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Despite advancements in treatment, high-grade serous ovarian cancer

(HGSOC) is still characterized by poor patient outcomes. To understand

the molecular heterogeneity of this disease, which underlies the challenge in

selecting optimal treatments for HGSOC patients, we have integrated geno-

mic, transcriptomic, and epigenetic information to identify seven new

HGSOC subtypes using a multiscale clustering method. These subtypes not

only have significantly distinct overall survival, but also exhibit unique pat-

terns of gene expression, microRNA expression, DNA methylation, and

copy number alterations. As determined by our analysis, patients with sim-

ilar clinical outcomes have distinct profiles of activated or repressed cellular

processes, including cell cycle, epithelial-to-mesenchymal transition,

immune activation, interferon response, and cilium organization. Further-

more, we performed a multiscale gene co-expression network analysis to

identify subtype-specific key regulators and predicted optimal targeted ther-

apies based on subtype-specific gene expression. In summary, this study

provides new insights into the cellular heterogeneity of the HGSOC geno-

mic, epigenetic, and transcriptomic landscapes and provides a basis for

future studies into precision medicine for HGSOC patients.
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Ovarian cancer is the most lethal gynecological cancer

in the United States, with over 14 000 estimated deaths

in 2018 that make up 5% of total cancer-related

deaths in women [1]. Though the 5-year survival rate

for localized disease is over 90%, the vast majority of

patients are not diagnosed until the tumor has already

progressed to distant stage disease, for which the aver-

age 5-year survival drops to below 30% [1]. High-

grade serous ovarian cancer (HGSOC) accounts for

the majority of mortalities from ovarian cancer, and

its overall survival has shown little improvement over

the past several decades. Despite initial effective treat-

ment with platinum-based chemotherapy, resistance

arises in a large majority (80–90%) of patients with

late-stage disease [1]. Although poly-ADP ribose poly-

merase inhibitors (PARPi) have been a recent treat-

ment of HGSOC carrying homologous recombination

deficiency (HRD), therapeutic options approaches for

remaining HGSOC are still limited [1,2]. Therefore,

multiomics approaches are expected to predict disease

processes for enabling precision-guided therapeutic

strategies.

Recently, there have been efforts directed at identi-

fying molecular subtypes of HGSOC that may further

identify and predict unanticipated susceptibilities. Tot-

hill et al. were one of the first groups to stratify high-

grade tumors into subtypes with distinct molecular sig-

natures, followed by The Cancer Genome Atlas

(TCGA) Research Network, which also identified a set

of HGSOC subtypes with similar molecular signatures

from both the TCGA and Tothill cohorts [3–5]. How-

ever, the subtypes based on the TCGA transcriptomic

data did not differ significantly in survival, though

their miRNA-based subtypes did [5]. Later, studies

focusing on transcriptomic and/or multiomic data

identified subtypes with molecular characteristics simi-

lar to those by Tothill et al and The Cancer Genome

Atlas Research Network [6–13]. Though previous stud-

ies successfully identified a poor surviving subtype en-

riched for epithelial-to-mesenchymal transition (EMT),

extracellular matrix (ECM), and transforming growth

factor-beta (TGF-beta)-related genes, our clustering

method allows for more comprehensive molecular

characterization to compare and contrast all the identi-

fied subtypes and to expand the range of innovative

subtype-specific treatment strategies [7,12,14–19].
Moreover, there remains opportunities to identify

additional subtypes of HGSOC [12,18].

Using a novel clustering approach, Multiscale

Weighted Interaction Network Analysis (MWINA) [20],

we developed a rigorous systems biology framework for

analyzing multiomics data from HGSOC to reveal seven

HGSOC patient subtypes that are significantly distinct

in their overall survival (OS). Compared with the previ-

ously published HGSOC subtypes, the new subtypes

show unique combinations of activated or repressed bio-

logical processes such as cell cycle, epithelial-to-

mesenchymal transition, immune activation, interferon

response, and cilium organization. We then used

subtype-specific gene expression to identify molecular

signatures, networks, key regulators, and therapeutic

compounds for each subtype and showed that even sub-

types with similarly poor or favorable clinical outcomes

are characterized by different molecular pathways.

Finally, we utilized the subtype-specific gene expression

profiles to predict drugs against each subtype. This

study provides not only new insights into the processes

underlying the molecular heterogeneity of HGSOC but

also identifies potential therapeutics for HGSOC sub-

types, representing a significant advance toward preci-

sion medicine for ovarian cancer.

Results

Identification of HGSOC molecular subtypes

For sample clustering, we used survival-associated fea-

tures from the mRNA expression, microRNA expres-

sion, copy number alteration (CNA), and DNA

methylation data from 512 TCGA HGSOC samples

(TCGA-HGSOC) selected by Zhang et al. [14]. The

prognostic significance of each individual feature was

assessed by univariate Cox proportional hazard model

analysis (P < 0.05) relative to patient survival [14]. A

total of 4526 features were used, including the expres-

sion of 1651 mRNA genes, 140 microRNAs, 2191

somatic CNAs, and 455 DNA methylation sites. Fea-

ture values were then normalized with respect to the

expression of normal controls as described previously

[14].

A new clustering approach, Multiscale Weighted

Interaction Network Analysis (MWINA), was utilized

to identify novel HGSOC subtypes from the TCGA-

HGSOC cohort. Briefly, MWINA optimizes for net-

work modularity, Q(γRB), and Reichardt-Bornholdt

parameter, γRB, controls the resolution of the optimal

solution [21] (see Methods for details). By exploiting

γRB across a range of 0.1–4, 60 sets of HGSOC patient

subtypes with varying degrees of compactness were

generated. These sets were then ranked based on the

significance of the subtype OS (defined as the time

between initial surgical resection to date of death or

date of last follow-up) as demonstrated by the survival

chi-squared statistic. Finally, we selected the highest
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ranked set that contains seven subtypes with highly

varied molecular signatures and significantly distinct

OS (chi-squared P < 4.21 × 10−11). (Fig. 1A,B,

Table 1).

The stability of the MWINA-based subtypes was

assessed by subsampling. MWINA was performed on

each of 50 datasets generated by randomly subsam-

pling for 80% of all features and 80% of all patients.

A concordance matrix was then generated across all

the bootstrapped clusters to represent the probabilities

that any pair of two patients are consistently found in

the same cluster (Fig. S3A). From the bootstrapping

outputs, empirical P-values were computed to evaluate

cluster concordances across the 50 datasets. All the

MWINA-based subtypes yielded P-values < 10−6,

demonstrating the robustness of the identified sub-

types.

To check whether the subtypes were biased toward

clinical traits, we tested whether the seven subtypes can

be distinguished by tumor stage, tumor histological

grade, residual tumor size, or age at diagnosis. Kruskal–
Wallis (KW) test shows that there is no significant dif-

ference in tumor stage, histological grade, or residual

tumor size among the subtypes (Fig. 1C; Table S1), but

age at diagnosis is significantly different among the sub-

types and affects OS (Cox proportional hazard

P = 0.0020, HR = 1.02), with Subtype-4 and Subtype-5

having the highest mean age at diagnosis (Fig. 1D,

Table 1). However, removing Subtype-4 and Subtype-5

eliminated this covariate effect (Cox proportional haz-

ard P = 0.34, HR = 1.01, KW-test P = 0.8124) among

the rest of the five subtypes (Table S1). Furthermore,

the age at diagnosis for each pair of subtypes was signifi-

cantly different (Student’s t-test P < 0.05) only for com-

parisons with Subtype-4 or Subtype-5 but not for all

other subtype pairs (Fig. S3B), suggesting that age at

diagnosis is not a significant predictor of subtype mem-

bership for the other five subtypes. Lastly, Cox propor-

tional hazard analysis showed a significant effect of

residual disease on OS in the overall cohort (P = 0.0042,

HR = 1.19), but not within subtypes 2, 4, 5, and 6

(P = 0.089, HR = 1.14). Although subtype-6 has fewer

samples with residual disease compared with the others,

this result suggests that membership within the subtypes

with the shortest and longest OS may not be due to

amount of residual tumor alone.

