.

The majority of the longitudinal studies investigating CAF
serum levels in response to exercise were focused on
non-sarcopenic or pre-frail (according to previous study74)
elderly24,75–80; only few works were aimed at assessing longi-
tudinally training effects in populations of elderlies with low
muscle mass and function.55 In two cross-sectional studies,
the levels of CAF were assessed within active and inactive
non-sarcopenic and healthy elderly populations.79,81

Some authors reported decreased CAF concentrations fol-
lowing training interventions31,67,75,82; others observed no
changes55,78–80 or even a trend for increase in CAF.76 In addi-
tion, in two studies, CAF varied differentially in response to
the same exercise protocol between groups with low versus
high baseline CAF concentration24 or pre-menopausal versus
post-menopausal women.77 Therefore, there are apparent
discrepancies within the reported results. However, when
critically looking at these studies, some interesting elements
emerge. (i) The mode, duration, intensity and volume of exer-
cise were very different; (ii) the sex and hormonal status of
the involved participants were unequal; (iii) the healthy or
sarcopenic condition was thoroughly stratified only in few
studies.

Exercise and decreased CAF
Drey et al.24 reported a trend for a better effect of power
training compared with strength training in decreasing
CAF.24 Bigdeli et al. employed a functional-type, balance-
based training,75 which was effective in reducing CAF,
whereas Kargaran et al.82 reported CAF to, respectively, de-
crease and trend to decrease after a combined aerobic and
cognitive training with and without blood-flow restriction.82

The blood-flow restriction applied to the dual aerobic and
cognitive training by Karagan et al.was the determinant for
a significant versus a not significant decrement in CAF, as
blood-flow restriction is known to increase the exercise inten-
sity. Also two studies by Narici’s group79,81 showed that ac-
tive individuals, practicing dance, presented lower CAF values
than sedentary peers. When training for 6 months two
groups of elderly, the one practising dance presented de-
creased CAF values, whereas in the group practising general
fitness CAF was unchanged.79 These results suggest that the
intensity and the type of physical activity might play a very
important role in inducing changes in circulating CAF. Impor-
tantly, activities involving fine coordination and cognition
(such as dance and balance based or cognitive training) were
able to reduce the circulating levels of this biomarker, poten-

tially acting on mechanisms involved in NMJ integrity to a
higher extent than other training modalities (such as general
fitness training).75,79,81 In a context of rehabilitation, two
studies investigated circulating CAF on patients affected by
stroke31 or COPD67 and found them to be decreased after
the rehabilitation physical intervention.

Exercise and unchanged CAF
It is interesting to note that the majority of the studies in
which no differences in the trained groups were detected
had long duration (i.e. at least 6 months).55,78 Bondoc et
al.55 reported no differences in the control, non-exercising
group after 1-year follow-up observation in low muscle func-
tion individuals55; the comparison with the intervention
group performing physical exercise showed no difference, al-
though the authors stated that the adherence to the training
protocol in the last months was lower. Colleluori et al.78

trained for 6 months obese elderlies with either only aerobic,
only resistance training or a combination of both, also pre-
scribing a diet to their participants.78 The authors observed
no variations in CAF after the three training interventions
and suggested that in the context of obesity, exercise training
was able to preserve but not improve NMJ health over
6 months although diet-induced body weight loss was
experienced.78 In these contexts, the training intervention
might have only helped maintaining CAF concentration,
preventing its raise, instead of resulting in a lowering of this
parameter.

Exercise and increased CAF
Only in a short-term interventional study (6 weeks) con-
ducted by Fragala et al.76 a resistance training in elderlies76

was not able to induce any change (or, even more, seemed
to tend to an opposite result) in CAF concentration. From
the above-mentioned studies reporting no changes in circu-
lating CAF serum levels, it could be speculated that resistance
training, not involving fine motricity and coordinative tasks,
may produce less beneficial effects on the NMJ.

