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The energy demand of breast cancers is in part met through the b-
oxidation of exogenous fatty acids. Fatty acids may also be used to aid in

cell signaling and toward the construction of new membranes for rapidly

proliferating tumor cells. A significant quantity of fatty acids comes from

the hydrolysis of lipoprotein triacylglycerols and phospholipids by lipopro-

tein lipase (LPL). The lipid obtained via LPL in the breast tumor microen-

vironment may thus promote breast tumor growth and development. In

this hypothesis article, we introduce LPL, provide a meta-analysis of RNA-

seq data showing that LPL is associated with poor prognosis, and explain

how LPL might play a role in breast cancer prognosis over time.

It is estimated that two in five Canadians will have a

cancer diagnosis in their lifetime [1]. Of newly diag-

nosed cases in Canada, it was projected for 2022 that

approximately one in four cases will be breast cancer

—representing one in every eight Canadian women [2].

Furthermore, of projected cancer deaths for 2022,

approximately one in seven will be deaths due to

breast cancer—representing one in every 34 women in

Canada [2]. Breast cancer is a heterogeneous type of

cancer with different etiologies and pathophysiologies,

depending on the subtype. Breast tumors may be basal

or luminal (type A or type B), but they also have a

basic classification of subtypes based on their

expression of three different tissue receptors: estrogen

receptor (ER), progesterone receptor (PR), and human

epidermal growth receptor 2 (HER2) [3] (Table 1). Of

note, the triple-negative breast cancer subtype, which

lacks the expression of all three receptors, is consid-

ered highly aggressive, with one of the highest rates of

metastasis and the poorest rates of survival out of all

breast cancer subtypes [3].

To keep pace with the metabolic demands associated

with rapid proliferation, differentiation, and angiogenesis,

cancer cells require more fatty acids for the growth and

development of tumors [4]. Fatty acids are metabolized to

yield acetyl-CoA through b-oxidation. The acetyl-CoA
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can subsequently feed into the citric acid cycle to produce

energy products such as ATP [5]. Aside from their use for

energy purposes, select fatty acids can also act as sec-

ondary signaling messengers in signaling pathways that

serve many functions in maintaining homeostasis within

the cell [6]. The dysregulation of signaling pathways in

cancer cells, such as the phosphoinositide 3-kinase/Akt

pathway, causes changes in lipid metabolism that can

promote cancer cell proliferation, survival, and migration

[5]. Furthermore, cancer cells may manipulate the fatty

acids incorporated in membranes to alter the membrane

fluidity [5], thus changing which molecules can cross

membranes to favor cancer cell survival [7]. Therefore,

fatty acids are essential to cancer cell development and

survival.

Cancer cells exploit two mechanisms for acquiring

fatty acids: de novo lipogenesis via fatty acid synthase

and cytosolic acetyl-CoA (primarily derived from

metabolites that yield cytosolic citrate), and from

extracellular lipolysis (Fig. 1) [8,9]. With normal

somatic cells, lipogenesis only occurs in adipocytes and

hepatocytes [5]. However, cancer cells tend to exhibit

increased fatty acid synthase activity to endogenously

supply fatty acids to cancer cells in order to meet the

high demand [10]. On the contrary, extracellular lipol-

ysis involves the hydrolysis of lipoprotein triacylglyc-

erols (to liberate sn-1/3 fatty acyl groups) and

phospholipids (to liberate the sn-1 fatty acyl group),

which can occur via lipoprotein lipase (LPL) (Fig. 1).

The resultant free fatty acids may then be taken up by

the cells via CD36, the transmembrane channel for cel-

lular fatty acid uptake [11].

Lipoprotein lipase is an essential enzyme in lipopro-

tein metabolism that releases free fatty acids from

acylglycerols for delivery to cells for various functions.

Interestingly, the most detrimental subtype of breast

cancer, triple-negative breast cancer, has been shown

to exploit exogenous lipid uptake in part through LPL

[12]. Thus, an exploration into the role(s) LPL may

play in various breast cancer subtypes is warranted.