In comparison with the published TCGA-HGSOC

subtypes by Zhang et al. [14], redistribution of the

TCGA-HGSOC samples by the MWINA cluster algo-

rithm improved the subtype prognostic significance by

several orders of magnitude (MWINA chi-squared

P < 4.21 × 10−11 vs. Zhang et al. 2013 chi-squared

P = 2.96 × 10−7) (Fig. S3C). In addition, the

MWINA-based subtypes with poor OS do not have

significantly more late-stage disease patients com-

pared with other MWINA-based subtypes (Fig. 1C;

Table S1), which is in contrast to the poor prognosis

subtype identified by Zhang et al. [14] that contains

more patients in stages IIIC and IV. Lastly, we identi-

fied subtypes with significant variations in immune cell

activation, which was not a focus of the subtypes from

Zhang et al. [14]. This shows that the MWINA-based

subtypes are not duplication of the subtypes from

Zhang et al. [14], but rather a redistribution of these

patients to form even more prognostically distinct

groups.

Molecular signatures of the HGSOC subtypes

To understand the underlying molecular processes of

each subtype, we performed differential gene expres-

sion (DEG) analysis on the transcriptomic data. We

compared the samples within each subtype with those

from the rest of the six subtypes in the full RNA-Seq

data of the 420 samples from the TCGA-HGSOC

cohort and also performed DEG analysis on the

microarray data between the samples in each subtype

against the normal controls (n = 8). The Molecular

Signatures Database (MSigDB) was used to identify

pathways and functions uniquely enriched in differen-

tially expressed genes per subtype (BH-corrected

P < 0.05 and fold change ≥ 1.2) (Fig. 2A,B). The sam-

ples in Subtype-4 are enriched for extracellular matrix

(ECM) functions including adhesion, vasculature

development and cell movement compared with the

rest of the subtypes and normal samples (Fig. 2A;

Fig. S4A). Upregulation of these processes likely con-

tributes to the poor prognosis of the patients in this

subtype, as many of these genes have been implicated

in epithelial-to-mesenchymal transition (EMT) and

metastasis [22]. By contrast, though the patients in

Subtype-5 also have poor OS (Fig. 1B, Table 1), they

are characterized by upregulated cell cycle process

genes and downregulated genes in defense response

and immune system process (Fig. 2A,B; Fig. S4B).

Similar to Subtype-5, Subype-1 also has upregulated

cell cycle genes but it has downregulated genes

involved in cell substrate and anchoring junctions

(Fig. 2A,B). Subtype-2, Subtype-3, and Subtype-6,

with favorable survival (Fig. 1B, Table 1), have upreg-

ulated immune activation, protein localization, and cil-

ium organization, respectively (Fig. 2A). Finally, a

significant number of genes upregulated in Subtype-7

have the conserved CAGGTG motif, and many of the

downregulated genes have the conserved SCGGAAGY

motif corresponding to ELK1 transcription factor
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binding site (Fig. 2A,B). Due to their distinct molecu-

lar pathways, Subtypes-1, 2, 3, 4, 5, 6, and 7 are

renamed as S-CC (cell cycle), S-immune, S-LOC (lo-

calization), S-ECM, S-CC-2, S-cilium, and S-motif,

respectively. The results show that subtypes with simi-

lar prognoses are characterized by distinct molecular

pathways (Fig. S4C–F).
As previously shown, HGSOC tumors can have a

high amount of stromal and immune cell infiltration

from the tumor microenvironment [23]. To explore

whether subtype-specific gene expression signatures are

due to contributions from the tumor microenviron-

ment, we examined cell type composition of each sub-

type. Using the ESTIMATE R package [24], we computed

stromal scores, immune scores, and tumor purity

scores as proxies for tumor composition (Fig. 2C).

Although subtype tumor purity scores were not

directly correlated with survival outcome (Pearson

Fig. 1. MWINA-based HGSOC subtypes with distinct molecular profiling patterns and overall survival (OS), but similar clinical traits. (A) Mul-

tiscale weighted clustering of 512 TCGA ovarian cancer patients based on previously published features significantly associated with sur-

vival. These include mRNA and miRNA expression, copy number segments, and DNA methylation positions. Columns represent samples

organized by subtype membership, and rows represent z-score normalized feature expression. (B) Kaplan–Meier survival curves showing OS

probabilities for seven novel ovarian cancer subtypes. Censored data are represented by “+” to indicate time to last follow-up. Chi-squared

P-value < 4.21 × 10−11. (C) Clinical traits for each ovarian cancer subtype. Clinical traits shown include tumor stage, tumor histological grade,

and residual tumor size. Color gradient corresponds to number of patients. (D) Distribution for age at diagnosis for patients categorized by

molecular subtype, with mean age � one standard deviation shown for each subtype.
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correlation rho = 0.045, P-value = 0.33), the KW-test

shows that the subtype stromal, immune, and tumor

purity scores are significantly different among the

seven subtypes (Table S1).

The subtype-specific immune and ECM gene signa-

tures are likely due to immune and stromal cell infil-

trates from the tumor microenvironment. The

upregulated DEGs from S-ECM significantly overlap

(Fisher’s exact test (FET) Bonferroni-corrected P =
1.01 × 10−72) with CAF-specific genes that are under

TGF-beta regulation [25] (Fig. 2D). By contrast, there

is no overlap between the TGF-beta regulated CAF-

specific genes and DEGs from other subtypes

(Fig. 2D). The DEGs from S-immune significantly

overlap (FET Bonferroni-corrected P < 0.05) with the

differentially expressed genes in ovarian tumors rich in

cytotoxic T-lymphocytes (CTLs) [26], demonstrating

the presence of an infiltrating CTL population in the

S-immune subtype (Fig. 2E). The DEGs from other

subtypes with similar OS as S-immune, such as S-LOC

and the S-cilium, also overlap with markers corre-

sponding CTL-high and CTL-low states (Fig. 2E). By

contrast, the upregulated DEGs in S-ECM have signif-

icant overlap with the CTL-low gene signature, sug-

gesting that the immune cell signature in S-ECM does

not originate from an infiltrating CTL population

(Fig. 2E). Instead, the immune signature in the S-

ECM is likely from a myeloid-derived suppressor cell

(MDSC) population, as demonstrated by the signifi-

cant overlap (FET Bonferroni-corrected P <
2.06 × 10−14) of the S-ECM upregulated DEGs with

genes overexpressed in MDSCs from non-small-cell

lung cancer (NSCLC) (data accessible at NCBI GEO

database, accession GSE79404) (Fig. S4G) [27,28].

Lastly, the S-CC-2 seems to lack both infiltrating

CTLs and MDSCs, as shown by the low ESTIMATE

stromal and immune scores, as well as downregulation

of CAF, CTL, and MDSC-specific genes in its DEG

signature (Fig. 2D,E; Fig. S4G,H).

Subtype-specific gene networks and key

regulators

To uncover gene–gene coexpression/co-regulation rela-

tionships in HGSOC, multiscale embedded gene co-

expression network analysis (MEGENA) was performed

to construct a global gene–gene correlation network

from the transcriptomic data of all patients [29]

(Fig. 3A, Table 2). While the RNA-Seq data were

available for only 420 TCGA HGSOC samples for

building the MEGENA network, this subpopulation and

the 512 patients used for subtype clustering are suffi-

ciently similar to make the network an accurate clini-

cal representation of the entire TCGA-HGSOC cohort

(Table S2). MEGENA identified 826 gene modules, which

were significantly enriched for a variety of functions

such as ECM (module M4), immune system process

(module M6), interferon response (module M7), cell

cycle (module M12), and cilium organization (module

M15) (Fig. 3B).

