
Review

Ribosome biogenesis factors—from names
to functions
Kerstin Dörner1,2,†, Chiara Ruggeri1,3 , Ivo Zemp1 & Ulrike Kutay1,*

Abstract

The assembly of ribosomal subunits is a highly orchestrated process
that involves a huge cohort of accessory factors. Most eukaryotic
ribosome biogenesis factors were first identified by genetic screens
and proteomic approaches of pre-ribosomal particles in Saccharo-
myces cerevisiae. Later, research on human ribosome synthesis not
only demonstrated that the requirement for many of these factors
is conserved in evolution, but also revealed the involvement of
additional players, reflecting a more complex assembly pathway in
mammalian cells. Yet, it remained a challenge for the field to assign
a function to many of the identified factors and to reveal their
molecular mode of action. Over the past decade, structural,
biochemical, and cellular studies have largely filled this gap in
knowledge and led to a detailed understanding of the molecular
role that many of the players have during the stepwise process of
ribosome maturation. Such detailed knowledge of the function of
ribosome biogenesis factors will be key to further understand and
better treat diseases linked to disturbed ribosome assembly,
including ribosomopathies, as well as different types of cancer.
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Introduction

Ribosomes are at the heart of messenger (mRNA) translation, a key

process of gene expression in all organisms. In eukaryotes, ribo-

somes consist of a small 40S and a large 60S subunit that together

form the translation-competent 80S ribosome. The 40S subunit

comprises the 18S ribosomal RNA (rRNA) as well as 33 ribosomal

proteins (RPs), whereas the 60S subunit contains three rRNAs, the

25S/28S, 5.8S, and 5S rRNAs, as well as 46 RPs in yeast and 47 RPs

in humans (Table 1). During protein synthesis, mRNA is bound by

the 40S subunit, which harbors the decoding center designed for

pairing of an mRNA codon with a cognate tRNA. The peptidyl trans-

ferase center (PTC) in the 60S subunit catalyzes peptide bond

formation in the emerging polypeptide chain, which leaves the ribo-

some through the peptide exit tunnel (PET) of the 60S subunit. As

the catalytic PTC is formed by rRNA, the ribosome is classified as a

ribozyme (Cech, 2000; Nissen et al, 2000).

Due to their importance in mRNA translation, decoding center,

PTC, PET, and translation factor binding sites are the evolutionarily

most conserved regions of ribosomes (Klinge et al, 2012; Melnikov

et al, 2012). In contrast to the conserved core structure, overall ribo-

somal composition, size, and complexity vary between the different

kingdoms of life (Table 1). The number of rRNAs and their length

increased significantly from bacteria and archaea to eukaryotes.

Eukaryotic rRNAs display several large rRNA expansion segments

with largely unexplored function. The accretion of these expansion

segments bears the major contribution to the increase in rRNA

length and ribosome size from yeast to vertebrates (Table 1) (Hari-

haran et al, 2022). Furthermore, eukaryotic ribosomes contain addi-

tional RPs, and most RPs of the conserved core harbor extensions

and insertions (Spahn et al, 2001; Armache et al, 2010; Ben-Shem

et al, 2011; Klinge et al, 2011; Rabl et al, 2011; Melnikov et al, 2012;

Khatter et al, 2015).

Assembly of both ribosomal subunits requires deposition of the

numerous RPs on the pre-rRNAs concomitant with rRNA transcrip-

tion, modification, folding, and processing, which all occur in a hier-

archical, highly orchestrated, and energetically expensive cellular

process (Warner, 1999). Although bacterial ribosomal subunits can

be reconstituted at elevated temperature in vitro by mixing mature

rRNAs and ribosomal proteins, their assembly in vivo is supported

by about 50 non-ribosomal factors (Held et al, 1973; Nierhaus &

Dohme, 1974; Kaczanowska & Ryd�en-Aulin, 2007; Shajani

et al, 2011; Gibbs & Fredrick, 2018). In contrast to prokaryotes,

where the assembly process occurs in a single compartment, the

cytoplasm, eukaryotic cells are highly compartmentalized and ribo-

somal subunit maturation starts in the nucleolus, continues in the

nucleoplasm and is only finalized in the cytoplasm. The eukaryotic

subunit assembly process involves several hundred non-ribosomal

factors, termed ribosome biogenesis factors (RBFs), which function

as chaperones and as modification, processing, assembly, and
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remodeling factors. These RBFs transiently associate with pre-

ribosomal particles, but are not part of mature ribosomes. Along

with the growing complexity of ribosome composition throughout

evolution, the intricacy of the eukaryotic ribosome biogenesis

pathway and the regulatory interplays with other processes also

increased.

Eukaryotic ribosome assembly starts with the transcription of a

polycistronic pre-rRNA precursor by RNA polymerase I (RNAPI) in

the nucleolus (Fig 1) (Turowski & Tollervey, 2015). Emerging rRNA

stretches are quickly bound by some early assembling RPs as well

as RBFs, giving rise to a large, 90S-sized precursor particle in the

nucleolus (Klinge & Woolford, 2019; vanden Broeck & Klinge, 2022).

A critical endonucleolytic pre-rRNA cleavage event then leads to the

separation of the pre-40S and pre-60S particles (Baßler & Hurt, 2019;

Bohnsack & Bohnsack, 2019). Both subunits subsequently undergo

a number of nucle(ol)ar maturation steps, including the incorpora-

tion of the 5S rRNA, transcribed by RNA polymerase III (RNAPIII),

into the pre-60S subunit (Woolford & Baserga, 2013; de la Cruz

et al, 2015; Kressler et al, 2017; Chaker-Margot & Klinge, 2019;

Frazier et al, 2021). After nuclear export, final assembly events take

place in the cytoplasm, including the release of remaining RBFs and

incorporation of missing RPs, giving rise to mature, translationally

competent subunits (Kressler et al, 2017; Pe~na et al, 2017).

