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Spatial subcellular organelle 
networks in single cells
Mythreye Venkatesan 1,2,3,6, Nicholas Zhang 1,2,6, Benoit Marteau 3, Yukina Yajima 1, 
Nerea Ortiz De Zarate Garcia 1,4, Zhou Fang 1, Thomas Hu 1,3, Shuangyi Cai 1, Adam Ford 1, 
Harrison Olszewski 1, Andrew Borst 1 & Ahmet F. Coskun 1,2,5*

Organelles play important roles in human health and disease, such as maintaining homeostasis, 
regulating growth and aging, and generating energy. Organelle diversity in cells not only exists 
between cell types but also between individual cells. Therefore, studying the distribution of 
organelles at the single-cell level is important to understand cellular function. Mesenchymal stem 
cells are multipotent cells that have been explored as a therapeutic method for treating a variety 
of diseases. Studying how organelles are structured in these cells can answer questions about their 
characteristics and potential. Herein, rapid multiplexed immunofluorescence (RapMIF) was performed 
to understand the spatial organization of 10 organelle proteins and the interactions between them in 
the bone marrow (BM) and umbilical cord (UC) mesenchymal stem cells (MSCs). Spatial correlations, 
colocalization, clustering, statistical tests, texture, and morphological analyses were conducted at 
the single cell level, shedding light onto the interrelations between the organelles and comparisons 
of the two MSC subtypes. Such analytics toolsets indicated that UC MSCs exhibited higher organelle 
expression and spatially spread distribution of mitochondria accompanied by several other organelles 
compared to BM MSCs. This data-driven single-cell approach provided by rapid subcellular proteomic 
imaging enables personalized stem cell therapeutics.

Cells perform different functions like providing structure and support, facilitating growth, producing energy, 
etc. to support and sustain life. These activities are handled by various subcellular structures termed organelles 
such as the nucleus, mitochondria, endoplasmic reticulum, and Golgi apparatus1. Organelles cooperate to form 
a network of interactions that enable different cellular activities2. Therefore, studying organelle interactions is 
key to understanding how cells function more comprehensively. Cell-to-cell variability is observed not only 
between cell types but also between cells of the same type, resulting in molecularly and functionally distinct 
cells3. Such differences may contribute to the health and function of the entire organism. Multiple factors, such 
as microenvironment variability, differences in the cellular stages, genetics or epigenetics, or fluctuations in gene 
expression levels, can cause this heterogeneity. Single-cell analysis approaches are thus useful in investigating 
aspects of cellular mechanisms that are not revealed in bulk-level studies4,5.

The use of mesenchymal stem cells (MSCs) has become a promising therapeutic method for treating a variety 
of diseases, as they can repair damaged cells by differentiating into replacement cells and modulating immune 
responses6–11. Therefore, analyzing the spatial organelle networks within MSCs can lead to a better understanding 
of cell functions to design appropriate treatment methods12–16. Although there have been recent studies focusing 
on spatial organelle analysis, these studies have used spatial data of each organelle from different cells, which 
reduces the accuracy of the resulting spatial information17. As such, a highly multiplexed protein imaging and 
analysis method is needed to obtain spatial information on organelles within the same cell, which can then be 
used to compare and understand differences in spatial organization between different cell types. In addition to 
intra-population variability, the most commonly used18, readily available stem cells sourced from bone marrow 
(BM) and postnatal umbilical cord (UC) introduce additional variables for the study. These cells display differ-
ent molecular profiles, differentiation potential, and therapeutic efficacy19, and there is little consensus on how 
much, if any, the effect that MSC source has on outcome20.
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Highly multiplexed imaging technologies enable the detection of multiple proteins in a single cell. Imaging 
mass cytometry (IMC)21 and multiplexed ion beam imaging (MIBI)22 can image up to 36 proteins using isotope-
labeled antibody libraries and specialized equipment. However, these measurements are limited by their low 
resolution of about 0.5 to 1-μm. High-dimensional fluorescence imaging methods can map up to 50 proteins 
and include DNA-barcoded co-detection by indexing (CODEX) imaging23, multiplexed immunofluorescence 
microscopy (MxIF)24, and cyclic and sequential IF techniques25–28. While conventional immunofluorescence 
(IF) is time-consuming, rapid multiplexed immunofluorescence (RapMIF) provides multiplicity through quick 
multiple rounds of immunostaining and fluorophore inactivation. RapMIF enables high-throughput in situ 
proteomic analysis using conventional microscopes.

Herein, we established a rapid protein analysis pipeline for deciphering spatial organelle networks within a 
single cell. To achieve this, proteins in key organelles in mesenchymal stem cells (MSCs) such as the nucleus, 
mitochondria, Golgi, and endoplasmic reticulum (ER) have been targeted using antibodies. Multiplexed protein 
imaging was performed to examine the spatial organization of organelles and the interactions between orga-
nelles in MSCs. The analysis of organelle interactions on a single-cell level can eventually aid the stem-cell field 
in better understanding cell functions and exploring treatment methods using MSCs. Differences in organelle 
localization, interactions, and associated energy highlight the MSC heterogeneity from donor sources that will 
better inform therapeutic cell designs.

Results
Multiplexed protein labeling reveals spatially resolved subcellular organelle maps in tis-
sue‑specific MSCs.  To measure single-cell organelle distributions, we profiled subcellular localization of 
organelle proteins in the bone marrow and umbilical cord MSCs using RapMIF (Fig. 1a, Supplementary Fig. 1a). 
Multiple markers colocalized in different cellular regions, including mitochondria (TOM20 and HSP60), the 
Golgi (Sortilin, GOLPH4, and Wheat Germ Agglutinin: WGA), endoplasmic reticulum (ATF6 and Concanava-
lin A), nucleolus (Nucleolin), microtubules (β-Tubulin), and actin filaments (Phalloidin) (Fig. 1b, Supplemen-
tary Figs. 1b and 2). These colocalizations were quantified using scatter plots, correlation coefficients, clustering, 
and texture analysis to understand the spatial organization of these markers and the interactions between them.

From the 10-plex data, up to 25 cells (BM and UC MSCs combined) were selected for each marker. The 
scatter plots of intensity were calculated by random sampling of 50,000 pixel intensity values from all the cells 
for each marker pair targeting the same organelle. The scatter plots showed similar distribution for BM and UC 
MSCs for mitochondria targeting markers, implying similar interactions between the mitochondria markers in 
the two cell types (Fig. 2). However, the point distribution difference in scatter plots for Golgi and ER markers 
between BM and UC MSCs can be attributed to differences in interactions and the subcellular targets of the 
markers in the two cell types.