This hypothesis article aims to introduce LPL, provide

a meta-analysis of LPL mRNA expression in breast

Table 1. Basic molecular subtypes of breast cancer.

Subtype

Receptor status

Estrogen

receptor

(ER)

Progesterone

receptor (PR)

Human

epidermal

growth factor

receptor 2 (HER2)

Luminal A + +/� �
Luminal B + +/� +

HER2-enriched � � +

Triple negative � � �

Fig. 1. Lipogenesis and lipolysis pathways for fatty acid acquisition by tumor cells. The process of lipolysis involves the exogenous uptake

of fatty acids facilitated by lipoprotein lipase (LPL) anchored to heparan sulfate proteoglycans (HSPG). LPL hydrolyzes fatty acids from

triacylglycerol-rich lipoproteins, such as very low-density lipoproteins (VLDL), and the uptake of fatty acids by the cell is facilitated by the

transmembrane protein transporter CD36. LPL also assists in receptor-mediated endocytosis for intracellular hydrolysis lipids from lipopro-

teins to yield fatty acids. The process of lipogenesis involves the exogenous uptake of glucose, by glucose transporter 4 (GLUT4), for the de

novo synthesis of fatty acids from glucose. FAS, fatty acid synthase; VLDLR, very low-density lipoprotein receptor.
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cancer from data mined via the KMplot online analy-

sis tool [13], and explore its possible role in breast can-

cer.

Materials and methods

KMPlot analyses

A meta-analysis of RNAseq data for the expression of

LPL mRNA in human breast cancer tissue was carried out

using the KMPLOT online software (http://www.kmplot.com/)

[13]. The datasets examined were primarily from The Can-

cer Genome Atlas database (personal communication,

Bal�azs Gy}orffy, Hungarian Academy of Sciences, Budapest,

Hungary). Human subjects were defined as high expressors

or low expressors of LPL mRNA based on the automatic

calculation of the upper and lower quartiles of the arbitrary

values of RNAseq data. The datasets were examined for all

combinations of positive and negative statuses of ER, PR,

and HER2; in addition, datasets were examined for the

PAM50 basal, luminal A, and luminal B subtypes. Hazard

ratios (HR) and statistical analyses were calculated with the

online software, as previously described [13].

A meta-analysis of Affymetrix gene chip microarray data

for the expression of LPL mRNA in human breast cancer

tissue was carried out using the KMPLOT online software

(http://www.kmplot.com/) [13]. Human subjects were

defined as high expressors or low expressors of LPL

mRNA, based on the median of the arbitrary values for

the mean expression data of the two available LPL probes

(205348_s_at and 205349_s_at). Biased microarray data

were excluded from analyses. The datasets were examined

for all combinations of positive and negative statuses of

ER, PR, and HER2. ER status was defined to be both con-

firmed by immunohistochemistry and microarray. HRs and

statistical analyses were calculated with the online software,

as previously described [13].

Lipoprotein lipase activity

MCF-7, T47D, MDA-MD-231, and SKBR3 cell lines were

obtained and cultured as previously described [14]. To col-

lect media for LPL activity, cells were initially cultured in

6-well plates (9.7 9 105 cells per well) for 24 h. After 24 h,

cells were incubated in the absence or presence of 1 mL of

100 U�mL�1 heparin for 30 min. After 30 min, media were

centrifuged at 1000 g to pellet any debris, and the super-

natant was stored at �80 °C until needed. For positive

control, HEK293 cells were transfected with pcDNA3.hHL,

and conditioned media without or with heparin were col-

lected, as previously described [15,16]. To examine LPL

activity, 15 lL of media were used with 1,2-O-dilauryl-rac-

3-glutaric-resorufin ester as the substrate, as previously

described [17].