Early work in the 1970s already indicated that yeast and human

cells employ broadly similar principles for ribosome maturation,

which differ substantially from prokaryotic ribosome synthesis

(Darnell, 1968; Udem et al, 1971; Warner, 1971; Trapman

et al, 1975). Many eukaryotic RBFs were first identified in genetic

screens and proteomic approaches using budding yeast as a model

organism, yet their function was often unraveled only later by

biochemical studies (Hurt et al, 1999; Stage-Zimmermann

et al, 2000; Dragon et al, 2002; Nissan et al, 2002; Saveanu

et al, 2003; Sch€afer et al, 2003; Woolford & Baserga, 2013). Over

time, an increasing number of structural snapshots of ribosomal

pre-particles from various stages of the assembly process has

tremendously increased the understanding of RBF functionalities

(Barrio-Garcia et al, 2016; Kornprobst et al, 2016; Wu et al, 2016;

Zhang et al, 2016b; Barandun et al, 2017; Cheng et al, 2017; Kater

et al, 2017, 2020; Ma et al, 2017; Sun et al, 2017; Sanghai

et al, 2018; Scaiola et al, 2018; Chaker-Margot & Klinge, 2019;

Kargas et al, 2019; Klinge & Woolford, 2019; Zhou et al, 2019a,

2019b). In the past 15 years, biochemical, cellular, and structural

studies including large-scale screening and proteomic approaches

have revealed commonalities and differences in ribosome synthesis

between lower and higher eukaryotes (Cout�e et al, 2008; Wild

et al, 2010; Finkbeiner et al, 2011; Simabuco et al, 2012; Widmann

et al, 2012; Tafforeau et al, 2013; Wyler et al, 2014; Zemp

et al, 2014, 2009; Badertscher et al, 2015; Wandrey et al, 2015;

Larburu et al, 2016; Raman et al, 2016; Fromm et al, 2017; Memet

et al, 2017; Montellese et al, 2017, 2020; Ameismeier et al, 2018,

2020; Farley-Barnes et al, 2018; Boneberg et al, 2019; Braun

et al, 2020; Choudhury et al, 2020, 2019; Liang et al, 2020; Gerhardy

Table 1. Composition of ribosomes from different kingdoms.

Bacteria Archaea Eukaryotes

E. coli P. furiosus S. cerevisiae H. sapiens

Molecular weight

Ribosome 2.3 MDa 2.6 MDa 3.3 MDa 4.3 MDa

LSU 1.45 MDa 1.7 MDa 2.1 MDa 3.1 MDa

SSU 0.8 MDa 0.9 MDa 1.2 MDa 1.2 MDa

Sedimentation coefficients

Ribosome 70S 70S 80S 80S

LSU 50S 50S 60S 60S

SSU 30S 30S 40S 40S

rRNAs

LSU 23S 23S 25S 28S

5S 5S 5S 5S

5.8S 5.8S

SSU 16S 16S 18S 18S

rRNA length (nucleotides)

Total 4,567 4,712 5,475 7,181

LSU (23/25/28S +5S (+5.8S)) 2,904 + 121 3,096 + 121 3,396 + 158 + 121 5,034 + 156 + 121

SSU (18S) 1,542 1,495 1,800 1,870

Number of ribosomal proteins

Ribosome 54 69 79 80

LSU 33 42 46 47

SSU 21 27 33 33

Properties of ribosomes in bacteria (E. coli), archaea (P. furiosus), and lower (S. cerevisiae) and higher (H. sapiens) eukaryotes.
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et al, 2021; Ogawa et al, 2021; Pöll et al, 2021; Singh et al, 2021;

Dörner et al, 2022; Sailer et al, 2022).

Underscoring the importance of ribosome maturation for cellular

and organismal homeostasis, defects in ribosome biogenesis are

associated with a variety of human diseases. Most RPs and RBFs are

encoded by essential genes (Pani�c et al, 2006; Woolford &

Baserga, 2013; Perucho et al, 2014). Genetic alterations in RPs and

RBFs are frequently associated with haploinsufficiency and

causative for a class of severe congenital diseases termed ribosomo-

pathies (Bohnsack & Bohnsack, 2019; Farley-Barnes et al, 2019;

Kampen et al, 2020). A number of ribosomopathies are linked to

increased cancer susceptibility and a growing body of evidence

suggests that defects in ribosome biogenesis can drive tumorigenesis

(Pelletier et al, 2018; Catez et al, 2019).

In this review, we present a current inventory of yeast and

human ribosome biogenesis factors and their functions in

Figure 1. Overview of eukaryotic ribosome biogenesis.

In the nucleolus, a rRNA precursor is transcribed by RNAPI and co-transcriptionally joined by RPs and RBFs, giving rise to a 90S pre-ribosomal particle. After pre-rRNA

cleavage (site 2 in human, A2 in yeast), the pre-40S and pre-60S particles further mature independently in the nucleolus and the nucleoplasm. After export through the

nuclear pore complex, final maturation steps occur in the cytoplasm, yielding 40S and 60S subunits competent for mRNA translation. RNAPIII transcribes the 5S rRNA

(nucleolar in human cells, nucleoplasmic in yeast), which joins pre-60S particles in the nucleolus as part of the 5S RNP complex. RNAPII transcribes mRNAs of RP and

RBF genes, which are translated by the 80S ribosome in the cytoplasm and then imported into the nucleus. Structural snapshots of maturing 90S (PDB ID: 6ZQA, 6ZQC),

pre-40S (PDB ID: 6G4W, 6G4S, 6ZQF), and pre-60S particles (PDB ID: 6EM3, 6C0F, 6ELZ, 3JCT, 5JCS, 6LU8, 6LSR) as well as mature subunits (PDB ID: 6G5H, 3J7P) are

shown. RBFs are displayed in orange, Rps in green, Rpl in blue, rRNA in gray. Structures solved in yeast are shown with reduced opacity, currently no structures of the

corresponding human maturation stages are available.
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eukaryotic ribosome maturation from rDNA organization and tran-

scription, pre-rRNA modification and processing, to subunit

assembly and nuclear export.

rDNA organization in the nucleolus and
pre-rRNA transcription

Nucleoli are primarily dedicated to pre-rRNA transcription and early

steps of ribosomal subunit assembly. They are the most prominent

nuclear, membrane-less organelles. Nucleoli are built around rDNA

loci which are organized in the form of nucleolar organizing regions

(NORs) constituted by rDNA gene clusters (Ritossa & Spie-

gelman, 1965). While S. cerevisiae contains a single NOR on chro-

mosome 12 with roughly 150 rDNA repeats, human cells possess

NORs on the acrocentric human chromosomes 13, 14, 15, 21, and

22, harboring altogether roughly 400 rDNA repeats (Henderson

et al, 1972; Stults et al, 2008; Lofgren et al, 2019). Not all NORs are

active in a cell, and cell type-specific differences in NOR activity

exist (Roussel et al, 1996; Farley et al, 2015).

