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Longitudinal hierarchical Bayesian 
models of covariate effects 
on airway and alveolar nitric oxide
Jingying Weng , Noa Molshatzki , Paul Marjoram , W. James Gauderman , Frank D. Gilliland  & 
Sandrah P. Eckel *

Biomarkers such as exhaled nitric oxide (FeNO), a marker of airway inflammation, have applications 
in the study of chronic respiratory disease where longitudinal studies of within-participant changes in 
the biomarker are particularly relevant. A cutting-edge approach to assessing FeNO, called multiple 
flow FeNO, repeatedly assesses FeNO across a range of expiratory flow rates at a single visit and 
combines these data with a deterministic model of lower respiratory tract NO to estimate parameters 
quantifying airway wall and alveolar NO sources. Previous methodological work for multiple flow 
FeNO has focused on methods for data from a single participant or from cross-sectional studies. 
Performance of existing ad hoc two-stage methods for longitudinal multiple flow FeNO in cohort or 
panel studies has not been evaluated. In this paper, we present a novel longitudinal extension to a 
unified hierarchical Bayesian (L_U_HB) model relating longitudinally assessed multiple flow FeNO to 
covariates. In several simulation study scenarios, we compare the L_U_HB method to other unified 
and two-stage frequentist methods. In general, L_U_HB produced unbiased estimates, had good 
power, and its performance was not sensitive to the magnitude of the association with a covariate and 
correlations between NO parameters. In an application relating height to longitudinal multiple flow 
FeNO in schoolchildren without asthma, unified analysis methods estimated positive, statistically 
significant associations of height with airway and alveolar NO concentrations and negative 
associations with airway wall diffusivity while estimates from two-stage methods were smaller in 
magnitude and sometimes non-significant.

Sophisticated statistical methods are needed to link longitudinal assessments of a biomarker to patient-level 
characteristics and time-varying exposures in the context of a deterministic mathematical model describing 
the production and dynamics of the biomarker within the human body. This paper presents statistical methods 
developed for such longitudinal assessments of the fractional concentration of exhaled nitric oxide, FeNO, a 
biomarker of airway inflammation used in clinical1–3 and epidemiological research4–6.

FeNO is an exhaled breath biomarker conventionally assessed at the target expiratory flow rate of 50 ml/s 
(FeNO50)7. A cutting-edge approach, called multiple flow FeNO, repeatedly assesses FeNO across a range of 
expiratory flow rates and combines these data with a deterministic model of NO in the lower respiratory tract 
to estimate parameters quantifying the effect of airway wall and alveolar sources. Literature on the modeling 
of multiple flow FeNO data has focused on methods for data collected from one person at a single visit8–11. 
Multiple flow FeNO data present statistical challenges which require sophisticated statistical methods. Many 
studies of multiple flow FeNO conduct analyses using a two-stage approach: (1) estimate airway and alveolar 
NO parameters and (2) treat the estimated NO parameters as observed outcomes in linear regressions relating 
NO parameters to factors of interest (asthma medication use, air pollution exposures, etc.). In a previous paper, 
we presented a novel unified hierarchical Bayesian (U-HB) model for estimating cross-sectional associations of 
covariates with NO parameters using data from a single multiple flow FeNO test session for each study partici-
pant. We also found, in an extensive simulation study, that the U_HB method was less biased and had better 
power/type I error compared to conventional two-stage methods12.

There is a need for longitudinal data analysis methods for FeNO. Biomarkers like FeNO are particularly 
promising for tracking within-person changes over time since they tend to be relatively stable within persons, 
despite considerable heterogeneity across people13–16. Longitudinal trends in study populations with repeated 
measures of the conventional FeNO50 are generally modeled using standard longitudinal data analysis techniques, 
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such as linear mixed effects models (LMM) or generalized additive linear mixed effects models (GAMM)17. Panel 
studies or longitudinal cohort studies with repeated measures of multiple flow FeNO across multiple visits can 
highlight within-person trends in proximal and distal inflammation. However, there have been no methods 
proposed for longitudinal multiple flow FeNO data, and the performance of existing ad hoc two-stage methods 
has not been evaluated.

Here, we present a novel extension of the U-HB model to longitudinal data (L-U-HB) using a Bayesian imple-
mentation of nonlinear mixed effects models. L-U-HB takes as input longitudinal measurements of multiple-flow 
FeNO on a group of participants to estimate associations of NO parameters with time-varying or time-constant 
covariates, as well as to quantify within- and between-participant variation. Our work is motivated by longitu-
dinal multiple flow FeNO data collected as part of the Southern California Children’s Health Study (CHS)18. The 
CHS, originally designed to study impacts of long-term air pollution exposures on children’s respiratory health, 
included repeated measurements of multiple flow FeNO in the most recent cohort.