The co-expressed gene modules significantly overlap

with many DEG signatures of the subtypes. As

expected, the signatures of these subtypes with similar

OS are enriched for different sets of gene modules. S-

ECM and S-CC-2, the two subtypes with the poorest

prognosis, have opposite patterns of DEG enrichment

of the ECM modules (M4, M16, and M140) and cell

cycle module (M12 and M12-child modules) genes

(Fig. 3C,D; Figs S5 and S6). For the subtypes with

good prognosis, S-immune DEG signature shows

upregulation of the immune system (M6) and inter-

feron response (M7) modules, in contrast to S-cilium,

which shows upregulation of ribosome and transla-

tion (M14) and cilium (M15) module genes and

Table 1. Summary of clinical, transcriptomic, and epigenetic traits for all subtypes.

Subtype # Samples

Mean age

at diagnosis

Mean OS

(days)

miRNA

dysreg.a
Methyl.

dysreg.a
Immune

response ECM Cell cycle Cilium

1 62 58.26 1067.05 Low Low Low – High Med-High

2 79 58.32 1284.11 Moderate Moderate High Low – –
3 50 56.68 1177.28 Low Low – – – –
4 69 62.65 764.64 High High High High Low Low-Med

5 77 66.42 841.1 High High Low Low High –
6 115 57.39 1164.54 Low Moderate – Low Low High

7 60 57.88 946.68 Low Moderate – – – –

aThe level of miRNA or methylation dysregulation is determined by the number of differentially expressed miRNAs or methylation sites for

each subtype (Table S4), such as subtypes with high, intermediate, and low numbers of DE-miRNAs and DMPs are designated as having

high, moderate, and low dysregulation. The immune response, ECM, cell cycle, and cilium categorizations are defined by the number of

upregulated subtype-specific DEGs that are enriched for these categories (Fig. 2A). Subtypes with downregulated DEGs that are enriched

for these categories are labeled as “low” (Fig. 2B).
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downregulation of DNA packaging and transcription

(M13) genes (Fig. 3C,D; Figs S5 and S6). For subtypes

with intermediate OS, S-CC demonstrates upregulation

in cell cycle (M83) as well as DNA packaging and

transcription (M13, M114) module genes, S-LOC

shows downregulation in RNA processing (M69) and

ribosome and protein translation (M14, M122, and

M421) module genes, and S-motif shows upregulation

in targets of transcription factor SP1 (M11 and M67)

modules (Fig. 3C,D; Fig. S5). Trends in the mean

expression of MEGENA module hub genes for each sub-

type also closely match the enriched modules, showing

that these globally identified module hub genes are

likely also subtype key hubs (Fig. 3E).

To confirm this hypothesis, we performed the key

driver analysis (KDA) to identify subtype-specific key

regulators and found that a significant number of

subtype-specific key regulators are also key hub genes

in the global MEGENA network (Fig. 4; Fig. S7A–E)
[30,31]. The upregulated DEGs of S-immune and the

downregulated DEGs of S-CC-2 are concentrated in

the immune response module M6 (Fig. 4A). CD53, a

tetraspanin protein found primarily on cells of

hematopoietic lineage, is the highest ranked key driver

in both S-immune and S-CC-2 (Fig. 4A). Other top-

ranked key regulators for S-immune and S-CC-2 such

as SPI1, SASH3, BIN2, PTPRC, and FERMT3

are also closely related to myeloid and lymphocyte

(A)

(C)

(D) (E)

(B)

Fig. 2. HGSOC subtypes have distinct gene expression signatures and cell type compositions. (A, B) Enrichment of MSigDB gene sets in

the (A) upregulated and (B) downregulated DEGs for each subtype. DEGs were identified by comparing the samples in each subtype with

the rest of the samples (BH-corrected P < 0.05, fold change ≥ 1.2) and enrichment is determined via Fisher’s exact test (FET) for overlap-

ping genes. Color gradient shows −log10(FET P-value). (C) Heatmap showing the mean ESTIMATE Stromal, Immune, and Tumor Purity scores

for each subtype. All scores are z-score normalized across subtypes. (D, E) Heatmaps showing enrichment of subtype-specific up- (red, top)

and down- (blue, bottom) regulated DEGs for (D) Cancer-associated fibroblast (CAF) markers under regulation by TGF-beta, and for genes

characteristic of (E) cytotoxic T-lymphocyte (CTL) high and low HGSOC tumors. Enrichment is determined via FET. Color gradient shows

−log10(FET Bonferroni-corrected P-value). See also Fig. S4.
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development, innate immunity, and other hematopoi-

etic cell functions. Together with the ESTIMATE scores

and DEG enrichment gene signatures (Fig. 2C,E),

these key regulators again demonstrate that differences

in the amount of external immune cell infiltration are

most likely responsible for the differences in immune

gene expression for these two subtypes. Though the

key regulators of S-immune are most concentrated in

the immune response module (M6) (Fig. 4A), S-

immune is also potentially driven by other key regula-

tors in the major histocompatibility complex (MHC)

class I antigen-processing response module (M7) such

as TAP1, TAP2, and PSMB9 (Fig. S7F). This finding,

combined with the enrichment of the CTL-high gene

signature in S-immune upregulated DEGs (Fig. 2E),

suggests higher levels of antigen-presentation and cyto-

toxic T-cell activation compared with other subtypes.

Key regulators of S-ECM are uniquely concentrated

in the ECM module (M4) (Fig. 4B). Identification of

collagen genes COL5A1, COL5A2, and COL3A1 as

top key regulators points to a tumor microenviron-

ment with significant fibrosis and desmoplastic change.

Fibrogenesis in S-ECM samples is likely due to the

presence of an activated cancer-associated fibroblast

(CAF) population in the tumor microenvironment, as

indicated by the identification of CAF marker genes as

key regulators for S-ECM, including FAP, ACTA2,

PDGFRB, VCAN, and ITGA11 [25,32–34] (Fig. 4B).

Consequently, the unique upregulation of TGF-beta

family genes TGFB1, TGFBR2, TGFBI, TGFB1I1, and

TGFB3 in S-ECM could be due to increased produc-

tion of TGF-beta by CAFs in the tumor microenviron-

ment [33]. Furthermore, CAFs can also secrete other

immunosuppressive cytokines such as IL-6 and C-C

motif chemokine ligand 2, both of which are upregu-

lated in S-ECM [33].

The key regulators of the rest subtypes are also dis-

tinct. S-CC regulators predicted from both up- and

downregulated DEGs primarily fall into the DNA

packaging and transcription module (M13) and the cell

cycle module (M12), such as PRMT1 and BCL2L12,

and is suggestive of overactive cell replication in S-CC

(Fig. 4C; Fig. S7G). The key regulators of S-LOC are

primarily concentrated in module M8, which contains

a number of genes related to RNA binding and trans-

lation (Fig. 4D), and key regulators in S-cilium pre-

dicted by its upregulated DEGs all fall into M15,

which is associated with cilium and cilium motility

(Fig. 4E). This unique upregulation of cilium-related

genes in S-cilium could explain the favorable prognosis

of this subtype, as the maintenance of normal cilium

gene expression has been implicated in decreased

tumor proliferation [35]. Lastly, S-motif key regulators

fall into M11, which is enriched for genes containing

conserved binding sites for transcription factors such

as SP1, ELK1, and NRF1 (Fig. 4F). Integrating sub-

type patient outcome with subtype-specific key drivers,

we can predict appropriate activation or inhibition of

key driver gene expression to promote antitumor pro-

cesses and suppress tumorigenic pathways (Table S3).

For example, further upregulation of the S-immune

key regulators will likely improve patient outcome,

whereas this is not the case for S-ECM and S-CC-2

(Table S3).

We found that the impact of differentially expressed

(DE-) miRNAs on gene expression varies by subtype.