The organization of nucleoli differs between yeast and human.

While yeast nucleoli consist of two subdomains, the fibrillar strands

and granules, at least three subcompartments are found in human

nucleoli, termed fibrillar center (FC), dense fibrillar center (DFC), and

granular component (GC) (Fig 2A). rDNA loci are densely packed in

the FC, whereas pre-rRNA is transcribed at the boundary between FC

and DFC (Koberna et al, 2002). Early processing steps including rRNA

modification and cleavage also occur in the DFC, while pre-ribosomal

particles mature further in the surrounding GC. Nucleoli are consid-

ered to be multiphase liquid condensates (Lafontaine et al, 2021).

However, their biogenesis and domain organization reflect the hier-

archy in pre-rRNA synthesis and ribosomal subunit assembly, high-

lighting the contribution of interaction specificity in shaping their

molecular makeup and structure (Musacchio, 2022).

Promoters of eukaryotic rDNA contain two regulatory elements:

the core element (CE) and the upstream activating sequence or control

element (UAS/UCE) (Fig 2C) (Knutson & Hahn, 2013). Although the

general promoter architecture is conserved between yeast and

mammals, regulation of RNAPI transcription likely differs between

species, as there is little sequence similarity in the main promoter

elements (Goodfellow & Zomerdijk, 2013). Several factors involved in

yeast and human rDNA organization and transcription, including pre-

initiation complex (PIC) formation, elongation, and termination, have

been identified (Table 2). In yeast, each rDNA repeat encodes two

transcripts: the 5S rRNA, transcribed by RNAPIII, and the polycis-

tronic 35S pre-rRNA, produced by RNAPI. The 35S pre-rRNA contains

the 18S, 5.8S, and 25S rRNAs surrounded and separated by external

and internal transcribed spacers (50 ETS, ITS1, ITS2, 30 ETS) (Fig 2B)

(Woolford & Baserga, 2013). Recruitment of RNAPI to the rDNA

promoter depends on the RNA polymerase I-specific transcription

factor Rrn3 and the heterotrimeric core factor (CF) complex, which

recognizes the core promoter element upstream of the transcription

start site (Fig 2C and D). The efficient initiation of pre-rRNA transcrip-

tion is further supported by the TATA-binding protein (TBP) and the

upstream activating factor (UAF) complex that binds an upstream

activation sequence (UAS) (Russell & Zomerdijk, 2006; Girbig

et al, 2022).

Human rDNA repeats have by-and-large a similar architecture,

although the 5S rRNA is transcribed from a distinct repeat region

comprising roughly 100 loci on chromosome 1, located in the

nucleoplasm in nucleolar proximity (Little & Braaten, 1989;

Haeusler & Engelke, 2006; Stults et al, 2008). Also in human cells,

several transcription factors and transcription factor complexes

mediate RNAPI pre-initiation complex assembly (Russell & Zomer-

dijk, 2006; Grummt, 2010). Initial binding of upstream binding

factor (UBF) to the rDNA promoter allows for recruitment of the SL1

complex (containing TBP, factors analogous to CF in yeast

(Fig 2C)), as well as metazoan-specific factors (Table 2), before

RNAPI is recruited via RRN3. Since pre-rRNA transcription presents

an initial rate-limiting step of ribosome assembly, it is not surprising

that many cellular signaling pathways target UBF, the SL1 complex,

and RRN3 to regulate the production of ribosomes in human cells

(Grummt, 2010; Bywater et al, 2013).

Pre-rRNA modification

rRNA is heavily modified, in particular at functionally important

regions such as the decoding center, the PTC, and the subunit inter-

face (Decatur & Fournier, 2002; Polikanov et al, 2015; Sloan

et al, 2017; Bailey et al, 2022). Many modifications are carried out

co-transcriptionally, and aid folding and compaction of the pre-

rRNA during assembly, but also support translation efficiency and

accuracy (Liang et al, 2009; Sloan et al, 2017; Ojha et al, 2020;

Khoshnevis et al, 2022). 20-O-methylation of the ribose group in the

rRNA backbone and pseudouridylation by isomerization of uridines

are by far the most frequent modifications, introduced in a site-

specific manner by so-called box C/D and box H/ACA small

nucleolar ribonucleoproteins (snoRNPs) (see Table 3), respectively.

Both types of RNPs contain four structural proteins and a dedicated

modification enzyme, that is the methyltransferase fibrillarin (Nop1

in yeast) or the pseudouridine synthase dyskerin (Cbf5 in yeast).

Each snoRNP also contains a 60–170 nt long snoRNA (with a few

longer exceptions) (Marz et al, 2011; Jorjani et al, 2016), which

▸Figure 2. Organization of nucleoli, the rDNA locus and promoter architecture in yeast and human cells.

(A) Schematic representation of a yeast nucleolus composed of fibrillar strands (FS) and granules (G) and human nucleoli consisting of three subcompartments: fibrillar
center (FC), dense fibrillar component (DFC), and granular component (GC). (B) Schematic representation of rDNA architecture in S. cerevisiae and human cells.
(C) Comparison of 35S/47S rDNA promoter region with associated pre-initiation complexes in yeast and human cells. Yeast promoters contain the upstream activation
sequence (UAS) bound by the upstream activating factor (UAF) complex and the central element (CE) bound by the core factor (CF) complex. Human promoters also
contain two elements; the upstream core element (UCE) bound by a UBF dimer and the central element (CE) bound by selectivity factor 1 (SL1) complex (Knutson &
Hahn, 2013; Engel et al, 2018; Sadian et al, 2019; Pilsl & Engel, 2020; Baudin et al, 2022; Girbig et al, 2022). (D) Structural model of yeast RNAPI in complex with Rrn3, the
CF (PDB ID: 7OBA), and UAF complexes, bound to Tbp and promoter DNA (PDB ID: 7Z0O). RNAPI subunits are in shadows of gray, factors are color-coded, and DNA is
shown in light blue.
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Table 2. Factors involved in rDNA transcription.