Breast tissue and cell line LMF1 mRNA

expression

Gene expression data from 20 breast cancer cell lines, 31

breast cancer patient samples, and six normal breast tissue

samples were obtained from the Gene Expression Omnibus

database (GPL570-Affymetrix Human Genome U133 Plus

2.0 Array platform), as previously described by Pitts et al.

[18]. The data were robust multichip average normalized,

as previously described [18]. The NetAffx Analysis Center

by Affymetrix was used to identify the LMF1 probe IDs,

which were then used to filter and average the gene expres-

sion data. Gene expression data were analyzed and grouped

by subtype via complete linkage hierarchical cluster analy-

sis using Euclidean distance with GENESIS 1.8.1 [19].

Results and Discussion

LPL protein and expression

Lipoprotein lipase is a glycosylated enzyme that is well-

studied for its roles in lipid metabolism and its negative

role in atherosclerosis [20–22]. The enzyme, originally

termed ‘clearing factor’, was first reported based on the

study of postprandial dogs receiving heparin to displace

the enzyme activity into the bloodstream [23]. Eventu-

ally, the gene encoding LPL protein was identified on

human chromosome 8p22, spanning a 30 kb region [24].

The gene expression for LPL is influenced transcription-

ally by select fatty acids and agonists of the nuclear

receptors liver X receptor, retinoic acid X receptor, and

peroxisome proliferator-activated receptors-a and -c [25].

Until 2018, much of the knowledge about the LPL

structure was based on modeling human pancreatic

lipase, the structure of which was first elucidated in

1990 [26]. Pancreatic lipase is a family member of the

extracellular sn-1 lipase that includes LPL and two

other family members, hepatic lipase and endothelial

lipase [27]. In 2018, the structure of LPL was solved,

complexed as a ligand to one of its extracellular bind-

ing partners, glycosylphosphatidylinositol-anchored

high-density lipoprotein binding protein 1 (GPIHBP1)

[28], which is an important protein in the translocation

of LPL [29]. Similar to pancreatic lipase, LPL includes

two distinct domains: an amino-terminal a/b-hydrolase
domain and a carboxyl-terminal polycystin-1/lipoxygenase/

a-toxin domain [28]. The amino-terminal domain contains

a serine-aspartate-histidine charge relay active site. The

amino-terminal domain also contains a ‘lid region’ that

covers the active site and is responsible for lipid substrate

specificity with the active site [28]. The carboxyl-terminal

domain contains the region responsible for binding to

GPIHBP1 and heparan sulfate proteoglycans [28].
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Lipoprotein lipase is expressed in several tissues,

with the highest levels of expression within the smooth

muscle, skeletal muscle, and adipose tissue [30,31]—
cells that require large amounts of fatty acid for

energy and storage [32]. Of note, cancer cells undergo

lipidomic remodeling and can use fatty acids derived

from LPL to accommodate the increased demand of

fatty acids for cancer cell growth and proliferation [5].

Once synthesized, LPL is secreted from cells into the

subendothelial space to interact with heparan sulfate

proteoglycans [33], assembled as a catalytically active

head-to-tail homodimer [34]. LPL can also associate

with GPIHBP1, which translocates LPL to the capil-

lary wall [29]. The binding of LPL to GPIHBP1 can

allow for its bi-directional transport across the capillary

wall to facilitate lipolysis in the capillary lumen [29].

LPL catalytic and noncatalytic activities

While LPL can hydrolyze fatty acyl chains from tria-

cylglycerols and phospholipids, it exhibits a preference

for triacylglycerols over phospholipids [35]. In line

with this, LPL preferentially hydrolyzes lipids from

triacylglycerol-rich lipoproteins, including chylomi-

crons and very low-density lipoproteins (VLDL) [36].

The metabolism of these lipoproteins will yield chy-

lomicron remnants and intermediate-density lipopro-

teins, which can be further metabolized by hepatic

lipase and endothelial lipase. The localized LPL activ-

ity at cell surfaces in vivo is not normally detected sys-

temically without the displacement of LPL via

heparin. The catalytic activity of LPL is strongly

enhanced by the cofactor apolipoprotein C-II, while it

can be inhibited by apolipoprotein C-III [37].