S-ECM and S-CC-2 have the largest number of DE-

miRNAs compared with the other subtypes, whereas

S-CC, S-LOC, and S-cilium each have fewer than 12

DE-miRNAs and consequently less miRNAs influence

(Tables S4 and S5). DE-miRNAs also seem to be sig-

nificantly correlated with subtype-specific key regulator

expression (Figs S1A,B and S2). Subtype-specific

methylation analysis showed that cis-differential

methylated probe (DMP) genes also include a large

portion of subtype-specific key regulators, especially

those that are predicted to downregulate DEGs in the

S-cilium and S-motif (Fig. S1C,D, Table S6). Trans-

DMP genes are associated with upregulation of cell

cycle signal in S-CC-2, as well as downregulation of

ECM genes in S-immune (Fig. S1E,F). Finally, we

identified subtype-specific CNAs using GISTIC2.0 [36],

which produced different patterns of genomic locations

with copy number variations for each subtype and pre-

dicted many more deletions than amplifications for all

the subtypes (Figs S1G–J, S8 and S9, Tables S4 and

S7). Most of the common gene amplifications and

deletions involved in HGSOC tumorigenesis are simul-

taneously present in most subtypes and not subtype-

specific, except AKT1/2 amplifications and BRCA1/2

deletions, which are present in only two subtypes

(Table S8).

Subtype-specific therapeutics

The genetic heterogeneity of the seven HGSOC sub-

types suggests the need for individualized treatment

strategies. To this end, we used the recently developed

Ensemble of Multiple Drug Repositioning Approaches

(EMUDRA) to identify drugs that can reverse differen-

tially expressed gene signatures in each subtype in

comparison with normal ovarian tissues [37] (see

Methods). DEGs between subtypes versus normal

samples showed significant and coherent functional

categories that are largely similar to those from DEGs

identified by comparing subtypes to the rest of the
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(A) (B)

(D)(C)

(E)

Fig. 3. Characterization of the HGSOC subtype gene signatures of by the MEGENA co-expression network. (A) Graphical representation of the

global MEGENA gene network based on TCGA HGSOC mRNA expression. Node colors represent gene module membership, and node size is

proportional to node degree. (B) Heatmap showing enrichment of module genes for MSigDB gene sets. Modules correspond to those

shown in Fig. 3A. Module enrichment is determined via Fisher’s exact test (FET) for overlapping genes. Color gradient shows −log10(FET
Bonferroni-corrected P-value). (C, D) Sunburst plots showing overlap of subtype-specific (C) upregulated or (D) downregulated DEGs with

MEGENA network module genes. Colors correspond to subtypes whose DEGs are most enriched for that module. Enrichment is ranked by

FET P-value. Modules with FET Bonferroni-corrected P-value > 0.05 are not colored. (E) Subtype mean expression of hub genes from select

MEGENA gene network modules. Mean expression is normalized by z-score across subtypes. See also Figs S5 and S6.
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tumor samples (Table S9). Additional input to EMUDRA

included drug perturbation data from over 10 000

compounds tested on four cancer cell lines [37]. Com-

parison of the log2(fold change) values of the DEGs

between each subtype versus the normal samples to

those of the drug treatment DEGs shows that the top-

ranked drugs for each subtype can reverse the DEG

signature of the subtype (Fig. 5A; Table S9).

The unique gene expression profiles of the HGSOC

subtypes resulted in small overlap between the pre-

dicted drug lists (Fig. 5B). Among all the 21 pairwise

comparison, 2 pairs of subtypes share 1 drug, 2 pairs

share 2 drugs, and a pair (S-CC and S-LOC) share 17

drugs. The large overlap between S-CC and S-LOC

may be due to relatively similar expression profiles

though a vast majority of their drugs are different.

Although the DEGs upregulated in S-CC, S-LOC, and

S-CC-2 are all enriched for cell cycle-related processes

(Table S9), the predicted top drugs are very different

(Tables S2 and S10). Subtypes with similarly good or

poor prognoses also have different drugs. Although

topoisomerase inhibitors have been shown to be effec-

tive in treating platinum-resistant HGSOC, they are

predicted to reverse only S-CC-2 DEG signatures but

not those for S-ECM (Table 3) [38]. Similarly, the top-

ranked drugs for S-immune and S-cilium, two subtypes

with good prognoses, belong to different drug classes

as well (Table 3, Table S10).

Discussion

In this study, we developed a novel clustering algo-

rithm called MWINA and applied it to the multiomic

data from HGSOC to uncover seven novel HGSOC

subtypes that are highly distinct in OS. These subtypes

are robust and not biased toward clinical parameters

such as tumor stage and grade. More importantly, the

subtypes are comprehensively characterized by specific

molecular changes involving microRNAs, DNA

methylation and copy number alterations as well as

molecular networks.

By utilizing MWINA, our study identified subtypes

with coherent gene expression signatures that can be

categorized into very poor (S-ECM and S-CC-2), inter-

mediate (S-CC and S-motif), and relatively good (S-

immune, S-LOC, and S-cilium) prognoses [14,39]. In

addition, our multiscale co-expression network analysis

of HGSOC and the extension into multiomic correlation

networks enabled in-depth, comprehensive characteriza-

tion of the identified subtypes. Previous work on ovar-

ian cancer subtyping such as Zhang et al.’s subtype

analysis showed a concentration of both high-grade and

late-stage tumors in their subtype-2, which also demon-

strated enrichment in ECM- and EMT-related genes

[14]. However, even though the subtype S-ECM from

this study is also enriched for similar genes, there is no

significant difference in tumor grade and stage among

the MWINA subtypes. Furthermore, the other

MWINA subtypes also have clearly defined molecular

signatures, such as immune system activation (S-

immune), cell cycle (S-CC and S-CC-2), cilium (S-

cilium), and transcription factor binding motifs (S-

motif) that are associated with prognostic outcome.

Although the subtypes from Zhang et al. had signifi-

cantly different overall survival times, it is unclear

whether the other subtypes besides subtype-2 had well-

defined gene signatures and key regulators that are asso-

ciated with prognosis. Furthermore, the highly transla-

tional nature of our work in the utilization of EMUDRA

to predict subtype-specific therapies lays the foundation

for the development of subtype-based personalized

treatment strategies in HGSOC.

Interestingly, two subtypes with similar ages at diag-

nosis and similarly favorable prognoses are regu-

lated by completely different molecular pathways. The

tumors from S-immune display high immune cell

Table 2. Key resources.

Reagent or resource Source Identifier

Software and algorithms

Deposited data Zhang et al. [14] https://doi.org/10.17632/67yzwc826b.2

MEGENA Song et al. [29] http://research.mssm.edu/multiscalenetwork/packages/MEGENA_1.1.tar.gz

ESTIMATE Yoshihara et al. [24] https://bioinformatics.mdanderson.org/estimate/

MSigDB Broad Institute http://software.broadinstitute.org/gsea/msigdb

LIMMA Ritchie et al. [74] https://bioconductor.org/packages/release/bioc/html/limma.html

LUMI Du et al. [73] https://bioconductor.org/packages/release/bioc/html/lumi.html

GISTIC2.0 Mermel et al. [36] GISTIC2.0

GENEPATTERN NOTEBOOK Reich et al. [78] http://genepattern-notebook.org/

EMUDRA Zhou et al. [37] https://doi.org/10.7303/syn11510888

CLUE REPURPOSING CLUE https://clue.io/repurposing-app
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infiltrates and low stromal cell infiltrates as shown by

their DEG signatures and ESTIMATE profiles. By con-

trast, the tumors from S-cilium have very low immune

gene expression, and while their ECM gene expression

is also low, they display an upregulated cilium gene

signature that could point to the S-cilium tumors being

in a quiescent state, resulting in longer OS [40–43].
However, loss of cilia expression, such as observed in

patients belonging to S-ECM, leads to aberrant hedge-

hog (Hh) signaling in HGSOC, resulting in mainte-

nance of cancer stem cells, decreased cell

differentiation, and eventual cancer progression [35].