Yeast 35S Human 47S Function in rRNA transcription Citation

RNA Polymerase I subunits

Rpb5 x POLR2E x RNAPI subunits, shared with RNAPII and RNAPIII between polymerases Russell and Zomerdijk (2006)

Rpb6 x POLR2F x

Rpb8 x POLR2H x

Rpb10 x POLR2L x

Rpb12 x POLR2K x

Rpa40 x POLR1C x RNAPI subunits, shared with RNAPIII

Rpa19 x POLR1D x

Rpa190 x POLR1A x RNAPI-specific subunits

Rpa135 x POLR1B x

Rpa43 x POLR1F x

Rpa14 x

Rpa12 x POLR1H x

Rpa49 x POLR1E x

Rpa34 x POLR1G x

PIC formation/promoter escape

Tbp x TBP x TATA box binding protein Comai et al (1994)

UBF x Binds rDNA promoter as a dimer, has a role in promoter escape and
regulation of elongation

Bell et al (1988)

Rrn3 x RRN3 x RNAPI-specific initiation factor, stimulates RNAPI recruitment Milkereit and Tschochner (1998)

Rrn6 x TAF1C x Involved in PIC formation. In yeast: part of CF Complex; in humans: part
of selectivity factor SL1

Comai et al (1994)

Rrn7 x TAF1B x

Rrn11 x TAF1A x

TAF1D x Involved in PIC formation: part of human Selectivity factor SL1 Denissov et al (2007) and Gorski
et al (2007)

TAF12 x

Rrn5 x Involved in PIC formation: part of yeast UAF complex Keys et al (1996), Keener et al (1997)
and Siddiqi et al (2001)

Rrn9 x

Rrn10 x

Uaf30 x

Hht1/H3 x H3C1/H3

Hhf1/H4 x H4C1/H4

Top1 x TOP1 x Facilitate PIC formation by removing super coils at rDNA promoters and
promote elongation

Brill et al (1987) and Ray et al (2013)

Top2 x TOP2A x

Cka1 CK2A1 x Involved in PIC formation; part of tetrameric CK2 complex, regulate
interaction between UBF and SL1

Panova et al (2006)

Cka2 CK2A2 x

Ckb1 CK2N x

Elongation

Spt4 x SPT4H x DSIF complex, influences RNAPI activity; Regulates binding of UBF to
rDNA

Schneider et al (2006)

Spt5 x SPT5H x

Paf1 x PAF1 x Paf1C complex, influences RNAPI activity Zhang et al (2009)

Ctr9 x CTR9 x

Cdc73 x WDR61 x

Rtf1 x RTF1 x

Leo1 x LEO1 x
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guides the respective complex to its target site on the pre-rRNA.

Importantly, ribosome and snoRNA biogenesis are tightly inter-

woven in metazoans, since many snoRNAs are encoded within the

introns of RP or RBF genes (Hirose & Steitz, 2001).

Both the binding of snoRNAs to the pre-rRNA and the resulting

nucleotide modifications play important roles in pre-rRNA folding (see

recent reviews Mitterer & Pertschy, 2022; Oborsk�a-Oplov�a et al, 2022).

Many snoRNA binding sites are found in pre-rRNA regions that fold

late during nucleolar assembly steps. By base-pairing with these still

unfolded pre-rRNA elements, snoRNAs prevent premature or non-

productive formation of RNA helices. Furthermore, multivalent

snoRNAs, exemplified by the U3 snoRNA that is involved in early

pre-rRNA folding and processing steps (see below), can force distant

pre-rRNA regions into a defined configuration while simultaneously

inhibiting untimely RNA annealing events. Nucleotide modifications,

in turn, affect base-pairing preferences and can enhance the conforma-

tional rigidity of the RNA backbone (Sumita et al, 2005; Helm, 2006;

Abou Assi et al, 2020).

In yeast, ~75 snoRNAs have been described, catalyzing the modi-

fication of 112 sites, while in humans 228 sites are targeted by more

than 200 snoRNAs (Natchiar et al, 2017; Taoka et al, 2018, 2016).

The lack of individual modifications is generally well tolerated in

yeast cells, whereas their cumulative loss can cause defects in

subunit assembly, translation, and cell growth (Liang et al, 2007,

2009). Notably, both in yeast and mammalian cells, there is some

heterogeneity in the use of modification sites (Jaafar et al, 2021b),

but evidence for a functional relevance of this variability remains

scarce (Metge et al, 2021). More than 130 rRNA modifications have

Table 2 (continued)

Yeast 35S Human 47S Function in rRNA transcription Citation

Spt16 x SUPT16H x FACT complex, supports RNAPI transcription through nucleosomes Birch et al (2009)

Pob3 x SSRP1 x

Fcp1 x Dephosphorylates RNAPI for efficient RNA synthesis Fath et al (2004)

Termination

Rnt1 x Endonucleolytic cleavage at end of 25S transcript el Hage et al (2008)

Rat1 x Release of RNAPI transcribing 30 part of the transcript el Hage et al (2008)

Reb1 x TTF1 x RNAPI transcription termination factors, bind to termination sequence
T1, lead to RNAP I pausing

Reiter et al (2012)

Nsi1 x Reiter et al (2012)

Fob1 x Binds to replication fork barrier sequence, inhibits clashes with DNA
replication machinery

el Hage et al (2008)

rDNA organization

Hmo1 x Associates with active rDNA repeats, related to UBF Gadal et al (2002)

CTCF x Regional organization of rDNA van de Nobelen et al (2010)

MYC x Attachment of rDNA to nucleolar matrix; local histone acetylation Grandori et al (2005)

MAX x Interacts with MYC Nair and Burley (2003)

TCOF1 x Facilitates rDNA transcription, interacts with UBF and RNAPI, and is
involved in rRNA methylation

Werner et al (2015)

Srp40 NOLC1 x Interacts with TCOF1 Valdez et al (2004)

Bdf2 BRD2 x Regulation of RNAPI activity by histone acetylation, recruited by LYAR Izumikawa et al (2019)

Bdf1 BRD4 x

KAT7 x

Nto1 JADE3 x

YCR087C LYAR x Binds to UBF, recruits BRD2/4-KAT7 Izumikawa et al (2019)