Methods
First, we introduce the mathematical deterministic model for FeNO in the respiratory tract and then we describe 
statistical methods for estimating NO parameters from this model using multiple flow FeNO data, including 
two-stage (TS) approaches and unified (U) approaches for longitudinally assessed multiple flow FeNO.

Deterministic two compartment model for FeNO.  Our work is based on the simple steady-state 
two-compartment model (2CM), which assumes a cylindrically-shaped airway compartment with related NO 
parameters: Caw, the concentration of NO in the airway tissue (ppb); Daw, the airway tissue diffusion capacity 
(pL·s-1·ppb-1) , and an expansile alveolar compartment with related NO parameter CA, the concentration of NO 
in the alveolar region (ppb)8. Under the 2CM, FeNO (ppb) at the mouth is deterministically related to expiratory 
flow rate (ml/s) and the three NO parameters quantifying airway and alveolar sources of NO, as shown below:

Estimating NO parameters in the 2CM.  The 2CM model for FeNO in Eq. (1) is deterministic and non-
linear. In practice, multiple flow FeNO data is measured with error. Researchers have developed various methods 
to estimate 2CM NO parameters using multiple flow data from a given participant, typically using linear regres-
sion approaches with an underlying linearization assumption, a third order approximation method such as the 
Högman and Merilӓinen algorithm (HMA)19,20, and nonlinear regression which essentially adds an error term 
to the right hand side of Eq. (1) 21. Here and in previous work10,12, we use the following fundamental nonlinear 
statistical model for multiple flow FeNO measured repeatedly across a range of flow rates for a single participant, 
with maneuvers indexed by k:

This model formulation includes a “transform-both-sides”22 approach using the natural log to acknowledge 
the increased variation in error that occurs as flow rate (and hence FeNO concentration) increases while main-
taining the interpretability of the 2CM NO parameters. On the logFeNO scale, the error (ε) can be reasonably 
assumed to be normally distributed. Henceforth, we will refer to a model estimating NO parameters using Eq. 2 
with standard nonlinear-least squares software (e.g., “nls” from the nlme package in R) as NLS10. So far, we have 
discussed only estimation of NO parameters from a single multiple flow FeNO test session for one participant. 
When multiple flow FeNO data are assessed longitudinally in a study population the data have three levels of 
variation: across-participant, within-participant (across visits), and within-visit (across maneuvers).

Estimating associations of covariates with longitudinally assessed NO parameters.  Two Stage 
(TS) methods.  In the existing literature, most researchers use ad hoc two stage approaches to relate estimated 
NO parameters to covariates. Two stage methods for cross-sectional studies were discussed in our previous 
work12. A typical longitudinal two stage method proceeds as follows. In Stage I, NO parameters for each par-
ticipant at each visit are estimated via separate models. For example, a separate HMA or NLS model is fit to the 
multiple flow FeNO data from each participant at each visit. In Stage II, three linear mixed effect models (LMMs) 
are fit, one for each NO parameter, to relate the longitudinal estimates of the NO parameters to a covariate(s) of 
interest, denoted generically as Xij. A participant-level random intercept is included in each LMM to account for 
the within-participant correlation in the longitudinal NO parameter data. Below, we introduce 4 longitudinal 
two stage (L_TS) methods, differentiated by the name of the method employed in Stage I:

1.	 L_TS_NLS: Stage I consists of N (participants) x M (visits) separate NLS10 models, each NLS model fit to the 
typically small multiple flow FeNO dataset at that visit, using the natural log transform-both-sides approach 
discussed earlier.

2.	 L_TS_HMA: Similarly, Stage I consists of N x M separate HMA19,20 models.
3.	 L_TS_NLME: Stage I consists of a single longitudinal nonlinear least square mixed effect (NLME) model, 

an extension of the approach using N x M separate NLS models, again using the natural log transform-both-
sides approach. In the longitudinal NLME, we specified participant-level and visit-level random intercepts for 
each NO parameter. At each level, these random effects follow a multivariate normal distribution, allowing 
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for correlation of NO parameters. For example, participant-level correlation allows for participants with high 
CA to also tend to have high Caw. We implemented NLME using the nlme package in R (version 3.1–152)23.