UC MSC organelles exhibit higher protein expression over a larger spatial area.  To quantify 
organelle interrelation patterns, pairwise Pearson’s correlation and pixel overlap colocalization values were 
obtained for each unique marker pair and plotted as boxplots with the Mann–Whitney test to observe sig-
nificance (p < 0.05) (Fig. 3a, b, Supplementary Tables 1, 2, 3, and 4). Some marker pairs consistently showed 
significance in both the plots (ATF6_DAPI, β-Tubulin_GOLPH4, and β-Tubulin_TOM20) indicating a differ-
ence in colocalization between BM and UC MSCs. In general, marker pairs containing ATF6, β-Tubulin, DAPI, 
GOLPH4, and HSP60 expressed significant differences in distribution between the two cell types. Overall, UC 
MSCs showed more colocalization between ER (ATF6, Concanavalin A) and mitochondria (HSP60 TOM20) 
pairs, suggesting more crosstalk between their organelles. Other than the pairwise plots, the area and average 
intensity values of each marker were obtained per cell and compared between BM and UC MSCs (Fig. 3c, d, 
Supplementary Tables 5 and 6). While the distribution of area and intensity exhibited weak significant p values 
for any marker, UC MSC organelles, in general, exhibited higher protein expression for organelle markers and 
larger mean area per marker. The median area of UC MSCs was higher than the median area of BM MSCs except 
for Concanavalin A. The range of average intensity values for UC MSCs was higher than the range for BM MSCs. 
This could be due to higher cell-to-cell variability in intensity values for UC MSCs compared to BM MSCs.

Organelles share distinct pixel overlap colocalizations within single BM and UC MSCs.  Because 
BM and UC MSCs expressed different spatial organelle patterns, we reasoned these differences could be reca-
pitulated in their single-cell distributions. Single-cell analysis and comparisons were performed by selecting 4 
organelle protein markers (ATF6, GOLPH4, Nucleolin, and TOM20) for 7 BM and UC MSCs. DAPI was used 
as an additional marker to locate the nucleus. These markers were selected based on their specificity to the target 
organelle (Supplementary Table 1). Phalloidin, Concanavalin A, and WGA, while highlighting organelles and 
cellular components, also work as cell segmentation markers, and are therefore less specific29. While TOM20 
and HSP60 both colocalize in mitochondria, HSP60 can also be found in extramitochondrial regions such as 
the cytosol, vesicles, and the cell membrane30–32. Similarly, Sortilin can be found in regions other than the Golgi, 
such as endosomes and lysosomes, whereas GOLPH4 is predominantly localized in the Golgi33,34.

To explore how organelles colocalized in subcellular regions, we used two metrics, including Pearson’s cor-
relation and pixel overlap colocalization. Pearson’s correlation coefficients between the selected markers for each 
cell were calculated, and the average values for BM and UC MSCs were plotted as a heatmap with dendrograms 
(Fig. 4a, Supplementary Figs. 3 and 4, Supplementary Table 7). The elements of the correlation heatmaps denote 
the location concordance between the nuclear and cytosolic markers17,35. ATF6 has a higher correlation with 
nuclear markers in UC MSCs than in BM MSCs. On the other hand, GOLPH4 has a slightly lower correlation 
with ATF6 and TOM20 in UC cells compared to the BM cells. In general, UC MSCs exhibit higher spatial 
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Figure 1.   Ten-plex organelle mapping in mesenchymal stem cells using rapid multiplexed 
immunofluorescence (RapMIF). (a) Schematic of RapMIF for organelle analysis in MSCs. Each cycle contains 
3 conjugated antibodies plus 4′,6-diamidino-2-phenylindole (DAPI) followed by bleaching of the signal before 
the next cycle consisting of 3 new antibodies. Imaging of the 3 antibodies before and after bleaching confirms 
the presence of signal and then signal removal. Multiplex imaging consists of multiple cycles (n) of antibody 
labeling and bleaching. BM MSCs (brown) and UC MSCs (cyan) are labeled with the same multiplex antibodies 
that target the same set of organelles. All images are acquired on Nikon widefield and registered across cycles 
to produce a final set of multiplex-labeled images. Example images show Beta Tubulin (magenta, left) and 
TOM20 (red, right) overlaid with the nucleus in DAPI (blue). Created with BioRender.com. (b) Visualization 
of organelle markers in single cells from BM MSCs and UC MSCs. Each row corresponds to a distinct single 
cell. The top 2 rows show BM MSCs and the bottom 2 rows show UC MSCs. Multiplexed markers for the same 
cell are displayed across 4 columns (Column 1: ATF6 & Concanavalin A, Column 2: Beta Tubulin & Phalloidin, 
Column 3: GOLPH4 & Sortilin, Column 4: HSP60 & TOM20, Column 5: Nucleolin & WGA). Each image 
displays DAPI with a pair of organelle markers in magenta and green. DAPI is used to register the signals across 
cycles. Signal removal is confirmed with a widefield microscope after bleaching each cycle. All scale bars 10 µm.
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Figure 2.   Comparison of protein markers targeting the same organelles in BM MSCs and UC MSCs. (a) Single BM 
MSC example with various organelles across the columns. Each organelle is shown by a marker pair: HSP60 & TOM20 
(mitochondria, left), GOLPH4 & Sortilin (Golgi, middle), ATF6 & Concanavalin A (ER, right). All scale bars 10 µm. 
The bottom row shows intensity scatter plots with 50,000 pixels for each marker pair colocalized within the same 
organelle. The x and y-axis indicate the min–max scaled intensity values of the markers. More colocalized pixels appear 
closer to the y = x diagonal while less colocalized pixels appear closer to either axis, belonging more to that particular 
marker. In BM MSCs, mitochondria antibodies are more colocalized than either Golgi or ER. (b) Single UC MSC 
example with various organelles across the columns. Each organelle is shown by a marker pair: HSP60 & TOM20 
(mitochondria, left), GOLPH4 & Sortilin (Golgi, middle), ATF6 & Concanavalin A (ER, right). All scale bars 10 µm. 
The bottom row shows intensity scatter plots with 50,000 pixels for each marker pair colocalized within the same 
organelle. The x and y-axis indicate the min–max scaled intensity values of the markers. More colocalized pixels appear 
closer to the y = x diagonal while less colocalized pixels appear closer to either axis, belonging more to that particular 
marker. In UC MSCs, ER antibodies are more colocalized than either mitochondria or Golgi.
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correlation than BM MSCs between nucleus and cytosol, suggesting that UC MSC organelles are spread over a 
larger area, agreeing well with Fig. 3c, and are thus considered as energetically more active cells in their func-
tion. To study the single-cell variation in correlation coefficients in the cells, the pairwise correlation coefficients 
were plotted as a heatmap across all cells (Fig. 4a, right). The heatmap shows the cell-to-cell variation in the 
correlation coefficients between marker pairs and also indicates the differences between BM and UC cells. Some 
markers exhibit higher cell-to-cell variability. The correlation coefficients between marker pairs Nucleolin_DAPI, 
GOLPH4_ATF6, TOM20_GOLPH4, and TOM20_ATF6 are higher than other marker pairs for most of the cells. 
These pairs also have a higher correlation in BM than UC MSCs, revealing that nuclear pairs and cytosol pairs 
are more separated in BM than in UC MSCs. Likewise, the pairwise correlation coefficients for Nucleolin_ATF6 
and DAPI_ATF6 are higher in UC MSCs compared to BM MSCs, indicating a higher interaction between the 
nucleus and ER in UC MSCs. Interestingly, the same trend is less prominent for interaction between the nucleus 
and mitochondria (e.g. DAPI_TOM20, Nucleolin_TOM20). These differences in correlation values suggest that 
the UC MSCs possess more prevalent proteomic activity in their organelles than BM MSCs.