This may open the opportunity for subtype-specific

treatment with ciliogenesis-promoting drugs such as

glucocorticoids, fibrates, and other nuclear recep-

tor modulators [44]. Alclometasone, a glucocorticoid

receptor agonist and one of the top-ranked reposi-

tioned drugs for S-ECM, could prove to be highly

effective for patients belonging to this subtype. On the

contrary, the patients from S-immune may benefit

from immune checkpoint inhibitors combined with

mTOR inhibitors to enhance the activation and cyto-

toxicity of the relatively large amount of CD8+ T-cells

already present in this subtype [45–47]. BRD-

K27305650, an mTOR inhibitor predicted to reverse

S-immune gene expression signatures, could be an

ideal candidate for this purpose.

Besides the loss of cilia expression, S-ECM also has

upregulated ECM and immune response which are

under the regulation of microRNAs and methylations.

On the contrary, S-CC-2, which has similarly poor sur-

vival as S-ECM, is characterized by a gene signature

profile that is almost completely opposite. The patients

in S-CC-2 have downregulated ECM and immune

response as well as upregulated cell cycle-related pro-

cess also under significant regulation of microRNAs

and methylations. It is interesting to note that

although S-CC is similar to S-CC-2 in both tumor cell

type composition and upregulated cell cycle gene

expression, the patients in S-CC have longer OS. This

(A) (B)

Fig. 5. Characterization of the top predicted drugs for each of the seven HGSOC subtype. (A) Heatmap of the average log2(fold change)

values of the top 50 DEGs (ranked by P-value) for each subtype versus the normal ovarian tissues and those of the same set of genes

induced by the top 3 predicted drugs for the respective subtype. The log2(fold change) values are z-score normalized within each subtype.

(B) Intersection of the lists of top predicted drugs for the seven subtypes. Here, we considered the top 50 drugs for each subtype. Intersec-

tions with at least one shared drug are shown. Intersection significance was assessed by FET. Color gradient shows −log10(FET P-value).

Fig. 4. Predicted subtype key regulators projected onto MEGENA mRNA network modules. (A–F) Node size and label size are proportional to

key driver ranking, with text sizes corresponding to higher ranked key regulators. Label color represents direction of subtype-specific DEGs

(BH-corrected P < 0.05) used for key driver prediction, where red corresponds to upregulated DEGs and blue corresponds to downregulated

DEGs. (A) S-immune and the S-CC-2 key regulators shown in the immune system process-enriched module M6. (B) S-ECM key regulators

in the ECM-enriched module M4. (C) S-CC key regulators in the DNA packaging-enriched module M13. (D) S-LOC key regulators in the RNA

binding-enriched module M8. (E) S-cilium key regulators in the cilium-enriched module M15. (F) S-motif key regulators in the transcription

factor targets-enriched module M11. See also Fig. S7.
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difference in survival may be due to miRNA and

methylation dysregulation seen in S-CC-2, as S-CC

has only one-sixth of DE-miRNAs and fewer than

2.5% of DMPs compared with the Subtype-5.

It has been shown that expression of various ECM-

remodeling proteins and components is associated with

poor prognosis in HGSOC [22]. Similar to the mes-

enchymal subtype from the original TCGA study of

ovarian cancer, S-ECM shows upregulation of genes

such as COL5A2, COL1A1, COL3A1, THBS2,

COL11A1, COL6A3, and MMP2 that are involved

in epithelial-to-mesenchymal transformation (EMT)

processes, metastasis, and chemoresistance [48–52].
The lack of significant enrichment in interferon signal-

ing combined with high stromal cell infiltration in S-

ECM could also contribute to chemoresistance, as

interferon-gamma derived from CD8+ lymphocytes is

involved in modulation of fibroblast-associated resis-

tance to platinum-based chemotherapy [53].

Ropinirole, a dopamine receptor agonist predicted

to reverse the gene signatures of S-ECM, may be an

effective innovative therapy for targeting the TGF-

beta and EMT processes. A previous study showed

that defects in the dopamine D2 receptor (D2R) led to

Table 3. Summary of top-ranked repositioned drugs with available annotation information.

Subtype Rank Compound Mode of action Target(s) Disease area Phase

S-CC 2 Tyrphostin ag 1478 EGFR inhibitor EGFR, MAPK14 Preclinical

4 bms-754807 IGF-1 inhibitor AKT1, IGF1R Phase 2

11 4-Demethoxy-daunorubicin Topoisomerase inhibitor TOP2A Hematologic

malignancy

Launched

S-immune 10 Barasertib Aurora kinase inhibitor AURKA, AURKB Phase 2

Phase 3

15 BRD-K27305650 mTOR inhibitor, PI3K

inhibitor, DNA-

dependent protein

kinase inhibitor,

phosphodiesterase

inhibitor, PLK inhibitor

AKT1, CHEK1, GSK3B,

LCK, MAPK1, MAPK11-

12, MAPK14, MAPK8,

MTOR, PIK3CA-B,

PIK3CD, PIK3CG, PLK1,

PRKCA, PRKDC,

ROCK1, RPS6KB1,

SGK1

Preclinical

S-LOC 5 azd8055 mTOR inhibitor MTOR Phase 1

7 BRD-K44432556 Hypoxia-inducible factor

activator

HIF1A Preclinical

8 BRD-K57080016 MEK inhibitor MAP2K1 Phase 3

S-ECM 7 Ropinirole Dopamine receptor

agonist

ADRA2A-C, DRD1-5,

HTR1A-B, HTR2A-D

Neurology,

psychiatry

Launched

12 Alclometasone Glucocorticoid receptor

agonist

CYP3A4, NR3C1,

SERPINA6

Dermatology Launched

30 Toremifene-citrate Estrogen receptor

antagonist, selective

estrogen receptor

modulator (SERM)

ESR1 Oncology Launched

S-CC-2 3 Camptothecin Topoisomerase inhibitor TOP1 Phase 3

13 Doxorubicin Topoisomerase inhibitor TOP2A Hematologic

malignancy,

oncology

Launched

16 4-Demethoxy-daunorubicin Topoisomerase inhibitor TOP2A Hematologic

malignancy

Launched

S-cilium 14 mdl 11,939 Serotonin receptor

antagonist

HTR2A-C Phase 2

32 tcs 359 FLT3 inhibitor FLT3 Preclinical

S-motif 6 Prilocaine Local anesthetic SCN1-5A, SCN7-11A Neurology,

psychiatry

Launched

17 BRD-A59174698 Adrenergic receptor

agonist

ADRB2 Obstetrics,

gynecology

Launched

33 Atovaquone Mitochondrial electron

transport inhibitor

DHODH Infectious disease Launched
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a pro-inflammatory environment characterized by

increased tumor necrosis factor-alpha, TGF-beta1,

Smad3, Snail1, as well as increased EMT processes

and increased production of ECM proteins such as

vimentin, fibronectin 1, and collagen I, and an increase

in normal D2R subsequently downregulated the

expression of these proteins [54]. Similarly, dopamine

was also found to improve the survival of mice

implanted with liver cancer [55].