On the contrary, Gagliano-Jucá et al.56 observed a raise in
CAF concentration over 6 months in frail, old individuals;
interestingly, testosterone administration was not able to
prevent such raise, despite increasing muscle strength. The
authors suggested that this hormone exploits pathways other
than a restore in NMJ stability to induce force
ameliorations.56

Exercise and differential effects of the same protocol on CAF
Lastly, Willoughby et al.77 showed that resistance training re-
sulted in increased CAF in peri-menopausal women, although
it was able to reduce CAF in post-menopausal ones. These re-
sults stress the importance of sex and hormonal status in reg-
ulating CAF concentration in the bloodstream.

Hence, contrarily to the conditions of ageing, sarcopenia or
inactivity, it is difficult to draw definite conclusions on the ef-
fects of physical exercise on CAF circulating concentrations.
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Indeed, only some speculation may be done, as studies
directly comparing different training modalities (e.g. rehabil-
itation programmes, resistance training, functional training
or dance and aerobic training) in different populations
(males, females, healthy or sarcopenic) are lacking or involve
small sample size or confounding effects (such as weight
loss). Thus, so far, what seems important is to consider sarco-
penia, sex and hormonal status, together with the intensity,
duration and type of the intervention, when planning and in-
terpreting the results of studies assessing training-induced
CAF variations.

CAF: a marker of muscle wasting or of
muscle weakness?

As discussed in the previous paragraphs, CAF has been inves-
tigated over the years in different young or aged and healthy
or diseased populations, also before and after training or
unloading protocols, and the associations of this biomarker
with indexes of muscle mass and function have been
reported (summarized in Table 3).

Two cross-sectional studies reported CAF to be negatively
correlated with appendicular lean mass (ALM), only in male
participants.24,30 Landi et al. 25 and Pratt et al.60 found an in-
verse correlation between CAF and ALM, but the first study
observed this association only in females (and a trend in
males), whereas the second observed this finding in both
genders.60 On the contrary, Hester et al.54 reported no corre-
lation between muscle cross-sectional area or ALM and this
biomarker.54

In longitudinal studies, only Fragala et al.76 reported that
the increase in muscle mass or morphology were positively
correlated with changes in CAF,76 whereas other reports sug-
gest that higher CAF is associated with lower muscle/lean
body mass or increased muscle wasting in patients affected
by type 2 diabetes, chronic heart failure or acute
stroke.29,31,68

Physiologically, the rationale for proposing CAF as a bio-
marker of muscle wasting is that increased NMJ destabiliza-
tion (resulting in higher agrin cleavage at the synapses and
thus increased CAF blood concentration) would determine
atrophy of the muscle fibres whose NMJs are dismantled.
Such NMJ disarrangement could be influenced by both motor
neuronal degeneration and failure of reinnervation (from the
nerve side),83 alterations of autophagy,84 mitochondrial
function,85 protein synthesis inhibition86 and increased ROS
accumulation87 in muscle fibres (muscle side).

So far, some reports (cited above) seem to suggest that
CAF may be quite sensitive to these neuromuscular changes;
however, deeper investigation should clarify their underlying
mechanism.

On the other hand, some studies linked CAF concentration
to functional parameters such as handgrip strength, gait
speed, short physical performance battery (SPPB) or frailty
scales (summarized in Table 3), reporting conflicting results:
some found different degrees of negative correlation be-
tween CAF and handgrip or gait speed in cross-sectional
studies25,28,30,55,60,66 or between CAF and handgrip in longitu-
dinal studies.31,67 Further, some studies found negative asso-
ciations between CAF and 1RM strength,75 static/dynamic
balance,75,81 muscle quality based on measurements of
maximum isometric or isokinetic strength68 or neuromuscu-
lar activity during fatiguing tests.88 Interestingly, some of
these correlations were observed to be gender specific.60,88

Conversely, other studies reported no correlation between
parameters of muscle function and CAF.54–56,76

The rationale behind a link between increased CAF and a
decline in muscle function would be explained by two ele-
ments: (i) NMJ disruption, which causes disconnection from
muscle fibres that become denervated, atrophic and
unfunctional; (ii) NMJ remodelling, which might affect the
transmission of action potentials to the muscle fibre. As for
the first point, many studies have shown ageing to be accom-
panied by a reduction of motor unit number.83,89 The re-
duced reinnervation capacity of denervated fibres, together
with the increased instability of the dismantled NMJs,90,91

would contribute to the decline in muscle function. On the
other hand, surviving NMJs with an altered morphology
(potentially contributing to CAF elevation) might be less
efficient in transmitting action potentials, although this event
has been suggested to happen very late during the
lifespan.92,93 Thus, it might be possible that in very old sub-
jects, the correlation between CAF and functional parameters
could be stronger than in younger ones, helping to explain
some discrepancies observed among the presented results.