In addition to its catalytic function, LPL plays a non-

catalytic role in enhancing the catabolism of intact

lipoproteins. Through its binding to cell surface proteogly-

cans, LPL can ‘bridge’ lipoproteins to cell surface recep-

tors, such as select members of the low-density lipoprotein

receptor family, to allow for receptor-mediated endocyto-

sis. For example, Lupien et al. [38] showed in a time- and

dose-dependent manner with the MDA-MB-231 triple-

negative breast cancer cell line that VLDL could be endo-

cytosed by the VLDL receptor through this bridging func-

tion. Thus, this noncatalytic role of LPL, together with its

catalytic activity, could provide additional lipids in bulk

within the breast tumor environment.

Meta-analyses of LPL mRNA expression in breast

tumors

In 2011, Kuemmerle et al. [12] reported that LPL pro-

tein was present in 147 examined breast tumors. This

would support the need for LPL by the tumor envi-

ronment to provide fatty acids. An examination of

RNAseq data (primarily from The Cancer Genome

Atlas database) via the KMPlot analysis tool for

breast tumor LPL mRNA expression revealed that a

lower rate of survival over 80 months was associated

with a high expression of LPL, regardless of breast

cancer subtype—2976 subjects, HR 1.91 (1.52, 2.40),

P = 1.70 9 10�8 (Fig. 2 and Table S1). The luminal B

ER+/PR�/HER2+ subtype [n = 40, HR 15.00 (1.63,

137.82), P = 0.0023] and the HER2-enriched ER�/
PR�/HER2+ subtype [n = 50, HR 6.07 9 108 (0, infin-

ity), P = 0.043] appear to in part contribute to the

association of high LPL mRNA expression and low

survival rate with breast cancer (Table S1). A contra-

dictory observation was found with the luminal A

ER�/PR+/HER2� subtype, such that a high level of

LPL mRNA expression was associated with a higher

survival rate [n = 21, HR 0.00 (0.00, infinity),

P = 0.039] (Table S1). No differences were observed

with other breast cancer subtypes (Table S1). Some

caution with the interpretation of the aforementioned

data is needed, in part due to a low number of

Fig. 2. Kaplan–Meier plot of the probability of survival over time for

subjects with high or low expression of LPL mRNA within breast

tumors assessed by RNAseq. RNAseq datasets for all types of

breast cancer tumors primarily from The Cancer Genome Atlas

database were examined for LPL mRNA expression, using KMPLOT

online software (http://www.kmplot.com/) [13]. Subjects were

defined as high expressors or low expressors of LPL mRNA based

on the automatic calculation of the upper and lower quartiles of the

arbitrary values of RNAseq data. Hazard ratios and statistical analy-

ses were calculated with the online software, as previously

described [13].
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subjects for some subtypes, and also because an exami-

nation of combined microarray datasets from the Gene

Expression Omnibus and European Genome-Phenome

Archive databases via the KMPlot analysis tool

showed no significant differences between LPL mRNA

expression and survival (Table S2). This is likely due

to differences in microarray and RNAseq methodolo-

gies; however, more reliability may be placed on the

RNAseq data because of the ability to read longer

sequences compared with the probe lengths in DNA

microarrays [39].

Given the above meta-data examining tumor tissue,

it would be anticipated that the ER+/PR�/HER2+ and

ER�/PR�/HER2+ breast cancer cell lines would

express more LPL mRNA versus other breast cancer

cell subtypes. Kuemmerle et al. [12] evaluated LPL

mRNA expression in several breast cancer cell lines

via qPCR. They showed that the luminal B ER+/PR�/
HER2+ BT474 cell line and the HER2-enriched ER�/
PR�/HER2+ SKBR3 cell line had among the lowest

levels of LPL mRNA versus other breast cancer cell

subtypes. This discrepancy highlights the complexity of

tumor tissue, which aside from the breast cancer cells

themselves, contains surrounding adipose tissue and

endothelial vasculature that also expresses LPL

mRNA and active LPL protein (as well as other

lipases). Thus, additional cell types in the tumor

microenvironment may provide a source of the enzyme

to yield fatty acids from acylglycerols for use by breast

cancer cells.