4.	 L_TS_HB: Stage I consists of a single longitudinal Hierarchical Bayesian (HB) analog of the longitudinal 
NLME model, implemented using JAGS (Just another Gibbs sampler)24 similar to the U-HB cross-sectional 
model in our previous publication12, but with no covariate X and a partitioning of variance in NO parameters 
at the participant- and visit-levels through specification of variance–covariance matrices, the population 
mean of the NO parameters, and the measurement error in Stage I. This model is described in greater detail 
in the L-U-HB section below, where the model includes X.

All these TS approaches use the same LMM approach in Stage II.

Unified approaches.  Unified methods, in contrast to TS methods, simultaneously estimate NO parameters and 
their associations with the covariate Xij in a single model. In this longitudinal version, we estimated the between/
within-participant variation at the same time, which L-TS-NLS and L-TS-HMA were not able to obtain because 
their estimation in the stage I ignored the grouping effect.

5.	 L-U-HB

Our novel U-HB model for longitudinal data (U-HBL) has three levels: maneuver, visit, participants, as 
described below and displayed in Fig. 1:

Level 1: Maneuver

In the first level, log FeNO for participant i at visit j and maneuver k is assumed to be normally distributed 
with a mean that is a function of NO parameters: θij =

(

CA ij , logCaw ij , logDaw ij

)

′ and expiratory flow, flowijk . 
The variance of the unexplained error in logFeNO, σ 2

∈
 , was assumed to be the same across flow rates, visits, and 

participants.
Level 2: Visit (time)

In the second level, NO parameters for participant i at visit j ( θij ) are modeled as a linear function of A�i , a 
vector of participant-level mean NO parameter values for participant i when the covariate Xij = 0 . Key param-
eters of interest include β� =

(

βCa,βlogCaw ,βlogDaw
)

′ , the regression coefficients on Xij . Otherwise unexplained 
within-participant variation in the NO parameters is represented by the visit-level random intercepts 
α�ij =

(

αCaij ,αlogCawij ,αlogDawij

)

 assumed to have no correlations and follow a multivariate normal distribution 
(MVN) with variance–covariance matrix �σ = diag

(

σ 2
CAij

, σ 2
logCawij

, σ 2
logDawij

)

, i.e., α�ij~MVN ( 0,�σ ).
Level 3: Participant
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(5)θij = A�i + β1�Xij + α�ij

Figure 1.   Diagram of the hierarchical model structure relating Longitudinal FeNO measurements at multiple 
flow rates to NO parameters that are a function of a potential determinant X (e.g., air pollution).
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In the third level,A�i is decomposed into β0� , the overall population-mean NO parameters when Xij = 0 and 
the otherwise unexplained between-participant variation in the NO parameters, represented by the participant-
level random intercepts α�i =

(

αCai ,αlogCawi ,αlogDawi

)

′ , assumed to follow a MVN with variance–covariance 
matrix �τ , i.e., α�i~MVN (0,�τ ).

Levels 2 and 3 are combined in the following equation with two random intercepts: one at the visit level and 
the other at the participant level.

Prior distributions for L-U-HB are specified to be relatively non-informative. We assume the regression coef-
ficients each have independent multivariate normal priors (with I indicate a square identity matrix): 

with 
√

µβ =

(

µβCA
,µβlogCaw

,µβlogDaw

)

′

 , a non-informative prior distribution using large variances σ 2
β0

 = σ 2
β1

 = 
103 . The random intercept variance–covariance matrix  �υ is assumed to have a non-informative inverse-Wishart 
prior distribution with non-informative diagonal matrix D = diag (0.001, 0.001, 0.001). And the variances of 
within-participants are sampled from non-informative independent inverse gamma distributions. Finally, the 
residual variance σ 2 is assumed to have a non-informative inverse-Gamma distribution, Inv-Gamma (0.001, 
0.001).

The L_U_HB and L_TS_HB’s first stage was simulated via JAGS as mentioned above. The simulation process 
includes an adaptive mode phase (“burn-in”) and a long enough updating phase 24 where the adaptive mode is 
turned off.

6.	 L-U-NLME

The longitudinal version of the unified NLME model is similar to the cross-sectional one in which the 
covariate is linked to the mean function for NO parameters, except that it also specifies the variance–covari-
ance matrix for the visit level subgroup. We also specify the diagonal matrix for the visit level variations for our 
simplified model.