Factors acting both in rRNA transcription and early processing steps

SIRT7 x Required for the activation of Pol I transcription at the exit from mitosis Ford et al (2006) and Iyer-Bierhoff
et al (2018)

Nop1 FBL x Methylates rRNA and histone H2AQ104 Tessarz et al (2014)

Utp4 UTP4 x t-UTPs, function in both rRNA transcription and the SSU processome Gallagher et al (2004) and Prieto
and McStay (2007)

Utp5 WDR43/
UTP5

x

Utp10 HEATR1/
UTP10

x

Utp15 UTP15 x

Utp17 UTP17/
WDR75

x
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been visualized by single particle cryo-EM in the human ribosome,

of which 11 were found at universally conserved sites (Natchiar

et al, 2017). As expected, the vast majority of modifications reside

in the interior of the ribosome close to the functional centers. Inter-

estingly, also a large number of novel sites were discovered, many

of which contain base-modified nucleotides.

Some rRNA modifications do not depend on snoRNPs, but are

introduced by stand-alone enzymes, many of which function in base

methylation, but also support other modifications such as acetyla-

tion (listed in Table 3). For the majority of these enzymes only a

single target nucleotide has been described, but the functions of

these modifications remain largely enigmatic. The most complex

ribosomal modification, a 1-methyl-3-(3-amino-3-carboxypropyl)-

pseudouridine (m1acp3Ψ) in helix 31 of the 18S rRNA (1248U), is

established in a stepwise manner, starting with the formation of a

pseudouridine catalyzed by the snR35 H/ACA snoRNP complex

(Samarsky et al, 1995). After subsequent methylation by Emg1

(Wurm et al, 2010), the final modification is formed by the amino-

carboxypropyl transferase Tsr3 during final cytoplasmic maturation

(Meyer et al, 2016; Huang et al, 2022). Importantly, m1acp3Ψ,
which is solvent exposed at the ribosomal P site, is frequently lost

or hypomodified in cancer and has been suggested to lead to

increased translation of RP mRNAs (Babaian et al, 2020). Recently,

it was discovered that human rRNA also contains m6A modifica-

tions in the 18S and 28S rRNAs, mediated by the methyltransferases

METTL5 and ZCCHC4 respectively, yet the molecular function of

the two identified modification sites remains to be further explored

(Ma et al, 2019; van Tran et al, 2019; Pinto et al, 2020).

Pre-rRNA processing

A series of concerted pre-rRNA cleavage and trimming reactions in

the nucleus and cytoplasm leads to the excision of the mature 18S,

Table 3. Factors involved in rRNA modification.

Yeast 40S 60S Human 40S 60S Function in rRNA modification Citation

snoRNP components

Nop1 x x FBL x x Box C/D snoRNP components, 20O-methylation of the ribose
group in the RNA backbone

Grandi et al (2002)

Nop56 x x NOP56 x x

Nop58 x x NOP58 x x

Snu13 x x SNU13 x x

Rrp9 x x U3-55K x x

Cbf5 x x DKC x x Box H/ACA snoRNP components, pseudouridylation of rRNA Kiss-L�aszl�o et al (1996)

Nhp2 x x NHP2 x x

Nop10 x x NOP10 x x

Gar1 x x GAR1 x x

Stand-alone enzymes

Tsr3 x TSR3 x Tsr3: aminocarboxypropyl transferase; Emg1:
methyltransferase, 18S-m1acp3Ψ1240 (y:1191)

Wurm et al (2010) and Meyer
et al (2016)

Emg1 x EMG1 x

Kre33 x NAT10 x Acetyltransferase 18S-ac4C1337,1842 (y:1280,1773) Ito et al (2014) and Sharma
et al (2017)

Bud23 x WBSCR22 x Methyltransferase 18S-m7G1639 (y:1575) White et al (2008)

Dim1 x DIMT1 x Methyltransferase 18S-m2
6A1850/1 (y:1781/2) Lafontaine et al (1998)

Rrp8 x NML/
RRP8

x x Methyltransferase 28S-m1A1332 (y:645) Peifer et al (2013)

Bmt2 x Methyltransferase 25S-m1A2142 Sharma et al (2013)

Rcm1 x NSUN5 x Methyltransferase 28S-m5C3761 (y:2278) Schosserer et al (2015)

Bmt5 x Methyltransferase 25S-m3U2634 Sharma et al (2014)

Bmt6 x Methyltransferase 25S-m3U2843 Sharma et al (2014)

Nop2 x NOP2 x Methyltransferase 28S-m5C4414 (y:2870) Sharma et al (2014)

Spb1 x x Methyltransferase 28S-Gm4469 (y:2922) Lapeyre and
Purushothaman (2004)

ZCCHC4 x Methyltransferase 28S-m6A4220 Ma et al (2019) and Pinto
et al (2020)

METTL5 x Methyltransferase 18S-m6A1832 van Tran et al (2019)

Trm112 TRMT112 x Activator of methyltransferases (Bud23/WBSCR22, METTL5) Zorbas et al (2015) and van
Tran et al (2019)
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5.8S, and 25/28S rRNAs from the polycistronic rRNA precursor

(Fig 3). The general hierarchical principle of sequential elimination

of transcribed spacers and the function of several endo- and exonu-

cleases (Table 4) in this process is largely conserved from yeast to

human (for more details see Tomecki et al, 2017; Aubert et al, 2018;

Bohnsack & Bohnsack, 2019). In both organisms, pre-rRNA proces-

sing is tightly interconnected with other steps of ribosome biogen-

esis, such as rRNA modification, folding, and binding of RPs or

RBFs. A critical step in the maturation pathway is the first cleavage

event within the ITS1 (at site A2 in yeast, site 2 in humans), which

separates the emerging pre-40S and pre-60S particles. In yeast,

~70% of nascent transcripts are cleaved co-transcriptionally within

ITS1 (Ko�s & Tollervey, 2010). Human pre-rRNA processing also

starts co-transcriptionally, at least in the 50 ETS region (Delannoy &

Sollner-Webb, 1997; Osheim et al, 2004). However, it remains to be

defined whether the endonucleolytic cleavage within the ITS1

occurs only post-transcriptionally or also co-transcriptionally in

mammalian cells, and how this critical event is coordinated with

subunit assembly. The prominent presence of the long 47S/45S

precursors in pulse-labeling experiments and Northern blots indi-

cates that at least a substantial fraction of ITS1 cleavage events may

only occur after synthesis of the precursor has been completed

(Bowman et al, 1981; Strezoska et al, 2000). Notably, in both yeast

and mammals, alternative pre-rRNA processing pathways exist, and

their relative contribution to rRNA production is suggested to be

governed by the respective kinetics of the processing reactions (Axt

et al, 2014; Henras et al, 2015).