Kuemmerle et al. [12] showed that the triple nega-

tive ER�/PR�/HER2� cell line Du4475 had the high-

est level of LPL mRNA expression compared with all

other breast cancer cell subtypes examined. LPL pro-

tein was shown on these cells by immunoblotting [12]

and subsequently by flow cytometry [38], with the LPL

being catalytically active [12]. Kuemmerle et al. [12]

showed five other cell lines exhibited the highest level

of LPL mRNA expression, but their receptor statuses

were somewhat inconsistent: HCC2157 (ER�/PR+/

(A)

(B)

(C)

Fig. 3. Kaplan–Meier plots of the probability of survival over time

for subjects with high or low expression of LPL mRNA within basal

and luminal breast tumors assessed by RNAseq. RNAseq datasets

from The Cancer Genome Atlas database for (A) basal-type tumors,

(B) luminal A-type tumors, and (C) luminal B-type tumors were

examined for LPL mRNA expression, using KMPLOT online software

(http://www.kmplot.com/) [13]. Subjects were defined as high

expressors or low expressors of LPL mRNA based on the auto-

matic calculation of the upper and lower quartiles of the arbitrary

values of RNAseq data. Hazard ratios and statistical analyses were

calculated with the online software, as previously described [13].
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HER2+), HCC1008 (ER�/PR�/HER2+), HCC1599

(ER�/PR�/HER2�), SUM149 (ER�/PR�/HER2�),
and SUM190 (ER�/PR�/HER2�). Despite this, these

five cell lines plus the Du4475 cell line were considered

aggressive basal-type cells. A re-examination of data-

sets for RNAseq via the KMPlot analysis tool showed

that basal-type tumors indeed had a reduced survival

rate with high LPL mRNA expression [n = 309, HR

1.95 (1.06, 3.57), P = 0.028], unlike both luminal A-

type tumors [n = 1504, HR 1.36 (0.92, 2.01), P = 0.13]

and luminal B-type tumors [n = 668, HR 0.66 (0.41,

1.05), P = 0.080], both of which exhibited no associa-

tion (Fig. 3 and Table S3).

LPL protein and LMF1 mRNA in breast cancer

Using flow cytometry, Lupien et al. [38] reported the

presence of LPL protein associated with the BT-474

(ER+/PR�/HER2+) and the MDA-MD-231 (ER�/
PR�/HER2�) cell lines, although almost all of the

LPL protein was detected intracellularly. Other cell

lines, such as the T47D (ER+/PR+/HER2�) and MCF-

7 (ER+/PR+/HER2�) lines, exhibited little LPL

mRNA expression [12] and no detectable endogenous

LPL protein [38]. Consistent with these data, we

detected no LPL activity in both the absence or pres-

ence of heparin from the media of T47D and MCF-7

cells (Fig. 4). However, we did detect a low level of

LPL activity from the media of MDA-MD-231 and

SKBR3 cells, although comparable in the absence or

presence of heparin (Fig. 4).

The intracellular accumulation of LPL protein

observed by Lupien et al. [38], and our observation of

low LPL activities from the MDA-MD-231 and

SKBR3 cells, may suggest a low expression of the

chaperone lipase maturation factor 1 (LMF1) in the

breast cancer cell lines; LMF1 is needed to yield active

LPL within the secretory pathway [40]. Thus, we

examined LMF1 mRNA expression in 20 breast cancer

cell lines, 31 breast cancer patient samples, and six

normal breast tissue samples using datasets obtained

from the Gene Expression Omnibus [18]. The results

show that across the majority of samples tested,

LMF1 mRNA expression is lower in breast cancer tis-

sues and cell lines versus normal breast tissue (Fig. 5).

Thus, the data suggest that LMF1 expression may

become dysregulated in breast cancer; however, this

requires further investigation.