Constraint on CA.  CA must be non-negative since it represents the concentration, in ppb, of the NO in the alve-
olar compartment 12. There are similar constraint considerations for Caw and Daw which we satisfy by modeling 
logCaw and logDaw since Caw and Caw to have approximately log-normal population-level distributions. CA tends 
to have more of a normal or truncated normal distribution, so a different approach is necessary. In the simula-
tion study data generation step (described below), we discard samples if their CA was negative. We also enforce 
the non-negative constraint in the HB models by using a truncated distribution function. We didn’t apply the 
constraint on HMA since our previous papers 10,12 proved that it had poor performance, probably due to the 
large number of failed to converge in Stage I. The NLME models implemented in the nlme package in R were 
fitted without such constraints since there are no readily available constraint options. Constrained versions of 
TS_NLS proved to be more biased in our previous study12, thus we implement only the unconstrained NLS here.

Simulation study.  We compare the above methods in an extensive simulation study, roughly based on the 
CHS study design. Each simulated dataset consists of 500 participants with 3 visits each and each visit includes 8 
multiple flow FeNO maneuvers (2 each at: 30, 50, 100, and 300 ml/s), which we simulate under a given “scenario” 
of underlying true associations of the NO parameters with a standard normal covariate Xij (independent across 
and within participants). For a given scenario, 100 replicate datasets (each of N* M = 500*3) are generated. Data-
generating values, shown in Table 1, of population-level mean NO parameters ( β0�) , the between-participant 
variance–covariance matrix ( ��υ

 ), and the residual variance σ 2
ǫ  are based on values estimated in a preliminary 

(6)A�i = β0� + α�i

(7)θij = β0� + β1�Xij + α�i + α�ij

(8)β0� ∼ MVN
(

µβ0 , Iσ
2
β0�

)

(9)β1� ∼ MVN
(

µβ1 , Iσ
2
β1�

)

Table 1.   Parameter values used to generate data in the simulation study.

NO parameter

Population-level (across-participant) Within-participant (across-visit)
Population-level 
(across-participant)

Mean ( µ) Standard Deviation ( τ) Standard Deviation ( σ) Correlation ( ρ)

CA 1.5 0.45 0.50 CA, logCaw 0.66

logCaw 3.5 0.65 0.40 CA, logDaw − 0.38

logDaw 2.5 0.55 0.33 logCaw, logDaw − 0.35
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L-TS-NLME analysis of CHS data and are similar to the values in the previous cross-sectional study12. We set the 
with-participant covariances to be zero for simplicity.

The different scenarios for the simulation study are described in Table 2. The regression coefficients β1� 
relating Xij to each NO parameter take a range of values: 0.01, 0.05 to 0.1. In Scenario 1, the reference scenario, 
all NO parameters have the same association with the covariate Xij ( βCA = βlogCaw

 = βlogDaw
 ), and the value of this 

association is either 0.01, 0.05 or 0.1.
In this simulation study we compare performance of the methods based on several metrics: percent bias (% 

bias), 95% Confidence/Credible (CI) length and coverage, power, and type I error. Percent bias is calculated 
as: (Estimate-True value)/True value for non-zero parameters. The 95% CI length and coverage are calculated 
using the given 95% confidence interval for frequentist approaches and 95% credible interval (using the returned 
posterior distribution, the center portion contains 95% of the values) for Bayesian approaches. Primary analyses 
assume Scenario 1 to be true and use Scenario 1 results to calculate bias, power, 95% CI coverage, 95% CI length 
while Scenarios 2–4 are used only to calculate type I errors. In secondary analyses, Scenarios 2–4 are used to 
calculate bias, power, and type I error rate, 95% CI coverage, 95% CI length.

CHS data analysis.  We analyzed data from a CHS cohort originally recruited in kindergarten/1st grade25 
with FeNO50 assessed at 6 study visits over 8 years (spanning ages 8–16) and multiple flow FeNO assessed at 
the last 2 study visits, when most children were ages 13–14 and 15–16. The CHS multiple flow FeNO protocol 
called for 9 maneuvers at each of four expiratory flow rates (3 at 50 ml/s and 2 each at: 30, 100, and 300 ml/s) col-
lected using chemiluminescence analyzers (model CLD88-SP with DeNOx accessory to provide NO-scrubbed 
air; EcoMedics, Duernten, Switzerland/Ann Arbor, MI, USA) as described in detail elsewhere26,27. FeNO data 
processing was based on the ATS/ERS guidelines for FeNO at 50 mL·s − 1 7 with a search window based on airway 
turnover28. Each CHS child participant provided informed assent and a parent/guardian provided informed 
consent. The CHS data were collected using a protocol approved by the University of Southern California Insti-
tutional Review Board, the analyses in this paper were conducted under HS-13–00,150, and all methods were 
carried out in accordance with relevant guidelines and regulations.