Differences in gene expression signatures and survival

outcomes between the younger S-immune and the older

S-CC-2 patients are suggestive of the tumor evolution

trajectory of HGSOC [56]. Earlier stage of HGSOC

development is often characterized by greater lymphocyte

infiltration that leads to an active immune response,

whereas cancer later in the evolutionary trajectory

demonstrates negligible immune cell presence in the

tumor microenvironment [56]. This phenomenon was

characterized previously by the TCGA group in their

identification of the immunoreactive subtype, which has

many resemblances to S-immune [5]. Therefore, it is not

surprising that the key regulators downregulated in S-

CC-2, but upregulated in the S-immune include CD53, a

key player in B-cell activation [57,58], and PTPRC, a reg-

ulator in T-cell and B-cell antigen receptor signaling and

positive regulator of T-cell activation [59]. Additionally,

various types of interferon signaling, which is downregu-

lated in S-CC-2 but upregulated in S-immune, have been

shown to deter HGSOC tumor progression and improve

patient prognosis [60–62]. Specifically, increased type I

interferon signaling reduces immunosuppression in the

tumor microenvironment by upregulating CD45+
immune cells, CD8+ T-cells, and natural killer cells, and

is associated with favorable outcomes [45,63,64]. This

explains the longer survival seen in the patients from S-

immune, which has significantly higher expression of

tumor infiltrating lymphocytes (TILs) marker compared

with other subtypes [65,66]. PRMT1 and BCL2L12, the

top two upregulated regulators of S-CC, also play critical

roles in tumor development. BCL2L12 can bind to p53 in

the nucleus to prevent association with p53 targets [67]

and also acts as anti-apoptotic factor in glioblastoma by

inhibiting caspases 3 and 7 in the cytoplasm [68–70].
PRMT1 expression is critical in maintaining cell cycle

processes in many types of cancer, and its depletion sig-

nificantly reduces the number of cells in the S phase of

the cell cycle [71].

Our innovative multiomics-based approach to

patient clustering in HGSOC yielded seven molecular

subtypes that have distinct signatures in gene expres-

sion and upstream regulation not observed in previous

studies. In addition to the subtypes with significantly

distinct OS, it is interesting that we identified two pairs

of subtypes with similar prognostic outcomes but

entirely opposite gene signatures as well as different

drug susceptibility profiles. These findings highlight the

heterogeneity of the disease even among patients that

have almost identical clinical parameters and demon-

strate the critical importance of accurate and biologi-

cally meaningful subtypes in HGSOC.

However, there are a few important limitations to

our study. Although we categorized HGSOC patients

into subtypes with distinct molecular signatures, the

bulk nature of the RNA-seq data means it is difficult

to attribute upregulated genes to the tumor cells alone.

Since it is highly likely that gene signatures are also

reflective of stromal and immune cell infiltration, it

may be necessary to look into single-cell sequencing

data in the future in order to refine our drug reposi-

tioning results to target both tumor and stromal sub-

sets simultaneously. In addition, it is important to

recognize that the study of ovarian cancer is gradually

shifting away from an era of placing tumors into dis-

crete subtypes and to modeling HGSOC subtypes as

various stages in the tumor development trajectory

[72]. Geistlinger et al. concluded that current HGSOC

subtypes may be reflective of the later, subclonal stages

of the disease, and subtype-specific therapies should

instead target genomic alterations that occur earlier in

tumor evolution in order to be effective.

In summary, we integrated large-scale multiomics

data to identify seven HGSOC subtypes which not

only have significantly distinct overall survival but

also carry unique patterns of gene expression, micro-

RNA expression, DNA methylation, and copy num-

ber alterations. These subtypes show more significant

prognostic difference. Second, we performed multi-

scale gene co-expression network analysis to identify

subtype-specific key regulators and predicted targeted

therapies based on subtype-specific gene expression

patterns. While the previous studies have done subtyp-

ing analysis of HGSOC, our study is the first one to

integrate three major components including subtyping

analysis, network analysis, and drug repositioning.

Additional work is needed to translate this basic

research into clinical applications but the more precise

molecular subtyping, the comprehensive depiction of

the molecular features of these subtypes, and the pre-

dicted subtype-specific therapies derived from this

study lay down a solid foundation for precision medi-

cine for HGSOC. Future work will include experimen-

tal validation of subtype-specific pathways and

regulators, predicted therapeutics, as well as creating

a biomarker panel of top subtype-specific key regula-

tors that can distinguish patient subtypes in a clinical

setting.
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Methods

Data processing

Level 3 open access data available through the NIH

National Cancer Institute Genomic Data Commons (GDC)

Data Portal for the Cancer Genome Atlas (TCGA) ovarian

serous cystadenocarcinoma mRNA expression (Illumina

HiSeq RNA-Seq and HG-U133A microarray) and miRNA

expression (Illumina HiSeq miRNA-Seq, RPKM data) were

downloaded and processed in November 2014, and methy-

lation beta values (Illumina Infinium HumanMethylation27

array) and masked copy number segment data (Affymetrix

SNP 6.0 array) were downloaded and processed in August

2018. Clinical data, including stage, residual tumor size,

tumor grade, and OS, were also obtained through the

GDC Data Portal. OS is a closed dataset and is defined as

time to death from day of diagnosis for deceased patients

or time to last follow-up for living patients at the time of

data collection.

Genes with no or low expression in RNA-Seq mRNA

(n = 420) and miRNA (n = 486) expression data were

removed. The filtered data then underwent log2 transforma-

tion, quantile normalization, and correction by linear regres-

sion for confounding covariate effects including batch, tissue

source site, center, plate, race, and age. Genes with no or

low expression in the microarray gene expression data for

normal (n = 8) and tumor (n = 586) samples were also fil-

tered out, and log2 transformation, quantile normalization,

and correction by linear regression for confounding covari-

ate effects including batch, tissue source site, center, plate,

race, and age were subsequently performed. 18 243 mRNA

genes and 705 miRNAs from RNA-Seq data remained after

filtering, and 12 042 genes from microarray data remained

after filtering. These remaining genes were used for down-

stream analyses. Five hundred and twelve patients with

mRNA expression, microRNA expression, methylation, and

CNA data were used for subtype identification. Though the

RNA-Seq data were available for only 420 samples and 486

samples for mRNA and miRNA expression, there is no sig-

nificant difference in the clinical demographics between the

512 patients used for subtype clustering and the sample sub-

set with RNA-Seq data (Table S2). Additionally, all the sub-

types were well-represented, with 70–90% of patients from

each subtype having mRNA RNA-Seq data available, and

86–97% of patients from each subtype having miRNA

RNA-Seq data available.

Methylation beta values were converted to M-values

using the function beta2m from the LUMI R package [73],

and then the M-values were corrected by linear regression

for confounding covariate effects including batch, tissue

source site, center, plate, race, and age. Only corrected M-

values from primary tumor samples (n = 540) were used

for differential methylated probe (DMP) analysis and

DMP-gene correlation analysis. Copy number segment data

did not undergo normalization or covariate correction,

since the data had been previously tangent normalized as

part of the data preparation and analysis pipeline from the

National Cancer Institute Genomic Data Commons

(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/

CNV_Pipeline/). Briefly, the segment data were normalized

by subtracting variations found in a set of normal samples,

and only segment data from primary tumor samples

(n = 568) were used for downstream analyses.

MWINA clustering for de novo subtype

identification

Multiscale Weighted Interaction Network Analysis

(MWINA) was used to create de novo subtype clusters using

a set of survival-associated multiomic features described pre-

viously [20]. A combination of features including mRNA

expression, microRNA expression, copy number alteration,

and DNA methylation from TCGA high-grade ovarian ser-

ous adenocarcinoma was selected based on univariate Cox

proportional hazard model analysis (P < 0.05) [14]. A total

of 4526 features were used, including the expression of 1651

mRNA genes, 140 microRNAs, 2191 somatic copy number

alterations, and 455 DNA methylation sites [14]. Features

were normalized as follows:

Featurenorm ¼ Feature�Mediancontrols
SDpatients

,

where Featurenorm is the normalized expression value, Fea-

ture is the unnormalized expression value, Mediancontrols is

the feature median of expression of the normal control

samples, and SDpatients is the feature standard deviation of

the patient samples [14].