Pixel overlap colocalization, i.e., the metric that counts the number of overlapping pixels after thresholding 
normalized to the cell area, was another method to measure colocalization between the markers for each cell. 
These average values were then plotted as a heatmap (Fig. 4b, Supplementary Figs. 5 and 6, Supplementary 
Table 8). This parameter is similar to Mander’s coefficients, except that it gives an absolute number of pixels that 
are overlapping between the two images36. Similar to Pearson’s correlation, UC MSCs show higher pixel overlaps 
than BM MSCs, especially between DAPI and ATF6, again suggesting more crosstalk between the nucleus and 
ER in UC MSCs. The colocalization for BM MSCs and UC MSCs was combined and plotted as another heatmap 
to compare the cell-to-cell differences (Fig. 4b, right). A few UC MSCs express marker pairs differently than the 
rest of the cells, suggesting more single-cell variability in that population. Among the organelle markers, there is 
higher pixel overlap colocalization in Nucleolin_DAPI, GOLPH4_ATF6, TOM20_GOLPH4, and TOM20_ATF6, 
implying fewer interactions between nucleus and cytosol except for a few UC MSCs: 10, 12, 13, and 14. The higher 
single cell variability in UC MSCs is consistent with the observation from Pearson’s correlation coefficient. The 
pixel overlap colocalization between cytosolic markers and nuclear markers was expectedly low, which was also 
observed in Pearson’s correlation coefficient.

Spatial spread over major and minor axes of organelles distinguishes UC and BM MSCs better 
than area only.  In addition to colocalization differences, we hypothesized that there are considerable differ-
ences in morphology and size between UC and BM MSCs. The heatmaps of different markers’ areas indicate that 
UC MSCs and BM MSCs show more differences along major and minor axes than area (Fig. 4c, Supplementary 
Table 9), suggesting that organelles are expressed in different morphology and shapes rather than varying in 
area. This is especially crucial with TOM20, which suggests a stark difference in mitochondrial energetic activity. 
ATF6 and TOM20 have similar areas, while GOLPH4 has a smaller area by comparison. The nuclear markers are 
smaller in comparison to the cytosolic markers. The major and minor axis heatmaps show a better distinction 
between BM MSCs and UC MSCs (Fig. 4c, Supplementary Tables 10 and 11). As expected, the markers found 
in the nucleus, DAPI, and Nucleolin have smaller major and minor axis values across all cells. TOM20 has the 
largest major and minor axis values, followed by ATF6 and then GOLPH4. Differences in spatial spreading in 
TOM20 and ATF6 expression are attributable to more UC than BM MSCs. The mitochondria being larger than 
the ER also suggests a more energetically active state for these UC MSCs.

UC‑MSCs display consistently higher mitochondrial expression than BM‑MSCs.  To statistically 
benchmark how differently single cells express the same organelle, we implemented the Kolmogorov–Smirnov 
(K–S) hypothesis test to highlight significant differences between the spatial distribution of organelle marker 
pairs, including GOLPH4/Sortilin and TOM20/HSP60 (Fig. 4d, Supplementary Table 12). Concerning their spa-
tial distributions around the cell’s center of mass, GOLPH4 and Sortilin, which both target the Golgi apparatus, 
express similar patterns within most BM and UC MSCs. On the other hand, spatial distributions concerning the 
cell’s center of mass for HSP60 and TOM20, which both target the mitochondria, exhibit different spatial pat-
terns within more BM MSCs than UC MSCs (Fig. 4d). A few cells exhibit moderate or no levels of significance 
between HSP60 and TOM20 spatial expression. Between the two cell types, BM MSCs show a higher amount of 
significant differences between the spatial distributions of the markers compared to UC MSCs, indicating higher 
single-cell variability in the expression of markers. Since UC MSCs exhibit larger HSP60 and TOM20 areas 
(Fig. 3c) with more variable intensities (Fig. 3d), we conclude that UC MSCs are more uniformly expressing 
higher mitochondrial activity, and, thus, UC MSCs are more energetic than BM MSCs.

Multiplexed pixel clustering indicates cell‑type specific organelle interactions.  We asked 
whether there are more organelle interactions beyond colocalized nucleus and cytosol or not. To uncover this 
puzzling question about organelle interactions, unsupervised, pixel-level clustering was performed on the data-
set consisting of intensity values of all the markers26. The goal of performing pixel-level clustering is to identify a 
subset of pixels that share a unique multiplexed intensity profile. These clusters could indicate an organelle pat-
tern or regions of similar functionality, and their hierarchical relationship reveals communication among them. 
The K-Means clustering algorithm was used to group the pixels into 10 clusters. The two cell types were clustered 
independently, and the resultant clusters were colored back on the images of the single cells. The spatial mapping 
of a single cell’s clustered regions was compared with the organelle colocalization calculated as the product of 
markers targeting that organelle (Fig. 5, left). The pixel-level clustering algorithm highlighted certain organelle 
patterns, notably showing a distinction between the nucleus and cytosol. The organelle marker distributions of 
each cluster were plotted as cluster maps (Fig. 5, right). The dendrograms show different hierarchical clustering 
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patterns and cluster intensities across markers for BM and UC cells. TOM20 is directly associated with ATF6 
or GOLPH4 in both UC and BM MSCs, suggesting crosstalk between mitochondria and ER (Fig. 5a,b, right). 
DAPI and Nucleoli are also directly linked in both of these cell types, implying segregation of nuclear interaction 
before reaching the cytosol. The clustering results also indicate a stronger association of GOLPH4 and TOM20 
in BM than in UC MSCs (Fig. 5, right bottom), which suggests more crosstalk between ER and mitochondria in 
BM MSCs. Given the potential higher energetic activity of UC MSCs observed in previous sections, the organelle 
energy is directed elsewhere than the ER in UC MSCs.