In a previous longitudinal analysis, FeNO50 was found to have a strong positive linear association with height 
across this age range in children without asthma17. To complement the previous analysis relating longitudinally 
assessed FeNO50 to height, here we relate longitudinally assessed NO parameters (from the up to 2 repeated 
assessments of multiple flow FeNO) to standardized height (population-mean centered: 162.7 cm and population-
SD scaled: 8.75 cm). The analyses included 1004 children who never reported a doctor diagnosis of asthma and 
had multiple flow FeNO data available at both visits. The average number of valid multiple flow maneuvers at 
the first and second visits were 9.68 and 8.97, respectively.

Results
Simulation study.  Computation time was longer for unified methods than for two-stage methods, as 
expected. The computation time for a given method was similar across scenarios and slightly shorter for larger 
β coefficients (Supplementary Table 2). Average computation times on a high-performance computing platform 
(3 CPU, 12 GB memory) for a single simulated dataset (500 participants, 3 visits each, 8 maneuvers per visit) 
were: 30 h for L_U_HB, 23 h for L_TS_HB, 14.7 min for L_U_NLME, 11.4 min for L_TS_NLME, 4.6  s for 
L_TS_HMA and 6.2 s for L_TS_NLS. Most methods had reasonable convergence rates (99% for L_TS_HB, 93% 
for L_U_HB, 94% for L_TS_NLME) except for L_U_NLME (51%). L_TS_NLS and L_TS_HMA converged for 
all datasets, however Stage I of L_TS_NLS had 29% of participant models fail to converge on average (resulting 
in the exclusion of these participants’ results in Stage II) while L_TS_HMA had only 0.016% failures in Stage I 
(Supplementary Fig. 2). The following simulation study results are a summary of all available converged results, 
since the intersection of datasets which converged under all methods is relatively small due to the convergence 
issue for L_U_NLME.

Figure 2 compares the percent bias and 95% CI interval properties for estimation of βCa,βlogCaw ,βlogDaw across 
methods. For many methods, percent bias tended to decrease as the effect size of the covariate increased. Among 
all methods, L_U_HB had the lowest absolute values of percent bias for all three NO parameter associations 
(all < 4%), however at a small magnitude effect size (true β of 0.01) there was 52% bias for βlogDaw , equivalent to 
a 0.052 bias on the original scale. L_U_NLME also had good performance in the subset of datasets where the 
method converged. Two stage methods (L_TS_HB, L_TS_NLME, L_TS_NLS) tended to have negative percent 
bias for βCa,βlogDaw and positive percent bias for βlogCaw . For a given method and effect size, percent bias was 
smaller for βCa than for associations with other NO parameters, perhaps because CA is in the linear part of the 
2CM for FeNO. In simulation Scenario 3, when only logCaw had an association with X, the directions of bias for 

Table 2.   The 4 simulation study scenarios are each repeated at 3 effect sizes and replicated 100 times, for 1200 
simulated datasets in total. † Cells marked 0 indicate that X had no effect on the corresponding NO parameter.

βCA βlogCaw
βlogDaw

Scenario 1 0.01,0.05,0.1 0.01,0.05,0.1 0.01,0.05,0.1

Scenario 2 0.01,0.05,0.1 0† 0†

Scenario 3 0† 0.01,0.05,0.1 0†

Scenario 4 0† 0† 0.01,0.05,0.1
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two stage methods were different from other scenarios (Supplemental Fig. 1.C1). But L_U_HB and L_U_NLME 
still had the smallest bias. An alternative version of L_TS_HMA with the constraint that Stage I CA > 0 in Scenario 
1 (Supplementary Fig. 3) resulted in ~ 30% of Stage I estimates being dropped, on average, and patterns in percent 
bias similar to other two stage methods.