The fourth rRNA, the 5S rRNA, is transcribed by RNAPIII. The

immature 5S rRNA is initially bound by the La protein and TFIIIA in

higher eukaryotes, protecting it from degradation (Ciganda &

Williams, 2011; Layat et al, 2013). It needs to be trimmed at its 30

end before getting incorporated into the maturing pre-60S particle.

This trimming is performed by the exonucleases Rex1, Rex2, and

Rex3 in yeast, which act redundantly (Table 4) (van Hoof

et al, 2000). Factors involved in human 5S rRNA maturation remain

elusive. The Rex1 homolog REXO5 was shown to be functionally

conserved in flies (Gerstberger et al, 2017), although mouse REXO5

is not essential for survival (Silva et al, 2017), pointing to potential

redundancy. The processed 5S RNA associates with two newly

synthesized RPs, RPL5/uL18, and RPL11/uL5, forming the 5S RNP

which is then incorporated into nascent 60S subunits (see below).

Chaperones of ribosomal proteins

Ribosomal proteins are synthesized in the cytoplasm, but most are

incorporated into pre-ribosomal particles in the nucleolus, posing a

logistic challenge to the cell. As RPs are enriched in basic amino

acids and contain flexible tails as well as intrinsically disordered

regions (Klinge et al, 2011; Rabl et al, 2011), they are prone to

aggregation. Therefore, newly synthesized RPs need to be kept away

from undesired interactions until they are incorporated into pre-

ribosomal particles. Several mechanisms contribute to avoiding

adverse effects of unincorporated ribosomal proteins: dedicated

chaperones for specific RPs (see below), the general chaperone

network (Gong et al, 2009; Alban�ese et al, 2010; Koplin et al, 2010;

Leidig et al, 2013; Pillet et al, 2017) and association with nuclear

transport receptors en route into the nucleus (J€akel et al, 2002). In

addition, excess, unincorporated RPs are degraded (Warner, 1977;

Lam et al, 2007; Sung et al, 2016).

About a dozen dedicated chaperones for RPs have been

described (Table 5). Some of them capture nascent RPs co-
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Figure 3. Pre-rRNA maturation in yeast and human cells.

Simplified processing pathway of the 35S pre-rRNA in yeast and 47S pre-rRNA in human cells, indicating processing sites of endo- and exonucleases in orange and blue,

respectively. Several alternative processing pathways exist, which are reviewed elsewhere (Tomecki et al, 2017; Aubert et al, 2018).

� 2023 The Authors The EMBO Journal 42: e112699 | 2023 9 of 43

Kerstin Dörner et al The EMBO Journal



Table 4. Factors involved in pre-rRNA processing.

Yeast 40S 60S Human 40S 60S Function in pre-rRNA processing Citation

Utp23 UTP23 x Endoribonuclease, cleavage at site A0 (likely
inactive)

Wells et al (2017)

Utp24/
Fcf1

x UTP24 x Endoribonuclease, cleavage at site 1 (A1) Bleichert et al (2006)

Nob1 x NOB1 x Endoribonuclease, cleavage at site 3 (D) Fatica et al (2004)

RMRP x RMRP x Part of MRP complex, endoribonuclease with non-
canonical snoRNA, cleavage at site 2 (A3)

Perederina et al (2020), van Hoof
et al (2000) and Goldfarb and Cech (2017)

Pop1 x POP1 x

Pop3 x RPP38 x

Pop4 x RPP29 x

Pop5 x POP5 x

Pop6 x RPP25 x

Pop7 x RPP20 x

Pop8 x RPP14 x

Rpp1 x RPP30 x

Rpr2 x RPP21 x

Snm1 x

Rmp1 x

RPP40 x

Las1 x LAS1L Endoribonuclease, maybe cleavage at site 4 (C2) Schillewaert et al (2012)

Rnt1 x Endoribonuclease (B0) Kufel et al (1999)

Rat1 x XRN2 x x Exoribonuclease, pre-rRNA trimming el Hage et al (2008)

Rrp17 x NOL12 Exoribonuclease, pre-rRNA trimming Oeffinger et al (2009)

Rrp44 x DIS3 x Nuclear exosome, exoribonuclease, pre-rRNA
Trimming 5.8S rRNA maturation

Briggs et al (1998) and Sloan et al (2012)

Rrp6 x EXOSC10 x

Csl4 x EXOSC1 x

Rrp4 x EXOSC2 x

Rrp40 x EXOSC3 x

Rrp41 x EXOSC4 x

Rrp46 x EXOSC5 x

Mtr3 x EXOSC6 x

Rrp42 x EXOSC7 x

Rrp43 x EXOSC8 x

Rrp45 x EXOSC9 x

Mtr4 x MTR4 x Cofactor of nuclear exosome Briggs et al (1998) and Sloan et al (2012)

Trf4 x PAPD5 x

Trf5 x PAPD7 x

Air1 x ZCCHC7 x

Air2 x ZCCHC8 x

Mpp6 x MPP6 x

Lrp1/
Rrp47

x C1D x

x RBM7 x

Rex1 x REXO5 Exoribonuclease, pre-rRNA trimming van Hoof et al (2000)

Rex2 x REXO2 Exoribonuclease, pre-rRNA trimming van Hoof et al (2000)

Rex3 x REXO1 Exoribonuclease, pre-rRNA trimming van Hoof et al (2000)
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translationally (e.g., Yar1 for Rps3/uS3, Rrb1 for Rpl3/uL3, Syo1 for

Rpl5/uL18, Sqt1 for Rpl10/uL16, and Acl4 for Rpl4/uL4), whereas

others bind their clients later (Pausch et al, 2015; Pillet et al, 2017).