Superpixel segmentation informs content‑aware spatially distinct features of each organelle 
in UC and BM MSCs.  Finally, to evaluate the spatially distinct features of our area and colocalization results 
(Fig.  4c), we analyzed several organelles with a superpixel segmentation approach using K-Means37. In this 
technique, the content-aware texture features were calculated to observe the spatial patterns of each marker. The 
various texture features used pixel intensity, energy Laplacian, modified Laplacian, diagonal Laplacian, variance 
Laplacian, and gray level variance. The images were segmented into superpixels by grouping the pixels around 
dense organelle regions across several subcellular partitions (n = 250), and the different texture features were 
calculated for each marker (Fig. 6a). The texture feature plots highlight the variations in the spatial organization 
of the marker. The superpixels containing the highest texture features indicate the region of maximum colocali-
zation for each marker. Heatmaps of the texture features were obtained for each marker to compare the spatial 
patterns between BM and UC MSCs (Fig. 6b). The heatmaps indicate some similarities in texture features within 
BM and UC MSC superpixels. ATF6, DAPI, GOLPH4, and TOM20 in particular show higher similarity within 
each cell type, based on the number of superpixels clustered together. For nuclear markers, pixel intensity, gray 
level variance, and variance Laplacian illustrated clearer regions than the other methods (Fig.  6a). Modified 
and diagonal Laplacian features produced more spread results for all the markers, and are thus less informative. 
Interestingly, GOLPH4 and ATF6 were shown to localize in different hotspots around the cytosol as seen with 
energy Laplacian and variance Laplacian. This spread explains its colocalization with mitochondria seen in pre-
vious figures because a more discontinuous, spread organelle has a higher likelihood of colocalizing with other 
organelles in the cytosol. Quantification of texture features demonstrated that modified and diagonal Lapla-
cians yield higher superpixel values, especially in UC MSCs (Fig. 6b), yielding additional content-aware spatial 
features to complement the previously discussed higher energetic activity of UC MSCs compared to BM MSCs.

Virtual reality enables interactive visualization and quantification of spatial organelle maps 
of MSCs.  In addition to the open-source and user-based analysis of organelle data, the multiplexed prot-
eomic images were interactively visualized in Virtual Reality (VR)38 platform using the software ConfocalVR 
and Genuage to visually explore our quantitative findings in an immersive experiential learning environment. 
In Confocal VR, organelle markers targeting the same organelle (Column 1: ATF6 & Concanavalin A, Col-
umn 2: Beta Tubulin & Nucleolin, Column 3: GOLPH4 & Sortilin, Column 4: Phalloidin & WGA, Column 5: 
TOM20 & HSP60) were visualized together to observe regions of colocalization (Fig. 7a, Supplementary Fig. 7). 
Histograms of the count of pixels in bin widths of 12.5 pixels (108 nm/pixel, bin width 1.354 µm) were plotted 
for each marker in a single BM USC using VR headset and Genuage (Fig. 7b) to examine the difference in the 
spatial distribution of the markers within a cell. In VR-based explorations, TOM20, HSP60, ATF6, GOLPH4, 
and Beta Tubulin demonstrated non-overlapping regions of the cytosol and overlapping hotspots, yielding spa-

Figure 3.   Spatial analysis of organelle colocalization in BM MSCs and UC MSCs. (a) Boxplots of Pearson’s 
correlation of marker pairs per cell between all BM MSCs (blue) and UC MSCs (orange) categorized by 
nuclear, cytoskeleton, and organelle markers. Box plots show the median, first and third quartile, minimum, 
and maximum (excluding outliers). The outliers are marked as individual points. Stars denote the statistical 
significance for pairwise comparison. p value was calculated using the Mann–Whitney test (ns: p >  = 0.05, 
****p <  = 0.0001). BM MSCs and UC MSCs exhibit the greatest differences in colocalized expression among 
pairs that include mitochondria (TOM20, HSP60), cytoskeleton (Beta Tubulin, Phalloidin), and endoplasmic 
reticulum (Concanavalin A). (b) Boxplots of pixel overlap colocalization values of marker pairs per cell between 
all BM MSCs (blue) and UC MSCs (orange) categorized by nuclear, cytoskeleton, and organelle markers. Box 
plots show the median, first and third quartile, minimum, and maximum (excluding outliers). The outliers 
are marked as individual points. Stars denote the statistical significance for pairwise comparison. p value 
was calculated using the Mann–Whitney test (ns: p >  = 0.05, ****p <  = 0.0001). UC MSC markers express a 
higher fraction of colocalized pixels in ER (ATF6, Concanavalin A) and mitochondria (HSP60) than those 
of BM MSCs, suggesting more active crosstalk of organelles in UC MSCs. (c) Comparison of the total area 
of 11 markers per cell between all BM MSCs (blue) and UC MSCs (orange) using boxplots. Box plots show 
the median, first and third quartile, minimum, and maximum (excluding outliers). The outliers are marked 
as individual points. Stars denote the statistical significance for pairwise comparison. p value was calculated 
using the Mann–Whitney test (ns: p >  = 0.05, ****p <  = 0.0001). UC MSC markers generally express larger and 
more variable areas than those of BM MSCs, suggesting that these organelles serve a higher energetic role in 
UC MSCs. (d) Comparison of the total intensity of 11 markers per cell between all BM MSCs (blue) and UC 
MSCs (orange) using boxplots. Box plots show the median, first and third quartile, minimum, and maximum 
(excluding outliers). The outliers are marked as individual points. Stars denote the statistical significance for 
pairwise comparison. p value was calculated using the Mann–Whitney test (ns: p >  = 0.05, ****p <  = 0.0001. 
Markers in UC MSCs express a larger range of intensities than in BM MSCs and thus these UC MSC organelles 
are in a more active state.

◂
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tially variant and distinct histogram shape following organelle interactions and individual marker expressions 
(Fig. 7b). On the other hand, DAPI, Nucleolin, Sortilin, Concanavalin A, and Phalloidin exhibited more spatially 
continuous regional expression in the VR-based histograms. Thereby, as illustrated in the VR-based organelle 
visualizations and interactive quantifications, the incorporation of virtual reality into spatial omics datasets will 
enable the interactive discovery of spatially modulated patterns in multiplexed molecular datasets from health 
and disease settings.

Discussion
Image analysis technology for investigating cell features in biological research has advanced significantly over the 
past several decades. Finding protein associations within cells through spatial image analysis has the potential 
to deepen our understanding of their microenvironment and how their structural organization changes as cells 
transition from normal to abnormal cell behaviors. This work focused on observing spatial organelle distribution 
in two types of MSCs–BM and UC—and studying their differences. RapMIF was performed using antibodies that 
target the organelles to understand colocalization across the proteins. Multiplex analysis of organelle markers 
indicated differences in the spatial organization of different organelle proteins in BM and UC MSCs. Interactions 
between the proteins were compared using Pearson’s correlation coefficients and colocalization, which revealed 
differences between BM and UC cells. Pixel-level clustering, morphology, and texture analysis methods also 
showed a considerable organelle networking difference between the two cell types. Organelle phenotypes and 
their energy changes have been linked to stem cell fate, signaling, and therefore function39,40. For example, the 
ER-mitochondria linkage has been implicated in lipid and energy metabolism as well as apoptosis signaling41. 
Since organelle phenotypes indicate changes in cell energy that affect cell function, it is important to study these 
phenotypes to improve future therapeutics.