For a given method, the 95% CI lengths (Fig. 2b) were similar across NO parameters and these patterns did 
not vary based on magnitude of the true β. L_TS_NLME had the shortest 95% CI lengths followed by L_TS_HB. 
For 95% CI coverage (Fig. 2c), coverage declined as the magnitude of the true β increased, for all methods except 
L_U_HB. It was the only method to produce 95% CIs with approximately appropriate coverage (91 ~ 95%) for 
all β s. L_U_NLME had slightly larger biases and shorter 95% CI lengths, resulting in 75–80% coverage when 
the true β was 0.1. The higher coverage for these two unified methods was due to a combination of low bias and 
longer 95% CI. L_TS_HB also had reasonable coverage, but it differed across NO parameters, ranging from 
63 to 81%. For L_TS_NLME, L_TS_HMA, and L_TS_NLS, low coverage was due to a combination of large bias 
and short CI lengths.

Power curves and Type I error rates for βCa,βlogCaw ,βlogDaw across all simulation scenarios are shown in Sup-
plementary Fig. 1. For simplicity, here Fig. 3 displays a subset of these data: the power for each NO parameter 
association versus two versions of type I error, based on scenarios 2–4 at the largest magnitude effect size con-
sidered (true β of 0.1). Ideally, a method will produce 2 values in the upper left-hand corner of this plot, which 
indicates high power and low type I error regardless of which another NO parameter had a non-zero association. 
Indeed, L_U_HB had relatively high power (1.00 for βCa , 0.97 for βlogCaw , and 0.89 for βlogDaw ) and low type I 
error rates from 0.02 to 0.07 for all three NO parameter associations except 0.12 for βlogCaw in Scenario 4 where 
only βlogDaw was non-zero. Other methods generally also had good power, but L_TS_NLS had low power for 
βlogDaw and L_TS_HMA had low power for both βlogCaw and βlogDaw . Except for L_U_HB, most methods had 
inflated type I error for βlogCaw when βlogDaw was non-zero, or vice versa. For example, L_TS_HB had excellent 
power for βCa (0.98) and low type I error (0.02) when βlogCaw was nonzero but higher type I error (0.17) when 
βlogDaw was nonzero. This issue became more pronounced for βlogCaw , where L_TS_HB again had excellent power 
for βlogCaw (1.00) and low type I error (0.01) when βCa had a nonzero association but very high type I error (0.69) 
when βlogDaw was nonzero. In summary, L_U_HB had high power and low type I error rates for all NO parameter 
associations while other methods had good power and type I error for βCa and good power but inflated type I 
error rates for βlogCaw and βlogDaw . Exceptions to this pattern were L_TS_NLS and L_TS_HMA, both of which 
had low power for βlogDaw due to their large negative biases.

Figure 2.   Comparison of method performance in terms of: percent bias (a), 95% CI length (b), and 95% CI 
coverage (c) for estimating associations with NO parameters ( βCa : black square, βlogCaw : red circle, βlogDaw : blue 
triangle) in simulation study Scenario 1, replicated at 3 different effect sizes ( β = 0.01, 0.05 or 0.1).
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While the primary focus of the simulation study was on the estimation of βCa,βlogCaw , and βlogDaw , we also 
studied estimation of random effect variances at the participant and visit levels. Participant-level variances, par-
ticularly for CA and logDaw, tended to be underestimated by most methods, though L-U-HB had the overall lowest 
bias (Supplemental Fig. 1) Participant-level correlations also tended to be underestimated (Supplemental Fig. 1).

In summary, this simulation study demonstrated that L_U_HB generally had the smallest bias, appropriate 
95% CI coverage, and good power with low type I error rates for all three NO parameter associations across 
scenarios. L_TS_HB, the two-step version of L_HB, had greatly reduced computation time and maintained good 
power at the expense of introducing some bias, poorer 95% CI coverage at larger magnitude effects, and high 
type I errors for βlogCaw and βlogDaw . Compared to L_TS_HB, L_U_NLME had similar performance, and even 
less inflated type I error rates but failed to converge in ~ 50% of the simulated datasets. Compared to L_TS_HB, 
L_TS_NLME had bias in the same direction but of larger magnitude, resulting in lower coverage and more 
inflated type I errors. L_TS_NLS, on average, had ~ 40% of participants fail to have Stage I estimates (Supple-
mentary Table 1). Despite this, L_TS_NLS performed well for estimation of βCA , but for βlogCaw and βlogDaw had 
considerable bias, low power and inflated type I error.