Interestingly, it has recently been revealed that the absence of the

RP chaperones Acl4 or Rrb1 leads to a destabilization of the mRNAs

encoding for their respective clients Rpl4 and Rpl3, revealing a

novel regulatory mechanism of RP homeostasis (Pillet et al, 2022).

RP chaperones not only shield their clients but can also aid their

delivery into the nucleus. For those RPs that get incorporated into

nascent subunits in the nuclear compartment, the nuclear localiza-

tion signal can either be provided by the RP itself (e.g., Rps3/uS3,

Rpl3/uL3, Rpl4/uL4), or by the dedicated chaperone (e.g., Syo1;

Kressler et al, 2012; Bange et al, 2013; Calvi~no et al, 2015).

One peculiar case is yeast Tsr2, which serves as dedicated

chaperone for Rps26/eS26. Tsr2 has been proposed to pick up

newly synthesized Rps26/eS26 only after nuclear import by stimu-

lating Rps26/eS26 release from importins in the nucleus, to then

allow its nuclear association with pre-40S subunits (Sch€utz

et al, 2018). In the mammalian system, RPS26/eS26 is incorporated

into the pre-40S particle during its final cytoplasmic maturation

(Ameismeier et al, 2018, 2020; Plassart et al, 2021). Here, TSR2

could help in preventing association of RPS26/eS26 with nuclear

import receptors in the cytosol, but more work is needed to unravel

the place of action of mammalian TSR2. Notably, also in yeast Tsr2

may harbor a cytosolic function, as it has recently been suggested to

facilitate Rps26/eS26 release from and reincorporation into mature

ribosomes in response to salt or pH stress (Yang & Karbstein, 2022).

The function of RP chaperones does not seem to be limited to

factors acting in trans. In most eukaryotes, Rps31/RPS27A/eS31 and

Rpl40/eL40 are initially synthesized as linear fusions with an N-

terminal ubiquitin, which facilitates their folding and enhances solubi-

lity of the respective RPs (Finley et al, 1989; Lacombe et al, 2009;

Mart�ın-Villanueva et al, 2019, 2020, 2021). After synthesis, the

ubiquitin moiety is rapidly released from these fusion proteins (Grou

et al, 2015) and enters the cellular ubiquitin pool. Interestingly, in

humans and other holozoan organisms, a second RP of the small

subunit, RPS30/eS30, is synthesized as a fusion with a ubiquitin-like

protein called FUBI. Release of FUBI from the FUBI-eS30 fusion

Table 4 (continued)

Yeast 40S 60S Human 40S 60S Function in pre-rRNA processing Citation

Ngl2 x Ccr4 Exoribonuclease, pre-rRNA trimming, 5.8S rRNA
maturation

Faber et al (2002)

PARN x Exoribonuclease, pre-rRNA trimming, 18S rRNA
maturation

Montellese et al (2017)

TUT4 x Uridylyltransferase, pre-rRNA trimming, 18S rRNA
maturation

Montellese et al (2017)

TUT7 x Uridylyltransferase, pre-rRNA trimming, 18S rRNA
maturation

Montellese et al (2017)

ISG20L2 x Exoribonuclease, pre-rRNA trimming 5.8S rRNA
maturation

Cout�e et al (2008)

ERI1 x Exoribonuclease, pre-rRNA trimming, 5.8S rRNA Ansel et al (2008)

Table 5. Chaperones of ribosomal proteins.

Yeast 40S 60S Human 40S 60S Chaperoned RP Citation

Rrb1 x GRWD1 Rpl3/uL3 Iouk et al (2001)

Acl4 x Rpl4/uL4 Stelter et al (2015)

Syo1 x HEATR3 x Rpl5/uL18 and Rpl11/uL5 Kressler et al (2012), Hannan et al (2022) and
O’Donohue et al (2022)

Sqt1 x AAMP x Rpl10/uL16 Eisinger et al (1997)

Bcp1 x BCCIP x Rpl23/uL14 Ting et al (2017)

Loc1 x Rpl43/eL43 Liang et al (2019)

Puf6 x Rpl43/eL43 Liang et al (2019)

Tsr4 x PDCD2 Rps2/uS5 Black et al (2019) and Rössler et al (2019)

Yar1 x Rps3/uS3 Lindström and Zhang (2008)

Nap1 x Rps6/eS6 Rössler et al (2019)

NPM x Rps9/uS4 Lindström and Zhang (2008)

Fap7 x AK/
CINAP

x Rps14/uS11, maybe also in complex with
Rps26/eS26

Hellmich et al (2013) and Pe~na et al (2016)

AROS x Rps19/eS19 Singh et al (2021)

Tsr2 x TSR2 x Rps26/eS26 Sch€utz et al (2014)
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protein is required for 40S subunit maturation, likely linked to its

nuclear incorporation into pre-40S subunits, and promoted by the

deubiquitinase USP36 (van den Heuvel et al, 2021).

Formation and maturation of the SSU processome

When the pre-rRNA emerges from the transcribing polymerase, it is

soon bound by a subset of RPs of the small subunit, 40S RBFs as well

as by small nucleolar ribonucleoproteins (snoRNPs), eventually

giving rise to a large ribosomal pre-particle that is referred to as the

small subunit (SSU) processome or 90S pre-ribosome (Fig 4) (Dragon

et al, 2002; Grandi et al, 2002). Early pre-rRNA processing events are

executed during maturation of this complex, leading to the removal

of the external transcribed spacer (50 ETS) and cleavage within ITS1.

Initially, high-resolution structures of different fungal SSU proces-

some particles were obtained, giving invaluable mechanistic insights

into the function of a multitude of RBFs during early assembly, pre-

rRNA folding, and processing events (Kornprobst et al, 2016;

Barandun et al, 2017; Chaker-Margot et al, 2017; Cheng et al, 2017;

Sun et al, 2017; Du et al, 2020; Lau et al, 2021). Then, in 2021, the

first structures of the human SSU processome were published,

providing visual evidence for the existence of SSU processome parti-

cles in higher eukaryotic cells and illustrating the vast conservation

of its global architecture (Singh et al, 2021) (Fig 4, Table 6).