This study demonstrated a RapMIF protocol to perform spatial profiling of organelles in single cells using 10 
protein markers. The targets of these proteins were limited to key organelles, namely mitochondria, the Golgi, 
ER, the nucleus, and the nucleolus. To obtain a comprehensive understanding of cell behavior, proteins targeting 
other organelles, such as the peroxisomes, need to be included in the study. An important point that needs to 
be considered while selecting these proteins is the target organelle. While some proteins colocalize in a single 
organelle, some are chaperones and therefore move between different cellular components. These proteins can 
be useful to understand communication between organelles, providing insights into the functionality of the cells. 
However, it is important to consider multiple roles in the spatial and temporal coordination of such proteins to 
answer questions about the structural organization of the organelles.

A limitation of this study is the number of cells considered for analysis. Imaging of the sample performed 
manually at high magnification (60×) is time-consuming, and therefore the number of regions captured was lim-
ited. Discarding cells that had image quality issues resulted in a small dataset of 14 cells (7 BM and 7 UC MSCs). 
Automated imaging is a potential way to overcome this limitation, as it can assist with capturing more regions, 

Figure 4.   Multiplexed protein analysis of organelle markers in BM MSCs and UC MSCs. (a) Average Pearson’s 
correlation of the total intensity of 5 markers in BM MSCs and UC MSCs per marker per cell plotted as a 
heatmap. BM MSCs are shown on the left, UC MSCs are shown in the middle, and combined Pearson’s for 
each cell is shown on the right. The comparison of the correlation of 5 markers between BM MSCs (n = 7) 
and UC MSCs (n = 7) was provided as a heatmap using the average linkage method based on the correlation 
distance. Larger correlation values are shown in red and smaller correlation values are shown in blue. BM 
MSCs possess more separation between nuclear and cytosolic organelles while UC MSCs are less separated, 
which illustrates that UC MSC organelles are more spread across the cell. The right side shows the single-
cell heatmap for all marker pairs. UC MSCs exhibit higher correlations in DAPI_ATF6, TOM20_ATF6, and 
Nucleolin_ATF6, suggesting more crosstalk between nuclear and cytosolic organelles. Single BM MSCs exhibit 
stronger correlations within nuclear or cytosol pairs e.g. Nucleolin_DAPI, GOLPH4_ATF6, TOM20_GOLPH4, 
implying that nucleus and cytosol organelles are more segregated in BM MSCs, which agrees with the left 
heatmap. (b) Average pixel overlap colocalization between 5 markers in BM MSCs and UC MSCs per marker 
per cell plotted as a heatmap. The comparison of pixel overlap between BM MSCs (left) and UC MSCs (middle) 
was provided as a heatmap using the average linkage method based on the contact frequency distance. The 
combined pixel overlap on a single cell level is shown on the right. Large pixel overlap values are shown in red 
and small pixel overlap values are shown in blue. UC MSCs possess slightly higher pixel overlap values among 
organelles in different compartments (nuclear vs cytoskeleton) but this difference is less pronounced than in (a). 
A few UC MSCs (10, 12, 13, 14) show distinct patterns from other UC MSCs in terms of weaker pixel overlap in 
Nucleolin_DAPI, GOLPH4_ATF6, TOM20_GOLPH4, Nucleolin_ATF6, TOM20_Nucleolin. UC MSCs exhibit 
higher variability in pixel overlap. (c) Heatmaps were generated to compare the morphological features and to 
determine any close relationships or associations between markers and between BM MSCs (red) and UC MSCs 
(teal). Morphology is defined as area (left), minor axis (middle), and major axis (right). Both cell types exhibit 
more differences in minor and major axes and fewer differences in terms of area, implying that organelles differ 
more in shape and less in expression area. The most notable difference is TOM20, suggesting a difference in 
mitochondrial energetic activity. Most differences, such as TOM20 and ATF6, are attributable to UC MSCs, 
suggesting more single-cell variability among UC MSCs. (d) Kolmogorov–Smirnov (K–S) hypothesis test was 
conducted between organelle marker pairs targeting the mitochondria (TOM20 and HSP60; left) and Golgi 
(GOLPH4 and Sortilin; right) to study if similar proteins express different spatial distributions within each cell. 
Single BM MSCs are shown in red while single UC MSCs are shown in teal. In terms of spatial mitochondrial 
expression, BM MSCs have more single-cell variability while UC MSCs express more uniformly. BM MSCs 
possess more single-cell variability than UC MSCs concerning spatial ER expression.
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and therefore more cells. This study considered two-dimensional (2D) data, but using three-dimensional (3D) 
high-resolution data could improve organelle network mapping and provide more insights into interactions and 
colocalization. Additionally, organelle contacts and interdependency between the locations of different organelles 
could be better understood by using 3D data.

The differences between BM and UC MSCs have been well characterized in terms of regenerative, prolifera-
tive, differentiation, and clinical outcomes18,42–45. Our study examines the organelle-specific activity differences 
among single cells from each tissue source. The detected activity differences can be attributed to energetic 
demand differences from their in situ origin. For example, since UC MSCs are typically derived from infants 
and BM MSCs originate from older, more mature adults, the difference in each population’s energy needs can 
be observed in the MSC population. UC MSCs were observed to exhibit higher organelle colocalization patterns 
(Fig. 3a,b), more variable intensity and expression areas (Fig. 3c,d), and less single-cell variability (Fig. 4d) than 
BM MSCs, suggesting that UC MSCs may be more uniformly and energetically active to satisfy the high energy 
demands of rapidly changing infant developmental processes and growth. On the other hand, BM MSCs should 
be reflective of older, sedentary, less active adults. Thus, we observed more uniform, lower intensity, and lower 
area expression patterns than UC MSCs (Fig. 3). The similar patterns between BM and UC MSCs verified with 
superpixel segmentation suggest that these differences are less obvious to the eye and more minutely varying in 
multiplexed organelle maps (Fig. 6).

Previous studies have investigated energetic differences between BM and UC MSCs46,47. For example, by 
measuring lactate from glycolysis, UC MSCs have been shown to produce less lactate than BM MSCs in hypoxic, 
normoxic, and hyperoxic conditions. Additionally, UC MSCs can adapt more than BM MSCs to a wider range 
of oxygen conditions as supported by oxygen consumption rates46. UC MSCs were able to alter energetic and 
metabolic levels in response to oxygen-varying environments compared to other types of MSCs. Our study sup-
ports these findings at the single-cell level by illustrating more colocalized organelle patterns that possess more 
variable intensity over larger spatial areas (Fig. 3). UC MSCs also show less cell-to-cell variability in organelle 
expression (Fig. 4d). Overall, our findings support the energetically higher and adaptive nature of UC MSCs than 
BM MSCs that are attributable to energetic demands between the tissue sources of younger and older patients.