Overall, most of the literature seems to suggest that CAF
could be quite sensitive in detecting changes in muscle mass
or function; however, more investigation concerning age, sex
and other confounding factors dependent on such relation-
ship must be addressed before a definitive conclusion is
drawn.

Methodological considerations

A last but very important aspect that deserves attention
concerns the different CAF concentrations reported over
the studies published in the literature.

Indeed, when trying to establish cut-offs of a biomarker,
age, sex, race and co-morbidities should be considered; fur-
thermore, also the technique used for its measurement
may be relevant. Both aspects are essential to correctly
interpreting the results and compare studies from different
laboratories.
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Concerning age, sex and race, we have listed several
studies showing that these parameters need to be
considered.25,26,53,60 Co-morbidities assessment may also be
crucial, as demonstrated by the higher circulating CAF levels
observed in the muscle dysfunction-inducing chronic heart
failure,29,30 stroke,31 pulmonary diseases,28 diabetes68 and
cancer cachexia.27

Importantly, also renal function has been linked to raised
circulating CAF, because this biomarker has been reported
to be higher in patients developing acute kidney injury33

and undergoing kidney transplantation.53,94 Two days after
transplantation, CAF concentration was observed to signifi-
cantly decrease and reach the controls levels, remaining
stable until at least 6 months after surgery.53 An extremely
important note is that agrin has been reported to be
expressed in kidney, contributing to the formation of the
glomerular basement membrane (GBM).94 Thus, increased
CAF concentration in these patients has been hypothesized
to be due either to reduced glomerular filtration/tubular se-
cretion or to increased degradation of the GBM causing a
decline in glomerular function or their loss.94 As animal
studies investigating glomerular formation in agrin-deficient
mice demonstrated that no differences in the structure of
glomeruli and renal function were observable,95 a decre-
ment in renal clearance [measurable as a reduced glomeru-
lar filtration rate (GRF)] was proposed as the predominant
determinant of the higher CAF concentration observed in
patients with kidney dysfunction.53 Supporting this concept,
several studies reported strong positive correlation between
CAF concentration and creatinine (a well-established marker
of kidney functionality) and negative correlation between
CAF and estimated GFR in patients with chronic kidney
disease96 and undergoing kidney transplantation.53,94 In a
57-week study, CAF was reported to have a high predictive
power in determining rapid kidney function decline in pa-
tients affected by chronic kidney disease, independently
from estimated GFR.97 Hence, although the authors
acknowledged that NMJ-derived CAF may play a partial
role also in the elevated concentrations observed among
kidney-dysfunctional patients, the presence of kidney-
related diseases seems an independent predictor of elevated
CAF. In this context, particular attention should be paid
when investigating CAF in diabetic patients, as this pathol-
ogy is the leading cause of chronic kidney disease.98 Devetzis
et al.98 measured serum CAF concentration, estimated GFR
and proteinuria in spot urine in type 2 elderly patients with
diabetic nephropathy and observed a negative and a posi-
tive correlation between CAF and estimated GFR and CAF
and proteinuria, respectively, at baseline and after 12 months
of follow-up.98 Similar results were reported in a separate
cohort on one abstract published by Roos et al.99 Addition-
ally, higher CAF concentration in diabetic nephropathic
patients was also associated with progression to end-stage
renal disease within 24 months of follow-up.98 These results

strongly suggest that, both in the general population and
specifically in diabetic individuals, a detailed medical history
of the patient and a follow-up to exclude that chronic kidney
disease is the cause of the higher CAF observed are essential
for a correct interpretation of the elevated concentration of
this biomarker.