MWINA employs multiresolution optimization of New-

man’s modularity (denoted Q) with Reichardt-Bornholdt

(RB) parameter [21], γRB, allowing for detection of fine-

resolution modules with small γRB <1, coarse-grained mod-

ules with larger γRB >1, and converging to Q when

γRB = 1. In order to optimize Q(γRB = γ0) for some γ0 > 0,

we employed an iterative three-step optimization approach:

1 Split: For each module, perform k-median clustering on

the shortest path distance (SPD) for k = 2, . . ., kmax for

some kmax, where the solution with k = k0 optimizing Q

(γRB = γ0) is chosen.
2 Merge: For all pairs of modules after step 1, perform the

following iterative procedure.

a Identify an adjacent module pair which improves Q

(γRB = γ0) the most and merge if the merged Q

(γRB = γ0) is higher than the preceding solution,

b Repeat step 2-a until no further pair is found.

3 Refine: Perform extremal optimization by assigning node

fitness as a function of Q(γRB = γ0), shifting module

membership of least fit nodes.
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Steps 1–3 are repeated iteratively till no further improve-

ments are made.

With the aforementioned algorithm, solutions are

obtained for γmin ≤ γ0 ≤ γmax with some increment dγ. Let
us denote the solution for each γ0 as Z(γ0). In order to iden-

tify similar solutions and range of γ0 that behave similarly,

adjusted Rand Index (ARI) was employed to measure simi-

larity between two distinct solutions Z(γ0) and Z(γ″) with

some threshold of ARI > ARIcutoff to determine similar.

For each = {γ|ARI(Z(γa), Z(γb)) > ARIcutoff for γa, γb ɛ},
the median solution showing the largest overall score. The

median solutions across all are gathered to identify the final

multiscale solution of MWINA.

Chi-squared test for comparing overall survival

The chi-squared statistic was computed to compare the

subtype OS for the MWINA TCGA-HGSOC subtypes,

with the null hypothesis being that there is no significant

difference among the distributions of the subtype OS.

Cluster consensus and robustness evaluation

Subtype consensus was evaluated by performing MWINA

clustering 50 times, each time using 80% of randomly sam-

pled features and 80% of randomly sampled patients.

Results from the 50 times bootstrapping were summarized

into a n-by-n matrix of pairwise sample concordance val-

ues, where n is the total number of patients, and the value

at position nij is the probability that patient i and patient j

are in the same cluster:

nij ¼ #clusters containing patients i and j

#bootstrapping
:

Individual subtype robustness was evaluated by calculating

the probability that the sum of pairwise concordance values

for patients within a subtype is greater than the sum of pair-

wise concordances for the same number of randomly sampled

patients. Using this probability, we calculated a robustness

empirical P-value for each subtype based on the comparison

of the sum of subtype patient pairwise concordances to that of

1 million iterations of randomly sampled patients:

empirical P value ¼ 1�P
∑P consensusjclusterð Þ

length clusterð Þ >
∑P consensusjrandomð Þ

length clusterð Þ
� �

:

Differential gene expression analysis

Differentially expressed genes (DEGs), miRNAs (DE-

miRNAs), and methylated probes (DMPs) were identified

using expression data from TCGA (as described previously)

with the LIMMA R package [74]. Subtype-specific DEGs

were found between samples within each subtype versus

remaining samples from all other subtypes and also

between subtype samples versus samples with normal ovar-

ian tissue. HG-U133A microarray data were used for DEG

analysis between tumor samples versus normal tissue, since

there are no RNA-Seq data available through TCGA for

normal tissue. DE-miRNAs and DMPs were calculated

between samples within each subtype versus remaining

samples from all other subtypes. Significantly differentially

expressed genes were defined as having fold change (FC) ≥
1.2 and Benjamini–Hochberg (BH)-adjusted P < 0.05.

Fisher’s exact test

Fisher’s exact test (FET) was performed to evaluate gene

set overlaps between MSigDB annotated gene sets, subtype

gene sets (such as subtype-specific DEGs, DE-miRNA-

affected genes, cis-eDMP and trans-eDMP genes, and key

regulators), MEGENA module genes, and other gene sets

including cancer-associated fibroblast, cytotoxic T-cell, and

myeloid-derived suppressor cell genes signatures. FET was

also performed to determine overlap between TCGA-

HGSOC subtype samples for MWINA subtypes and Zhang

et al. [14] subtypes. FET significance is defined by P-value

< 0.05 after Bonferroni correction.

Gene set enrichment

Gene set annotations used in gene set enrichment analysis

were downloaded from the Molecular Signatures Database

(MSigDB) [75–77]. One-sided Fisher’s exact test (FET) was

performed between MSigDB gene sets versus subtype

DEGs, miRNA-correlated genes, genes under methylation

regulation, and predicted amplified or deleted genes.

MEGENA network construction

MEGENA (Multiscale Embedded Gene Co-expression Net-

work Analysis) is a novel gene co-expression network

framework that utilizes parallelized embedded network con-

struction and novel clustering techniques to identify multi-

scale modules in Planar Filtered Networks (PFNs) [29].

The MEGENA gene co-expression network for HGSOC was

constructed RNA-Seq mRNA expression data from the

GDC Data Portal and processed as described previously. A

false discovery rate (FDR) threshold of 0.10 was used to

filter out insignificant gene–gene interactions, and a module

FDR threshold of 0.05 was applied to identify significant

multiscale gene modules.
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Key driver analysis

Key driver analysis (KDA) was performed for to identify

subtype-specific key regulators (drivers). The global

HGSOC MEGENA gene co-expression network (N) and sig-

nificant subtype-specific DEGs (G) (between subtype sam-

ples versus remaining tumor-bearing patient samples from

all other subtypes, as described above) were used as inputs

for KDA. Fisher’s exact test was used to identify network

nodes whose one- to two-degree neighbors are enriched in

genes in G, and nodes with a BH-corrected P-value < 0.05

are identified as key regulators (drivers). This analysis is

done separately for up and downregulated DEGs for all

seven HGSOC subtypes to identify upregulated and down-

regulated key regulators.

Correlation analysis

Spearman correlation was performed to identify mRNA-

mRNA, mRNA-miRNA, and mRNA-methylation relation-

ships. Pearson correlation was performed between patient

age at diagnosis and OS time and between ESTIMATE tumor

purity scores and OS time. For features with different num-

bers of samples, the intersection of samples was used. Cor-

relation significance is defined by P-value < 0.05 after

Bonferroni correction.

Prediction of subtype amplified and deleted

genes

TCGA patient copy number segment data were categorized

by subtype membership and genes with significant copy

number altered regions for each subtype were identified

using the GISTIC2.0 algorithm available via the GENEPATTERN

NOTEBOOK online tool suite with default settings [36,78].

Human genome assembly GRCh38 (hg38) was used as the

refgene file. The marker file was created from the TCGA

segmentation file and records the start and end positions of

each segment as individual markers.

Drug repositioning

Subtype-specific DEGs between subtype samples versus

normal ovarian tissue samples were identified as described

previously. We used more relaxed cutoffs to determine

DEGs for each subtype due to a small number (8) of nor-

mal samples curated in the TCGA cohort. For subtypes 4

and 5, we used P-value < 0.15, and for the rest subtypes,

we used P-value < 0.2. These DEG signatures were taken

as input for the Ensemble of Multiple Drug Repositioning

Approach (EMUDRA) as described previously [37] to identify

drugs that can reverse these signatures. We considered only

the data from 4 cell lines (MCF7, HT29, A375, and A549)

treated with the largest number of drugs in the LINCS

cohort [79]. Specifically, 12 812, 13 622, 12 312, and 13 159

drugs were tested in the MCF7, HT29, A375, and A549 cell

lines, respectively, while 8764 drugs tested in all four

cell lines. Only the drugs tested in at least two of the four

cell lines were included in the final ranking.

We obtained the annotations of the compounds from the

Repurposing Hub drug repurposing hub (https://clue.io/

repurposing-app). The Repurposing Hub contains compre-

hensive annotations for a total of 6125 compounds: 2369

Launched drugs, 1619 drugs that reached phases 1–3 of

clinical development, 96 compounds that were previously

approved but withdrawn from use, and 2041 preclinical or

tool compounds. Specifically, we extracted a variety of drug

information, including compound name, clinical trial status,

mechanism of action, protein targets, disease areas, and

approved indications (where applicable). We excluded the

compounds that have no annotation.