While these results could answer some questions about spatial differences, further experiments are needed 
to answer specific questions about energy. Energy levels between UC MSCs and BM MSCs can be compared 
by studying how organelles change when cultured in different oxygen conditions10. Metabolic enzyme proteins 
can also be used to study energy differences. Combining live imaging with multiplexing will provide spatial and 
temporal resolution, thus enabling further understanding of organelle interactions48. Comparing the difference 
in organelle enrichment, such as between mitochondria to cytoplasm ratio and ER abundance, provides another 
interesting point of research for future inquiry. These differences could also reveal details about the functioning 
of stem cells before their use in therapies.

Another experimental consideration is phase separation, a spatiotemporal process in cells49 and a mechanism 
used in biomolecular assembly. Various membrane-less organelles are formed through liquid–liquid phase sepa-
ration; these organelles can be added to the multiplex profiling panel50. Combining spatial organelle network 
analysis with studying phase separation will shed light on the biophysics of the biomolecular condensates51. 
Dynamic regulation of phase separation can also be used to understand how organelle interactions are affected 
during phase transitions in cellular molecules52.

To evaluate the mechanisms of how different protein/organelle phenotypes contribute to cell-specific func-
tions, the transcriptome and proteome levels of primary cells and cell lines could be compared. Cell line experi-
ments are a well-established approach because they are readily available and cost-effective. However, culturing 
cells in the media makes them lack tissue architecture and heterogeneity. Cells in culture can have different 
molecular phenotypes from cells in vivo53. Therefore, primary MSC cells and MSC cell lines can serve as mod-
els to compare cell-specific functions by quantifying the genetic and proteomic differences. Furthermore, the 

Figure 5.   Pixel level clustering of organelle markers in BM MSCs and UC MSCs. (a) K-Means clustering 
of intensities of markers for a single BM MSC. 10 clusters were chosen and colored back on the original cell 
(large left). Each cluster represents one distinct expression profile of the protein markers in the cells. A pair 
of images are shown for each organelle (mitochondria, Golgi, Nucleus, ER): (1) an overlay of the two markers 
that target the organelle (right) and (2) the colocalization of the two markers obtained by multiplying the two 
marker images pixel-wise from the right to highlight areas of overlap (left). Example: ATF6 and Concanavalin 
A forming the ER localization. Yellow values indicate areas of higher overlap while red values indicate areas 
of lower overlap. The right side shows the heatmap of marker intensity with a dendrogram based on marker 
intensities (right, top) and clustering results (right, bottom). From the dendrogram based on marker intensities, 
GOLPH4 and TOM20 are directly linked, along with ATF6. This suggests moderate crosstalk between ER and 
mitochondria, especially in cluster 8. Nuclear organelles DAPI and Nucleolin are associated in a separate cluster. 
(b) K-Means clustering of intensities of markers for a single UC MSC. 10 clusters were chosen and colored back 
on the original cell (large left). Each cluster represents one distinct expression profile of the protein markers 
in the cells. A pair of images are shown for each organelle (mitochondria, Golgi, Nucleus, ER): (1) an overlay 
of the two markers that target the organelle (right) and (2) the colocalization of the two markers obtained by 
multiplying the two marker images pixel-wise from the right to highlight areas of overlap (left). Example: ATF6 
and Concanavalin A forming the ER localization. Yellow values indicate areas of higher overlap while red values 
indicate areas of lower overlap. The right side shows the heatmap of marker intensity with a dendrogram based 
on marker intensities (right, top) and clustering results (right, bottom). From the dendrogram based on marker 
intensities, ATF6 and TOM20 exhibit moderate crosstalk (clusters 3, 7, 8) but not as intensely as the BM MSC in 
(a).
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Figure 6.   Superpixel segmentation and texture analysis of organelle markers in BM MSCs and UC MSCs. (a) 
Superpixel segmentation and texture features using various cost functions (Pixel Intensity, Energy Laplacian, 
Modified Laplacian, Diagonal Laplacian, Variance Laplacian, and Gray Level Variance) calculated on superpixels 
for each marker of a single BM MSC. Each column represents a different superpixel method. Segmentation 
identifies subcellular, regional hotspots of organelles. Modified Laplacian and diagonal Laplacian create a more 
spread signal for all markers. Pixel intensity and variance Laplacian reveal discontinuous hotspots of GOLPH4, 
ATF6, and TOM20. (b) Heatmap of texture feature values for each superpixel in 7 BM MSCs and 7 UC MSCs 
for each marker. Each row denotes a single superpixel, and the column contains texture feature values for the 
corresponding superpixel. The feature values range from 0 (blue) to 1 (red) in each heatmap. Modified Laplacian 
and diagonal Laplacian yield the largest feature values. Each heatmap represents a different marker. UC and BM 
MSCs show similar overall patterns across various superpixels, implying that earlier, quantified differences are 
more minute and superpixel methods disguise these small differences when downsampling.
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Figure 7.   Virtual reality-based visualization and analysis of organelle imaging data in MSCs. (a) Visualization of 
organelle protein images (10 markers) for one BM MSC in ConfocalVR62. For each cell, the top shows the RGB 
image of the combined markers, while the bottom two show a single marker image in either red or green with DAPI. 
Different organelle markers are illustrated across the columns. Merged images are shown in the first row. Column 1: 
ATF6 (middle row) & Concanavalin A (bottom row), Column 2: Beta Tubulin (middle row) & Nucleolin (bottom 
row), Column 3: GOLPH4 (middle row) & Sortilin (bottom row), Column 4: Phalloidin (middle row) & WGA 
(bottom row), Column 5: TOM20 (middle row) & HSP60 (bottom row). Handset toggle switches used to interact with 
the image are shown on the left and right sides. (b) Visualization of organelle protein images (10 markers) for one BM 
MSC in Genuage63. The histogram of pixel count in 10 cylindrical bins (shown in white) of width 12.5 pixels (108 nm/
pixel, bin width 1.354 µm) was plotted in the software. The top left image is an illustration explaining how cells are 
binned across the length to gauge spatial variability. In each box, red and blue colors illustrate the marker according to 
the upper left label. Beta Tubulin, ATF6, TOM20, and GOLPH4 show discontinuous regions of signal, supported by 
the uneven histograms, while the other signals are more continuous with more Gaussian histograms.
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functions of primary cells and cell lines could be examined by designing a staining panel of organelle markers 
(ATF6, TOM20, β-Tubulin, GOLPH4, HSP60, Nucleolin, and Sortilin) and protein markers indicating prolif-
eration or apoptosis (Ki67, BIM, and Cyclin E). Also, to relate gene expression with the change at the proteome 
level, RNA targets could be included in the staining panel. With the multiplexed experiments, the proteomic 
and transcriptomic phenotyping of cell lines and primary cells could provide a complete relationship between 
phenotypic differences and cellular function.

An accurate, reproducible, multiplexed protein imaging and analysis method could aid in better visualizing 
and understanding various disease states and microenvironments in single cells, which could then be used to 
find or design drugs and therapy methods that work best depending on patient needs54. Subcellular organelle 
analysis using proteomics is a useful method for obtaining spatial cellular maps that can reveal details about the 
structure and functionality of organelles and the cell. The complex spatial organelle interaction is yet to be fully 
understood in the context of organelle-related diseases55,56 such as cancer57, aging, and regenerative medicine58 
to assess their potential in precision medicine and therapeutics.

