Skip to main content
. 2023 Feb 24;42(7):e108533. doi: 10.15252/embj.2021108533

Table 1.

Experimental data and BD modeling results.

−CAP +CAP
Cell line AcGFP1 AcGFP12 AcGFP13 AcGFP14 AcGFP1 AcGFP12 AcGFP13 AcGFP14
MW (kDa) a 29.155 57.586 87.705 115.337 29.155 57.586 87.705 115.337
LOG10 (MW) 1.4641 1.7603 1.9430 2.06197 1.4641 1.7603 1.9430 2.06197
Mitochondrial length, diameter and radius determined using confocal laser scanning microscopy (CLSM) b
Lmito (μm) 3.42 (N = 55) 3.42 (N = 30) 3.42 (N = 37) 3.42 (N = 68) 3.40 (N = 31) ND ND 3.42 (N = 26)
Dmito (μm) 0.562 ± 0.025 (N = 26) 0.524 ± 0.012 (N = 41) 0.549 ± 0.020 (N = 33) 0.525 ± 0.017 (N = 29) 0.552 ± 0.015 (N = 24) ND ND 0.546 ± 0.017 (N = 20)
Rmito (μm) 0.281 0.262 0.275 0.263 0.276 ND ND 0.273
Vmito (μm3) 0.848 0.738 0.813 0.743 0.819 ND ND 0.801
Vmito (l) 0.848·10−15 0.738·10−15 0.813·10−15 0.743·10−15 0.819·10−15 ND ND 0.801·10−15
Mitochondrial diameter, radius and cristae per mitochondrion determined using electron microscopy (EM) c
Dmito (μm) 0.510 ± 0.019 (N = 52) ND ND 0.504 ± 0.015 (N = 59) 0.490 ± 0.017 (N = 51) ND ND 0.494 ± 0.018 (N = 53)
Rmito (μm) 0.255 ND ND 0.252 0.245 ND ND 0.247
ncristae (1/μm) 5.620 ± 0.155 (N = 244) ND ND 5.462 ± 0.174 (N = 314) 2.705 ± 0.130 (N = 295) ND ND 3.50 ± 0.145 (N = 260)
ncristae/mito 19 ND ND 19 9 ND ND 12
Mono‐exponential fitting parameters of the fluorescence recovery after photobleaching (FRAP) curve d
N 76 30 37 68 40 24 26 33
R 2 0.922 0.971 0.932 0.921 0.962 0.947 0.780 0.951
y0 −80.0 ± 5.85 −0.677 ± 2.42 24.7 ± 2.29 30.7 ± 2.17 39.1 ± 1.20 30.9 ± 0.800 44.2 ± 0.920 47.5 ± 0.767
Amono 178 ± 5.84 98.9 ± 2.40 68.6 ± 2.26 60.5 ± 2.14 55.4 ± 1.17 45.1 ± 0.667 23.6 ± 0.763 39.0 ± 0.706
Tmono (s) 0.789 ± 0.015 1.51 ± 0.031 2.01 ± 0.065 2.05 ± 0.066 2.75 ± 0.099 8.76 ± 0.357 9.31 ± 0.883 5.43 ± 0.168
Tmono‐corr (s) 2.78
F0 41.4 ± 1.61% 37.7 ± 2.40% 42.0 ± 1.80% 43.6 ± 1.22% 42.0 ± 2.60% 22.7 ± 3.38% 40.2 ± 4.51% 42.6 ± 2.50%
F 98.8 ± 11.7% 98.2 ± 4.82% 93.3 ± 4.55% 91.2 ± 4.31% 94.5 ± 2.37% 76.0 ± 1.47% 67.8 ± 1.68% 86.5 ± 1.47%
Fm 0.979 0.972 0.885 0.844 0.904 0.689 0.462 0.765
Parameters and results regarding the BD model e
1. Simulation parameters for Dsolvent prediction
Identical for all simulations Lmito = 3.42 μm; Rmito = 0.270 μm; SFRAP = 1.4 μm; CBA = 0.95
ncristae 19 19 19 19 9 ND ND 12
2. Predicted Dsolvent
Dsolvent (μm2/s) 23.9 11.8 8.59 6.02 2.91 NA NA NA
LOG10 (Dsolvent) 1.378 1.072 0.9340 0.7796 0.464 NA NA NA
3. Computation of radius of gyration (RG), hydrodynamic radius (RH) and ηsolvent (cP) at 293 K
MW (kDa) 29.155 57.586 87.705 115.337 29.155 57.586 87.705 115.337
Assuming that the FP has a compact conformation
Radius of molecule R (Å) 15 20 20 20 15 NA NA NA
Length of molecule L (Å) 40 60 60 60 40 NA NA NA
RG (Å) 15.5 20 20 20 15.5 NA NA NA
RH (Å) 20 23 23 23 20 NA NA NA
ηsolvent (Young) 3.32 5.36 6.40 8.34 27.3 NA NA NA
ηsolvent (He–Niemeyer) 3.69 5.88 7.53 10.3 30.3 NA NA NA
ηsolvent (Tyn–Gusek) 4.57 7.18 9.86 14.1 37.5 NA NA NA
ηsolvent (Stokes–Einstein) 4.49 7.91 10.9 15.5 36.9 NA NA NA
Assuming that the FP has an extended conformation
Radius of molecule R (Å) 15 15 35 35 15 NA NA NA
Length of molecule L (Å) 40 130 247 349 40 NA NA NA
RG (Å) 15.5 38 73 102 15.5 NA NA NA
RH (Å) 20 30 61 75 20 NA NA NA
ηsolvent (Young) 3.32 5.36 6.40 8.34 27.3 NA NA NA
ηsolvent (He–Niemeyer) 3.69 4.27 3.94 4.55 30.3 NA NA NA
ηsolvent (Tyn–Gusek) 4.57 3.78 2.70 2.76 37.5 NA NA NA
ηsolvent (Stokes–Einstein) 4.49 6.06 4.10 4.75 36.9 NA NA NA