What is LPL doing in the breast cancer

microenvironment?

The expression of LPL mRNA or the presence of LPL

protein, whether active or inactive, in breast cancer

tumor subtypes or cell types points toward LPL pro-

viding fatty acids for use within the tumor environ-

ment. The overall question is why is LPL, a key

enzyme for lipoprotein metabolism and the prevention

of systemic hypertriglyceridemia, present in the tumor

microenvironment in the first place? This can be fol-

lowed by the question of whether the enzyme itself—
active or inactive, or the hydrolysis products generated

by the enzyme, is contributing toward a beneficial or

detrimental outcome in the breast cancer tumor milieu.

Data to thoroughly address these questions are very

limited. However, the available data open future ave-

nues of research toward understanding the role of

LPL in breast cancer, and other cancers in general.

Lupien et al. [38] showed that Di-I-labeled VLDL

could bind to the cell surfaces of MDA-MB-231 cells

and that it could be internalized at 37 °C. Heparin,

heparinase, and antibodies against heparan sulfate

Fig. 4. LPL activity from the media of

breast tumor cell lines in the absence or

presence of heparin. Breast cancer cell

lines were incubated for 30 min. in the

absence or presence of heparin within

serum-free media. Heparinized media from

HEK-293T cells transiently transfected to

express LPL were used as a positive

control. Media were examined for LPL

activity using a resorufin ester substrate.

Data are presented as the mean of

triplicate experiments � standard

deviation. *P < 0.05 using an unpaired t-

test. Experimental design and details are

available within the Materials and

methods.
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proteoglycans prevented this association and uptake.

Furthermore, the authors showed that the siRNA-

mediated knockdown of LPL or the VLDL receptor,

as well as the incubation of cells with receptor-

associated protein, also reduced Di-I-labeled VLDL

uptake, thus suggesting a role for the bridging function

of LPL. On the contrary, Kuemmerle et al. [12]

showed that Di-I-labeled VLDL could bind to the cell

surfaces of Du4475 cells, but they did not observe the

internalization of the Di-I-labeled VLDL. This sug-

gests a possible dysfunction with one or more of the

low-density lipoprotein receptor family members rather

than an issue with LPL itself since it was found to be

catalytically active. However, this route of lipid deliv-

ery in the presence of increasing exogenous LPL was

shown to increase cell viability in T47D cells [12].

Thus, both endogenous and exogenous LPL protein

appear to be detrimental to breast cancer.

Backing a detrimental role of LPL protein in breast

cancer is work by Manupati et al. [41], who showed

the activation of the transmembrane glycoprotein

CD44 with hyaluronic acid in CD24�/CD44+ breast

Fig. 5. Analysis of LMF1 mRNA expression in breast cancer cell lines, primary breast tumor samples, and normal breast tissue. Gene

expression data from 20 breast cancer cell lines, 31 breast cancer patient samples, and six normal breast tissue samples were obtained

from the Gene Expression Omnibus database. LMF1 probe IDs were obtained and used to filter and average the gene expression data.

Gene expression data were analyzed by complete linkage hierarchical clustering using GENESIS 1.8.1 [19]. Details of the analysis are available

within the Materials and methods.
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cancer stem cells upregulated LPL mRNA and LPL

protein expression; the siRNA-mediated knockdown

of CD44 reduced LPL protein expression versus con-

trol cells with scrambled siRNA. The authors further

showed in vitro that the pan-sn-1 lipase inhibitor

tetrahydrolipstatin significantly inhibited hyaluronic

acid-induced increases in migration, invasion, and

mammosphere formation in Matrigel cultures of the

CD24�/CD44+ breast cancer stem cells isolated from

MDA-MD-231 cells. Lastly, using the immunocom-

promised nude mouse model, the authors showed that

the intratumoral administration of tetrahydrolipstatin

to tumors derived from CD24�/CD44+ breast cancer

stem cells expressing green fluorescent protein as a

marker for detection resulted in a nearly 20-fold lower

tumor size after 65 days versus untreated CD24�/
CD44+ breast cancer stem cell-derived tumors. While

this suggests LPL as the key player in affecting tumor

size, it should be noted that the presence of endothelial

lipase may also affect tumor growth [42].