Quantification and statistical analysis

Statistical details and parameters including the exact value

of n, the definition of center, dispersion and precision mea-

sures (mean � SD) and statistical significance are reported

in the figures and figure legends. The data are judged to be

statistically significant if P < 0.05 after Bonferroni correc-

tion for correlation analysis and FET, or fold change ≥ 1.2

and P < 0.05 after Benjamini–Hochberg correction for dif-

ferential expression analysis. Survival significance for

MWINA subtypes is determined by the chi-squared test.

Differences in sample features and sample clinical data

were determined by the Kruskal–Wallis analysis of variance

test and Student’s t-test, and significance was reached if

P < 0.05. Statistical analysis was performed with R.
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Fig. S1. Functional annotation of upstream regulator

signatures of the HGSOC subtypes. (A-B) Heatmaps

showing enrichment of MSigDB gene sets in (A)

upregulated genes and (B) downregulated genes for

each set of subtype DE-miRNA-affected genes. DE-

miRNAs were identified by comparing the samples in

a subtype with the rest of the samples. (C-D) Heat-

maps showing enrichment of MSigDB gene sets in the

subtype cis-eDMP genes for (C) hypermethylated and

(D) hypomethylated DMPs. (E-F) Heatmaps showing

enrichment of MSigDB gene sets in genes (E) upregu-

lated and (F) downregulated for each subtype that are

also predicted to be under trans-regulation by subtype

DMPs. DMPs were identified by comparing the sam-

ples in each subtype with the rest of the samples. (G-

H) Heatmaps showing enrichment of MSigDB gene

sets in the predicted (G) amplified and (H) deleted

genes for each subtype. (I-J) Bar plots showing num-

ber of overlapping (I) amplified and (J) deleted genes

between subtype pairs. Green dots below each bar

indicate the subtype pairs being compared.

Fig. S2. Subtype-specific DE-miRNAs and DMPs and

their relationships with MEGENA network modules.

Graphical representation of regulation of subtype-

specific DEGs by top 10 subtype DE-miRNAs and

DMPs. DEGs are highlighted by color within MEGENA

network modules, and DEGs labeled in white are also

subtype key regulators. DE-miRNAs and DMPs are

also color coded as shown. Edges between MEGENA

module nodes and DE-miRNAs and DMPs show sig-

nificant positive (red) or negative (blue) expression cor-

relations. (A) S-immune DE-miRNAs and DMPs and

the immune system process-enriched module M6. (B)

S-ECM DE-miRNAs and DMPs and the ECM-en-

riched module M4. (C) S-CC-2 DE-miRNAs and

DMPs and the immune system process-enriched mod-

ule M6.

Fig. S3. MWINA subtypes are robust redistributions

of Zhang et al HGSOC subtypes and have some differ-

ences in age at diagnoses. (A) Plots of HGSOC sample

concordances. Samples are along the x and y axes, and

color intensities correspond to sample pairwise concor-

dance probabilities. Concordance probabilities range

from 1.0 along the diagonal (red) to 0 (white). Concor-

dance clustering is based on Euclidean, Manhattan, or

Maximum distance calculation methods. (B) Heatmap

of -log10(p-value) from Student’s t-test for age at diag-

nosis between subtype pairs. Only comparisons

between Group 4 or Group 5 versus other subtypes

were significant (p < 0.05). (C) Heatmap of -log10(p-

value) from Fisher’s exact test for overlap between

patients from MWINA subtypes and patients from

Zhang et al (2013) subtypes.

Fig. S4. HGSOC subtypes with similar prognosis have

distinct gene expression signatures. (A-B) Heatmap of

MSigDB gene set enrichment for overexpressed (A)

and underexpressed (B) genes in HGSOC tumor sam-

ples of each subtype with respect to normal controls.

Enrichment is represented by FET -log10(BH-adjusted

p-value) for gene set overlap. (C-F) Overlap of upregu-

lated or downregulated DEGs between (C) poor sur-

viving subtypes (S-ECM and S-CC-2) and (D-F)

favorable survival subtypes (S-immune, S-LOC, and S-

cilium). P-value is calculated from Fisher’s exact test

(FET), and nonsignificant FET p-values (p > 0.05) are

not shown. (G-H) Heatmaps showing subtype DEG

enrichment for genes up- or downregulated in (D)

CAFs from ovarian tumors compared with normal

ovarian stroma, and for genes upregulated in (E)

MDSCs (compared with PMNs) from NSCLC.

Enrichment is determined via FET. Color gradient

shows -log10(FET p-value). FET, Fisher’s exact test;

CAF, cancer-associated fibroblast; MDSC, myeloid-

derived suppressor cell; NSCLC, non-small-cell lung

cancer. Related to Fig. 2.

Fig. S5. MEGENA module genes are enriched for

HGSOC subtype upregulated DEGs. Sunburst plots

showing overlap of subtype-specific upregulated DEGs

with MEGENA network module genes. Colors corre-

spond to -log10(FET p-value). Modules with p-value

>0.05 are not colored. Related to Fig. 3.

Fig. S6. MEGENA module genes are enriched for

HGSOC subtype downregulated DEGs. Sunburst plots

showing overlap of subtype-specific downregulated

DEGs with MEGENA network module genes. Colors

correspond to -log10(FET p-value). Modules with p-

value >0.05 are not colored. Related to Fig. 3.

Fig. S7. Overlap of subtype-specific key driver genes

and MEGENA module genes. (A-E) Overlap of subtype-

specific key driver genes and MEGENA module hub

genes for (A) S-CC and cell cycle-enriched module

M83, (B) S-immune and immune system process-en-

riched module M6 and interferon response-enriched
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module M7, (C) S-ECM and ECM-enriched module

M4, (D) S-CC-2 and immune system process-enriched

module M6 and cell cycle-enriched module M12, and

(E) S-cilium and cilium-enriched module M15. P-value

is calculated from Fisher’s exact test (FET) ECM,

extracellular matrix; FET, Fisher’s exact test. (F-G)

Subtype-specific key drivers shown in MEGENA mod-

ules. Node size and label size are proportional to key

driver ranking, with larger node and text sizes corre-

sponding to higher ranked key drivers. Label color

represents direction of subtype-specific DEGs

(p < 0.05) used for key driver prediction, where red

corresponds to upregulated DEGs and blue corre-

sponds to downregulated DEGs. (F) S-immune key

drivers shown in the interferon response-enriched mod-

ule M7. (G) S-CC key drivers in the cell cycle-enriched

module M12. Related to Fig. 4.

Fig. S8. Focal somatic copy number alterations for

subtype samples by chromosome location of amplified

regions

Fig. S9. Focal somatic copy number alterations for

subtype samples by chromosomal location for deleted

regions.

Table S1. Kruskal–Wallis test for significance of clini-

cal traits and ESTIMATE scores in subtypes.

Table S2. Student’s t-test of clinical traits between

samples with RNA-Seq data and samples used for sub-

type identification.

Table S3. Predicted therapeutic actions on subtype-

specific key driver genes.

Table S4. Number of differentially expressed genes,

miRNAs, methylated positions, and amplifications and

deletions for each subtype compared with the rest of

the samples.

Table S5. Overlap between subtype DEGs or key dri-

vers and genes significantly correlated (Spearman

p < 0.05) with subtype DE-miRNAs.

Table S6. Overlap between subtype DEGs or key dri-

vers and subtype cis-eDMP genes.

Table S7. Overlap between subtype DEGs or key dri-

vers and predicted amplified or deleted genes.

Table S8. Presence of amplified and deleted genes com-

monly associated with HGSOC tumorigenesis for all

subtypes.

Table S9. Functional annotation enrichment of DEGs

between subtype vs. normal ovarian tissue used for

drug repositioning analysis.

Table S10. Top 5 repositioned drugs for each subtype.
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