BD, Brownian dynamics; CAP, chloramphenicol; Dsolvent, solvent‐dependent diffusion constant; ηsolvent, solvent‐dependent viscosity; NA, not appropriate; ND, not determined; RG, radius of gyration; RH, hydrodynamic radius; SFRAP, size of the experimental FRAP region in the BD model; T, temperature; Tmono, experimental FRAP mono‐exponential time constant.

a

Molecular weight (MW) was calculated directly from the protein sequences given in Appendix Table S1 (excluding the N‐terminal mitochondrial targeting sequence) using the pI/Mw tool (web.expasy.org/compute_pi). One (1) Dalton (Da) equals 1 g/mol.

b

Confocal laser scanning microscopy (CLSM) analysis: The data are presented as mean ± SEM. N indicates the number of mitochondria analyzed in at least two independent experiments. Mitochondrial length (Lmito) and mitochondrial diameter (Dmito) were determined from the FRAP images by quantifying the frame width at half‐maximal height (FWHM; equaling 2∙Rmito) of a Gaussian curve fitted to a 1 pixel wide intensity profile perpendicular to the short and long axis of the mitochondrial filament (see Appendix Fig S2F). Mitochondrial volume (Vmito) was calculated using a cylindrical approximation: Vmito = π ·(Rmito)2·Lmito. One (1) μm3 equals 10−15 liter, 0.001 picoliter (1 picoliter = 10−12 liter) and 1,000 attoliter (1 attoliter = 10−18 liter). Average Vmito values equaled 0.786 ± 0.0540(SD) μm3 = 786 attoliter (−CAP) and 0.810 μm3 = 810 attoliter (+CAP).

c

Electron microscopy (EM) analysis: The data are presented as mean ± SEM. N indicates the number of mitochondria analyzed in two independent experiments. Dmito and Rmito indicate the mitochondrial diameter and radius, respectively.

d

Fitting of the fluorescence recovery after photobleaching (FRAP) curve: y = y0 + Amono[1−EXP(−t/Tmono)]. N indicates the number of mitochondria analyzed in at least three independent experiments. The coefficient of determination (R2) is used as a measure of the goodness of fit (the closer R2 is to a value of one, the closer the fit is to the data points). The parameter errors reflect the standard error (SE) value from the fit, as reported by the fitting software. F0 indicates the fluorescence signal at the start of the fluorescence recovery (expressed as % of the prebleach value). F indicates the fluorescence signal to which the fluorescence signal recovers given by: y0 + Amono (expressed as % of the prebleach value). The error in F was calculated by summation of the errors in y0 and Amono. Fm indicates the mobile fraction given by: [(F−F0+)/(Fi−F0)], with Fi being the prebleach fluorescence equaling 100%.

e

Mathematical modeling: One (1) Angstrom (Å) equals 1·10−10 m. CBA, cristae‐blocked area (fraction of total transecting area). See Results for further details.