CHS data analysis.  Applying the 6 methods to a CHS analysis relating NO parameters to height, we 
observed associations with height that were: positive or null for CA, positive for logCaw, and negative or null 
for logDaw (Fig. 4). The two unified methods (L_U_HB and L_U_NLME) both estimated similar statistically 
significant associations between height and all three NO parameters. Specifically, from the L_U_HB model we 
estimated that, a within-participant increase in height of 8.79 cm was associated, on average, with a 0.079 (95% 
CI: 0.034, 0.125) ppb increase in CA, a 0.158 (95% CI: 0.106, 0.212) increase in logCaw, and a 0.106 (95% CI 
0.044, 0.171) decrease in logDaw. These latter two estimates are equivalent to a 17% increase in Caw and a 10% 
decrease in Daw. From the L_U_NLME model, analogous estimates were similar: 0.092 (95% CI: 0.046, 0.138) 
for CA, 0.149 (95% CI: 0.104, 0.194) for logCaw, − 0.104 (95% CI − 0.157, − 0.052) for logDaw). Two-stage methods 
produced lower estimates for βCa and βlogCaw , and higher estimates for βlogDaw . Furthermore, two-stage method 
estimates were all approximately null and non-significant for βlogDaw . Estimates of βCa were not statistically 
significant for L_TS_NLS and L_TS_HMA. There was a clear pattern when comparing a unified method to its 

Figure 3.   Power and Type I errors for the 6 methods (distinguished by color) for true β of 0.1, with power for 
a given NO parameter’s association calculated from the simulation scenario where only that association is non-
zero (e.g., power for βCa from Scenario 2 where βCa = 0.1,βlogCaw = 0,βlogDaw = 0 ) and Type I error calculated 
under two scenarios (e.g., Type I error for βCa under S3: βCa = 0,βlogCaw = 0.1,βlogDaw = 0 and under S4: 
βCa = 0,βlogCaw = 0,βlogDaw = 0.1 ), with the non-zero NO parameter association denoted by shape.

Figure 4.   Estimated associations between NO parameters and standardized height in the CHS using 6 
methods.
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two-stage counterpart (i.e., L_U_HB vs L_TS_HB and L_U_NLME vs L_TS_NLME) in that the unified method 
had larger magnitude estimates (farther from zero) than their corresponding two-stage versions. The finding 
that the unified methods produced more significant estimates than two-stage ones (especially the L_TS_NLS 
and L_TS_HMA), which agreed with results in our simulation. For L_TS_NLS, a Stage I outlier (− 1325) for CA 
resulted in an extremely wide 95% CI for βCa in Stage II, so we excluded this outlier for Fig. 4. Stage I conver-
gence failures were observed for 528 and 30 out of 1004 models for L_TS_NLS and L_TS_HMA, respectively.

Discussion
In this paper, we proposed a novel unified hierarchical Bayesian model, L_U_HB, for relating longitudinally 
assessed NO parameters to covariates, extending our previous cross-sectional unified hierarchical Bayesian 
model, and performed the first evaluation of the statistical properties of various two-stage methods for longi-
tudinal analysis of NO parameters. In a simulation study, L_U_HB performed well for estimating associations 
of NO parameters with covariates, with small bias, appropriate 95% CI coverage, good power, and low type I 
error rates. The two-step version, L_TS_HB, had greatly reduced computation time and maintained good power 
at the expense of introducing some bias, poorer 95% CI coverage at larger magnitude effects, and high type I 
errors for βlogCaw and βlogDaw . The other unified method L_U_NLME had good performance when it converged, 
but it had serious convergence issues. Other two-stage methods had drawbacks in terms of bias, inflated type I 
error rates, etc.

In a previous simulation study comparing the performance of methods estimating NO parameter associations 
with a covariate in a cross-sectional study12, U_HB had the best performance across all simulation scenarios, 
similar to our findings in this longitudinal study. L_U_NLME had the second-best performance across all three 
NO parameters in the longitudinal study, while its cross-sectional version (U_NLME) had large bias in estimat-
ing βCa . L_TS_NLS also had much better performance in estimating βCa and  βlogCaw in the longitudinal study 
than TS_NLS for the cross-sectional study but still had large bias for βlogDaw . Both L_TS_NLME and the cross-
sectional TS_NLME had large bias and poor coverage.