Methods
Cells.  Bone marrow‐derived MSCs (BM MSCs) and umbilical cord-derived MSCs (UC MSCs) were obtained 
from RoosterBio, Inc. The culture media was prepared using 89% ɑ-MEM media (Cat # 12561-049) with L-glu-
tamine, 10% heat-inactivated fetal bovine serum (HI-FBS), and 1% penicillin–streptomycin (Cat # P4333). The 
culture media was mixed and filtered before use. BM and UC MSCs were cultured in T-75 flasks with 10 mL of 
culture media. Cell passages were performed when cells reached 75% confluency using Trypsin LE cell detach-
ment media (Cat # 12605-010) at 37 °C. The cells were resuspended in respective culture media after centrifu-
gation at 280 g for 6 min and then seeded on collagen-coated glass coverslips. The cells were then cultured on 
coverslips for 24 h before fixation. Cells were then fixed in 1.6% paraformaldehyde in PBS for 10 min at room 
temperature, followed by another PBS washing and multiplexed staining of organelle protein markers. Duplicate 
experiments were used for each measurement. Cells were thawed at passage 2 and cultured until passage 20. BM 
and UC cells were from similar passage numbers.

Antibodies.  The primary antibodies considered for this study were ATF6 (ab263955, Abcam), β-tubulin (sc-
5274, Santa Cruz Biotechnology), GOLPH4/GPP130 (ab197595, Abcam), HSP60 (ab224528, Abcam), Nucleo-
lin (ab226113, Abcam), Sortilin (ab263873, Abcam), Tom20 (sc-17764, Santa Cruz Biotechnology), Phalloidin 
(A34055, Invitrogen), Wheat Germ Agglutinin (W32466, Invitrogen), and Concanavalin A (C11252, Invitro-
gen). They were used for cell segmentation and additional organelle markers (Supplementary Table 1). The ani-
mal source and dilution of unconjugated antibodies used are as follows: ATF6 (rabbit, 1:200), β-tubulin (mouse, 
1:200), GOLPH4 (rabbit, 1:500), HSP60 (rabbit, 1:200), Nucleolin (rabbit, 1:250), Sortilin (rabbit, 1:100) and 
Tom20 (mouse, 1:200). The dilutions of the antibodies were optimized by performing multiple rounds of IF 
assays to improve reproducibility.

Antibody conjugation.  The primary antibodies were conjugated with fluorescent dyes using a rapid con-
jugation kit (ab269823, Abcam). For each 10µL of primary antibody, 1µL of modifier reagent was added and 
mixed gently. The lyophilized powder was dissolved in 10µL PBS (D8537, Sigma-Aldrich), and 1µL of this solu-
tion was added to each antibody and mixed gently. The mixture was incubated at room temperature for 15 min 
in the dark. After incubation, 1µL of quencher reagent was added for each 10µL of antibody used and was then 
gently mixed. In this experiment, the antibodies were conjugated to Alexa Fluor 647, which is a bright dye with 
less background fluorescence25. While Alexa Fluor 488 is the brightest among the dyes, the channel has higher 
background fluorescence. Alexa Fluor 555 is the weakest dye, suitable for staining proteins with high abundance 
and high affinity.

Rapid multiplexed immunofluorescence.  BM-MSCs and UC-MSCs were stained with 10 markers 
using a total of 8 cycles (Supplementary Table 2). The cells were permeabilized using 0.5% Triton X-100 for 
10 min at room temperature and washed three times with PBS. At the start of each cycle, blocking was per-
formed with Cell Staining Media (CSM containing 0.5% BSA, 0.02% sodium azide in PBS), 0.5% BSA, and 0.02% 
Sodium Azide (contains PBS 1x) for 1 h at RT. After blocking, the coverslip with the cells was incubated at RT 
for 1 h with diluted primary or conjugated antibody (250–500µL per coverslip), followed by four washes with 
1 × PBS for 5 min. All primary antibodies (conjugated and unconjugated) were diluted in CSM. Since the experi-
ment consisted of both conjugated and unconjugated antibodies, indirect immunofluorescence was performed 
in the first cycle using the unconjugated antibodies. For indirect immunofluorescence, after incubating with the 
primary antibodies, the coverslip was incubated in secondary antibodies diluted in PBS for 1 h at RT, followed 
by four washes with 1 × PBS for 5 min. The coverslip was then incubated with DAPI (D1306, Invitrogen) diluted 
in PBS for 10 min at RT, followed by four washes using 1 × PBS for 5 min each. 1 × PBS was used as the imaging 
buffer on the coverslip. After imaging, bleaching was performed using a freshly prepared bleaching buffer con-
sisting of 4.5% (wt/vol) H2O2 and 20 mM NaOH in PBS for 1 h at RT with white light. The sample was imaged to 
ensure that the fluorescence signal had fallen to background levels (Supplementary Figs. 8 and 9). The coverslip 
was washed with 1 × PBS three times before starting the next cycle.

Imaging.  A wide-field microscope, Nikon Eclipse TE2000-U, was used for fluorescence imaging. For each 
cycle of imaging, 2–3 channels were captured: Channel 1 detects DAPI/Hoechst at 360 nm, while Channels 2–4 
detect fluorophores at Alexa Fluor 488 nm (FITC), 555 nm (TRITC), and 647 nm (Cy5), respectively. The expo-
sure time varied between the markers and the cells. The sample was imaged with a 60X oil lens, resulting in a 
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high-resolution acquisition at 0.1083 µm/pixel. Each imaging region was imaged across 16 z-stacks with 0.5 µm/
stack. The best focus z slices of each image were used for analysis. The images were stored as 16-bit multichannel 
images in ND2 format. They were converted to TIFF format using ImageJ and saved as single or multi-channel 
grayscale images. Each marker was thresholded with the Otsu method for all analyses59.

Quality control.  Registration was performed on sequential images from multiple cycles of immunofluo-
rescence to adjust differences in alignment using the RNAscope HiPlex Image Registration Software60. DAPI 
channel images of each cycle were aligned using the DAPI channel image of the first cycle as a reference to obtain 
the registration transforms, which were then applied to the remaining channels of each cycle. After registration, 
the best cells were manually selected through visual inspection based on image quality. For example, unreli-
able regions with intensity values too close to the local background (insufficient contrast) or saturated intensity 
values (making it hard to distinguish features due to high intensity) were filtered out. Cells that had overlapping 
cytosol and cells which were touching the image borders were also discarded. This quality control step resulted in 
7 BM MSCs and 7 UC MSCs for analysis. Background subtraction was performed using a rolling ball algorithm 
in ImageJ to remove the background signal from the images. Finally, the pixel intensities were thresholded by 
calculating the lower 20 percentile (background pixels) and the upper 99.9 percentile (saturated pixels), rescal-
ing the intensities using the two percentiles between 0 and 1 and clipping the values that were lower than 0 and 
greater than 1. The cells were segmented in ImageJ using cell masks obtained from the Phalloidin marker outline 
(Supplementary Fig. 10).