Cancer cells can secrete cytokines to modulate the

survival of the cells and the surrounding tumor

microenvironment [43]. Our group, in Tobin et al. [14],

incubated MDA-MB-231, MDA-MB-468, MCF-7,

SKBR3, T47D cell lines, and the noncancerous mam-

mary epithelial cell line MCF-10a, in the absence or

presence of lipoprotein lipid hydrolysis products that

were generated by LPL. ELISA analyses were carried

out for tumor necrosis factor (TNF)-a, interleukin

(IL)-4, and IL-6 from the media of the cell lines. Our

group found a significant increase in the levels of

TNF-a, IL-4, and IL-6 in the media from triple-

negative breast cancer cell lines (MDA-MB-231 and

MDA-MB-468) compared with the media from MCF-

10a control cells, a significant increase in media IL-6

from SKBR3 cells versus control but no detectable

levels of TNF-a, IL-4, or IL-6 within the media from

MCF-7 and T47D cells. TNF-a has been shown to

play a role in cancer cell proliferation, angiogenesis,

migration, and invasion, and it is typically associated

with more aggressive subtypes [44]. Similarly, IL-6 also

plays a significantly detrimental role in the tumor

microenvironment and tumor metastasis [45]. IL-4

secretion can activate M2-like tumor-associated

Fig. 6. Hypothesis for the role of LPL in the breast cancer microenvironment. Cell surface-associated LPL, from either breast cancer cells or

surrounding adipose tissue, will hydrolyze lipoprotein lipids to yield smaller lipoproteins and lipid hydrolysis products (including unesterified

fatty acids, acylglycerides, and lysophospholipids). We hypothesize that these products will result in breast cancer cell proliferation and

metastasis, leading to a reduced prognosis.
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macrophages, which are strongly protumorigenic and

can contribute to a protumorigenic microenvironment

in vivo [46]. Collectively, this indicates that the hydrol-

ysis products liberated by LPL from total lipoproteins

can play a detrimental role in breast cancer.

Conclusion

Although several nuances remain to be studied, LPL

has been extensively investigated for its roles in

lipoprotein metabolism and atherosclerosis, as noted

in many reviews such as Olivecrona and Olivecrona

[20], Li et al. [21], and Kumari et al. [22]. However,

research toward understanding the roles of LPL in

breast cancer (and other cancers) is in its infancy. In

addition, a careful examination of the classes and indi-

vidual species of lipid hydrolysis products generated

by LPL from lipoproteins, and their roles in breast

cancer progression, remain to be understood. Reduc-

ing LPL activity in the tumor microenvironment

appears to be an attractive concept [41]. However, a

risk of some degree of systemic hypertriglyceridemia

might exist that may contribute to atherosclerosis,

pancreatitis, and steatosis. Of note, some chemothera-

pies, such as tamoxifen and asparaginase, inhibit LPL

activity but also lead to hypertriglyceridemia [47,48]. A

reduction in LPL activity as part of breast cancer ther-

apy combined with additional therapies to reduce

hypertriglyceridemia, such as fenofibrate [49] and high-

dose omega-3 fatty acids [50], may protect against the

hypertriglyceridemia burden; however, this remains to

be examined.

Overall, we hypothesize that the lipid hydrolysis

products that are generated from lipoproteins by LPL

impact the breast cancer cell microenvironment, ulti-

mately decreasing prognosis due to increased prolifera-

tion and metastasis (Fig. 6). Further studies into the

role of LPL in different cancers are necessary to

understand the impact LPL has on tumorigenesis, and

how it can be used as a potential target for therapy.

The role of LPL may vary depending on the stage of

cancer and subtype, but the time is right to take

advantage of the biochemistry of LPL and the knowl-

edge of LPL function in atherosclerosis down a new

avenue.
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