Limitations to L_U_HB include computation time. L_U_HB had superior statistical properties to many com-
petitor methods, albeit at additional computational expense. The cross-sectional U_HB model had an average 
computation time of 5.5 h for N = 1000 participants (ref) while for the longitudinal version (L_U-HB) average 
computation time was 30 h for N = 500 participants, 3 visits each. While the longer L_U_HB computation time 
was burdensome in a simulation study with 1000 s of datasets, it is less of an issue when analyzing a single data-
set. However, note that the computational cost will increase as more covariates are added, or a more complex 
model is used in Stage II. The other competitive method was L_U_NLME, which had the second-best estimation 
performance and ran faster, but it had poor convergence. Our results suggest that for further applications in 
which there are more variables or more complex models, where the unified model may become computational 
intractable, a two-stage version of hierarchical Bayesian model will have reasonably good performance and 
therefore be used in iterative model building, with a single run of L_U_HB for the final results, using L_TS_HB 
estimates as starting values to speed convergence. Another issue which should be raised is that any unified 
estimation framework which simultaneously estimates NO parameters and their associations with covariates 
will produce NO parameter estimates dependent on the covariates included. Here, our primary interest was in 
the estimated associations rather than the NO parameters themselves, so this drawback was outweighed by the 
improved performance in estimating associations.

For biologically plausibility, we constrained CA to be non-negative. In our previous cross-sectional study, 
we encountered a problem constraining CA to be non-negative in the standard JAGs software. We solved it by 
sampling logCaw and logDaw as they were bivariate normal distributed, and then sample zero-truncated CA con-
ditioned on them. In that case, we sampled the variances and correlations one by one and set boundaries for the 
last correlation to ensure a 3 × 3 positive definite variance covariance matrix. The same solution was also used 
for L_U_HB and L_TS_HB when we set NO parameters to be correlated in both levels. But in our simplified 
model which assumed no correlations in the visit level, the randomness and constraint on CA were easily speci-
fied separately without considering the validity of the variance–covariance matrix.

When applying L_U_HB to study the association between height and NO parameters using longitudinal 
multiple flow FeNO data on healthy schoolchildren in the CHS, we found positive associations of CA and logCaw 
with height and a negative association of logDaw with height. Had we applied only L_TS_HMA or L_TS-NLS 
methods, we would have failed to detect associations of height with CA or logDaw. Our findings add to the limited 
literature on associations of NO parameters with height/age. A previous analysis using longitudinal FeNO50 data 
from the same cohort over a longer follow-up period, from ages 8–16, found that FeNO50 increased approximately 
linearly with height and FeNO50 increased nonlinearly with age17. Limited cross-sectional data on trends in NO 
parameters by age (for participants less than 20 years old) suggests non-significant increases of Daw and Caw but a 
decrease in CA though some influential values for the oldest participants in the sample may have impacted these 
results29. Additionally, differences with our findings may be due to a different age range or due to the difference 
between a cross-sectional (between-person) versus longitudinal (within-person) design.

There are several directions for future work. To reduce the computation time observed when implementing 
L_U_HB in JAGS using Gibbs sampling, we could explore alternative Bayesian MCMC software such as RStan 
which uses Hamiltonian Monte-Carlo. Several components of the model implementation appeared to affect 
convergence rates, such as the number of parameters or the length of adaptation phase. The length of adapta-
tion was the most important factor, but adaptation is in itself a computationally intensive operation. Given the 
computational costs involved, we chose to base our simulation study on smaller dataset sizes (500 participants, 
3 visits each) and simplify our model so that it could converge within 2 days on average. The simplified version 
of our longitudinal model ignored the correlation between the NO parameters within the participant level (V0 
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model). L_U_HB and L_TS/U_NLME were able to specify the diagonal matrix for visit-level variation. While 
the NLS and the HMA approaches fitted the FeNO models for each observation, thus ignoring any correlations 
between or within participants. In the CHS data analysis, we only selected participants who have visited both in 
year 8 and 10 as a more direct comparison to the simulation study, but unified models are capable of handling 
unbalanced data.

In conclusion, in this paper we presented a longitudinal extension of the unified hierarchical Bayesian model 
for analyzing nonlinear data (e.g., FeNO data). Despite the long computation time required for achieving con-
vergence, L_U_HB had the best performance estimating covariate coefficients as well as variance–covariance 
components. The two-stage analog, L_TS_HB, served as a reasonable alternative to explore initial versions of 
more complicated models.

Data availability
Due to limitations in the original consent forms and HIPAA requirements, data from the CHS cannot be freely 
available in the public domain. However, we are committed to sharing the data and results acquired as part of 
this study. The CHS has a process in place for data sharing that involves approval of proposals by a Data Sharing 
Committee. Investigators who want access to data will be required to submit a research protocol, which will be 
reviewed by the CHS Health Data Release Committee and the USC IRB. Recipients must agree to security poli-
cies. Please send requests to access this dataset to Dr. Sandrah Eckel (eckel@usc.edu).
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