Concerning the different detection methodologies, CAF
was originally measured by using the western blot
technique,24,26 which was quickly replaced by ELISA immuno-
sorbent assays. ELISA kits produced by different brands have
been used in various studies, and the concentrations re-
ported vary from 3.688 to 18–34070,77,100 to about 20 30053

pg/mL. The last value was measured in patients before
kidney transplantation and might lead to misleading
interpretation due to the concomitant kidney disease.
However, the majority of the studies on healthy subjects re-
ported ranges between 1700 and 5000 pg/mL on
average,25,26,29,31,32,53,60,66,69,71,78,79,81 with increasing con-
centration as age increases. In general, using ELISA kits pro-
duced by different companies led to different concentrations
estimation, but most of the studies using the commercially
available kits provided results that remained within the
above-indicated range. Only four studies70,77,88,100 reported
values in a very different scale (more than 10-fold lower)
compared with the remaining body of literature.

Overall, in sarcopenic volunteers or participants with low
muscle function, CAF was reported to range from 2100 to
6400 pg/mL,24–26,56 and in patients with different co-morbid-
ities from 2300 to 20 300 pg/mL.28–32,53,59,66,67 Although
there is still quite a high variability, it is noteworthy that,
within the same study, CAF values proportions were main-
tained (sarcopenic participants presented values significantly
higher than their healthy counterparts, elderly people
displayed higher values than young, and diseased patients
had higher CAF than controls).

Importantly, by using WB, Hettwer et al.26 reported that
they were able to purify muscular B/z negative (i.e.
possessing no aminoacidic insertion at the B/z splicing site)
and neural B/z positive (possessing 8-aminoacidic insertion
at the B/z splicing site) isoforms of agrin. However, they used
the B/z negative isoform as reference standard for the calcu-
lation of serum CAF concentration in their sample.26 Similarly,
the two most widespread ELISA kits for CAF measurement
(Neurotune and Abcam) measure the B/z negative isoform
of C-terminal cleaved agrin (from the reference of Sherbakov
et al.31 and our internal analysis). Because this isoform is the
one mostly expressed in muscles, and 10–20 times more con-
centrated than neural agrin, these authors concluded that ob-
serving a consistent increase in the cleaved muscular agrin
isoform would be reflective of a higher activity of the enzyme
neurotrypsin, also determining higher amounts of neural
agrin cleavage.31

However, this point should be clarified by future studies
aiming to quantify circulating levels of both neural and
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muscular agrin also optimizing specific ELISA assays to fully
establish the robustness of CAF as a marker of muscle
wasting or weakness caused by NMJ degeneration.

Conclusions and future directions

In this review, we summarize for the first time the studies
investigating CAF concentration in ageing, sarcopenia, dis-
ease and physical activity or inactivity (Figure 2). Overall,
CAF seems a good candidate to distinguish between
sarcopenic volunteers and their age-matched, healthy peers.
Similarly, CAF concentration is higher in other muscle-
wasting-inducing diseases, such as diabetes, COPD, chronic
heart failure and stroke, as well as in pancreatic and colorec-
tal cancer cachectic patients. CAF concentrations also seem
to raise following muscle unloading and to be lowered or
maintained throughout time in different populations under-
going various types of exercise training and rehabilitation
protocols. Hence, overall, CAF seems to be a good candidate
when assessing muscle dysfunction or ‘NMJ-related skeletal
muscle status’14 in ageing and disease, although its reliability
in monitoring the effects of exercise should be further me-
thodically investigated.

The direction of the future studies should be therefore
aimed at (i) assessing CAF in the context of age-adjusted,
sex-adjusted, race-adjusted and disease-adjusted models in
combination with other biomarkers for muscle wasting as-
sessment (this road has been explored very recently17); (ii)
determining which type of exercise or rehabilitation inter-
vention is more effective to reduce CAF concentration; (iii)
addressing whether CAF might better detect muscle
wasting, muscle weakness or both; and (iv) extending the
findings to larger cohorts in order to strengthen the results
obtained.

Finally, future works should aim to an increased reproduc-
ibility of the results within different laboratories to allow for
‘standard reference cut-offs setting’ adjusted for age, sex,
race, disease and other confounding factors. This would
finally result in the real possibility to insert CAF in clinical
routine practice, when pertinent.
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