Scatterplot.  Scatter plots of intensity were obtained by random sampling of 50,000 pixels for each marker 
pair colocalized in the same organelle in BM-MSCs and UC-MSCs. The intensity values were min–max normal-
ized. The plots were colored using kernel density estimates obtained from Gaussian kernels.

Pearson’s correlation.  Pearson’s correlation coefficient was calculated for each cell between the markers to 
evaluate the extent of colocalization between the organelle proteins in the cell. The results were averaged across 
the cells, and the variance of the values was calculated. The average and variance of correlation coefficient values 
were visualized as a heatmap with dendrograms for BM and UC cells. A clustered heatmap of Pearson’s correla-
tion was displayed with each pair of markers on the x-axis and each cell type on the y-axis. This result is useful 
to compare the organelle colocalization between BM and UC cells.

Pixel overlap colocalization.  The pixel overlap colocalization between two given markers was calculated 
by counting the number of nonzero pixels that occupy the same coordinate. This value was normalized by divid-
ing by the total area of both markers to obtain a final fraction of the common area covered by two markers.

Statistical analysis.  The Kolmogorov–Smirnov (KS) hypothesis test was conducted between organelle 
marker pairs targeting the Golgi (GOLPH4 and Sortilin) and mitochondria (TOM20 and HSP60). For each cell, 
the center of mass was computed from the segmented mask. Then, each marker’s pixel distance to the center of 
mass was calculated to convert 2D spatial image coordinates to 1D spatial distributions (Supplementary Fig. 11). 
To determine if these spatial distributions differed from one another, the KS test is performed on the 1D spatial 
distribution (histogram). Since cell morphology is roughly symmetrical, the test examines differences in orga-
nelle spatial expression patterns between the nucleus and membrane. The null hypothesis considered was that 
similar proteins express similar spatial distribution within each cell.

Pairwise analysis.  For each marker, multiple, Otsu-thresholded single-cell images were selected and the 
intensity values were converted into a column. The intensity values were min–max normalized. Pearson’s cor-
relation was calculated using intensity values of all marker pairs for each cell in the marker pair and the result 
was plotted as boxplots. Similarly, to verify Pearson values, pixel overlap colocalization between the markers was 
also calculated and the values were plotted as boxplots.

Cell area and intensity.  For each marker, multiple single-cell images were selected and the average inten-
sity values per cell were plotted as boxplots. Similarly, the area of each marker per cell was calculated by sum-
ming the number of non-zero pixels after morphological opening and closing. The area values were also plotted 
as boxplots.

Pixel clustering.  Pixel phenotypes were clustered in a two-step clustering pipeline. From each pixel loca-
tion within the cell-segmented region, the intensity value of each marker expression was extracted. The resulting 
feature matrix consisted of n rows of a total number of pixels and p columns of marker expression. Each column 
of the feature matrix was min–max normalized. To determine the optimal number of clusters, the elbow method 
was implemented on the cluster scores for various numbers of clusters. The elbow point was determined to be 
10. Thus, the K-Means clustering algorithm was used to cluster the pixels of the 5 markers into 10 clusters. The 
resultant clusters were then uniquely colored on the original cellular image. To look for any organelle pattern in 
the clusters, the K-Means clustering results were compared with images of markers grouped according to their 
organelle affinity and multiplied together pixel-wise.

Super‑pixel segmentation and texture analysis.  The images were segmented into superpixels using 
scikit-image61 (a Python library for scientific image processing) and K-Means clustering into superpixels37. Tex-
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ture features were calculated on the superpixels: pixel intensity, energy Laplacian, modified Laplacian, diago-
nal Laplacian, variance Laplacian, and gray level variance. Pixel intensity computes the mean of the intensities 
within each superpixel. Energy Laplacian computes the square of the Laplacian of the image from skimage61. 
Modified Laplacian also uses a Laplace function but with two kernels in which one is the transpose of the 
other; then, the resulting images are summed. Diagonal Laplacian uses convolution with 4 kernels to produce 
the resulting images that are then summed. Variance Laplacian consists of the square of the difference between 
the image Laplace and the mean of the image Laplace. Gray level variance involves the square of the difference 
between the image and the mean of the image. The Python code that contains all the texture functions is labeled 
“texture_analysis_functions.py” and is available on the Github. The superpixels and texture features were plotted 
as images and heatmaps were obtained for each marker to compare BM and UC MSCs.

Virtual reality visualization.  The images of organelle markers in BM and UC cells stored as TIF files were 
converted into Neuroimaging Informatics Technology Initiative file format (NIfTI or .nii) using ImageJ38. These 
files were opened in ConfocalVR software to visualize them in an immersive 3D format62. The pixel data was also 
visualized in another VR software, Genuage, and histograms of the pixel counts were obtained using histogram 
bins drawn using controllers63.

CellProfiler.  Morphological features, such as area, major axis, and minor axis, were obtained for each cell 
using a CellProfiler pipeline64, and were then plotted as heatmaps with hierarchical clustering. To first identify 
and segment the nuclei of cells, “IdentifyPrimaryObject” was used on the DAPI marker with the global two-class 
Otsu thresholding method. Using the segmented nuclei, the “IdentifySecondaryObject” module was then used 
to segment the general shapes of the organelles marked by each marker using the same thresholding method. 
After images of every marker were segmented, all the size/shape features were measured using the “Measure-
ObjectSizeShape’’ module for each of the markers and exported into an excel file. The data stored in an excel 
spreadsheet was manually sorted to extract and analyze only the features of interest, which were the area, major 
axis, and minor axis of each marker. The measurements of interest were converted into CSV files for visualiza-
tion. Heatmaps were generated using Python with dendrograms to compare the biophysical measurements and 
to determine any close relationships or associations between markers and between the two cell types (UC and 
BM). The z-score was calculated to normalize the output data.

Software and algorithms

Cellprofiler https://​cellp​rofil​er.​org/

Numpy https://​numpy.​org/

Scipy https://​scipy.​org/

Dask https://​ml.​dask.​org/​clust​ering.​html

Statsannotations https://​github.​com/​trevi​smd/​stata​nnota​
tions

Pandas https://​github.​com/​pandas-​dev/​pandas

Seaborn https://​github.​com/​mwask​om/​seabo​rn

Code related to this study https://​github.​com/​cosku​nlab/​Spati​al-​
organ​elle-​netwo​rks

Data availability
Relevant data and analysis results are available at https://​doi.​org/​10.​5281/​zenodo.​64685​63 and https://​github.​
com/​cosku​nlab/​Spati​al-​organ​elle-​netwo​rks.

Code availability
The codes are available at https://​github.​com/​cosku​nlab/​Spati​al-​organ​elle-​netwo​rks.
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