Small subunit processome assembly is initiated when the 50 ETS
region of the nascent pre-rRNA transcript is bound by the so-called

UTP-A complex, a seven-membered protein complex that provides

binding interfaces for later joining SSU subcomplexes (P�erez-

Fern�andez et al, 2007; Zhang et al, 2016b; Barandun et al, 2017;

Cheng et al, 2017; Hunziker et al, 2019). The UTP-A complex is also

needed for pre-rRNA synthesis, thereby linking pre-rRNA transcrip-

tion and ribosome assembly (Gallagher et al, 2004). Following the

UTP-A complex, the six-membered UTP-B complex and the U3

snoRNP are co-transcriptionally recruited to the 50 ETS (Chaker-

Margot et al, 2015; Hunziker et al, 2016; Kornprobst et al, 2016).

The UTP-B complex acts as a chaperone for both the 50 ETS and the

U3 snoRNA, and upon incorporation of additional factors, including

the Mpp10 complex (Granneman et al, 2003), a large 50 ETS-

associated particle comprising more than 25 RBFs is formed

(Chaker-Margot et al, 2015; Zhang et al, 2016b; Barandun

et al, 2017). Within the 50 ETS-associated particle, the U3 snoRNP

serves as a key organizer orchestrating SSU processome formation.

In both human and yeast cells, the U3 RNA base pairs with two

regions each of the 50 ETS and the 18S rRNA (Granneman

et al, 2009; Dutca et al, 2011; Barandun et al, 2017; Singh

et al, 2021), thereby functioning as a critical structural constraint for

pre-rRNA folding during SSU processome assembly (Fig 4). Impor-

tantly, this prevents the premature formation of the central pseudo-

knot, a universally conserved element of rRNA tertiary structure

that is part of the small ribosomal subunit decoding center (Sardana

et al, 2015). Notably, many RBFs within the SSU processome bind

to more than one site of the pre-rRNA, thereby reducing the confor-

mational freedom of the rRNA during folding. In particular, SSU

RBFs such as Faf1, Utp11, Mpp10, Sas10, and Nop14 exhibit long

extensions that bridge distant rRNA regions within these precursors,

thereby contributing to correct pre-rRNA organization (Chaker-

Margot et al, 2017; Cheng et al, 2017).

A striking difference between yeast and mammalian cells is the

length of the 50 ETS that comprises roughly 700 nucleotides in yeast,

but is extended to 3,600 nucleotides in humans. Only relatively

short, structured parts of the 50 ETS could be visualized in the struc-

tural models of the human SSU processome (Singh et al, 2021).

Surprisingly, a minimal human 50 ETS comprising these RNA

segments (in total only ~25% of the entire 50 ETS region) is suffi-

cient for correct 40S and 60S assembly (Singh et al, 2021). In light

of this data, the function of the other 50 ETS regions is enigmatic. It

has been proposed that they might contribute to nucleolar organiza-

tion by supporting the formation of biomolecular condensates and

thereby nucleolar phase separation (Yao et al, 2019). Along the

same line of thought, it is conceivable that the increase in 50 ETS
length contributes to the observed differences in subnucleolar orga-

nization between mammals and yeast.

The 50 ETS particle has originally been suggested to serve as a

binding platform for the hierarchical recruitment of further protein

complexes to sequentially promote the folding of spatially distant

rRNA domains (Kornprobst et al, 2016; Cheng et al, 2017; Sun

et al, 2017). However, since individual 18S rRNA domains can in prin-

ciple recruit their respective biogenesis factors independently, it has

also been proposed that the 50 ETS and downstream 18S rRNA

domains may function as independent units in the recruitment of their

respective assembly factor complexes which may then support SSU

processome assembly based on their mutual dependence (Hunziker

et al, 2019). In either case, further assembly factors are recruited to

the nascent rRNA concomitant with ongoing transcription in an

rRNA-subdomain dependent fashion (P�erez-Fern�andez et al, 2007),

among them the Bms1-Rcl1 complex, the Nat10/Kre33 module

(Kre33–Brf2–Lcp5–Enp2 in yeast/NAT10-(AATF-NGDN-NOL10)

(ANN) complex in humans) and the UTP-C complex (Bammert

et al, 2016; Barandun et al, 2018). Notably, also other snoRNAs

including U14, snR30/U17, and snR10 transiently associate with the 50

and central domains of the 18S rRNA (Zhang et al, 2016b) and aid

18S rRNA processing and folding. In the course of SSU processome

assembly, cleavage at site A0 in the 50 ETS occurs, eventually giving

rise to a large, stable intermediate referred to as the “pre-A1” particle

in which site A1 is still uncut (Fig 4) (vanden Broeck & Klinge, 2022).

The human pre-A1 particle is 3.3 MDa in size and contains about 21

RPs and 50 RBFs (Singh et al, 2021).

To initiate cleavage at site A1, which generates the mature 50 end
of the 18S rRNA, the PIN domain endonuclease Utp24/UTP24 must

gain access to the processing site (Tomecki et al, 2017; Barandun

et al, 2018, 2017; Singh et al, 2021; vanden Broeck & Klinge, 2022).

This involves a series of events, commencing with the release of

Lcp5/NGDN (state pre-A1*; Fig 4), followed by structural remo-

deling of the SSU particle that affects the positioning of the U3

snoRNA. Particle remodeling is associated with the release of the

Utp24/UTP24 inhibitory factor Faf1/C1ORF131 and the residuals of

the Kre33/NAT10 module (state post A1; Fig 4) (Cheng et al, 2020;

Du et al, 2020; Singh et al, 2021). What drives these events and how

the enzymatic activity of Kre33/NAT10 is coordinated with SSU

processome maturation, potentially aided by the juxtaposed ANN

complex or other factors, remains to be unraveled. Importantly, also

the nuclear exosome may play a crucial role in the remodeling of

the SSU processome (Du et al, 2020) by driving the 30–50 unwinding

of the 50 ETS after cleavage at site A0 (Du et al, 2020; Lau

et al, 2021), contributing to structural remodeling of the SSU-bound
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Figure 4. Structures of the yeast and human SSU processome.

Cryo-EM structures of the yeast (PDB ID: 6ZQB, 7AJT, and 7AJU) and human (PDB ID: 7MQ8, 7MQ9, 7MQA) SSU processome particles in the pre-A1, pre-A1* and post-A1

cleavage states, showing a comparison of their overall architecture. The conserved RNA components and subcomplexes are color-coded. The pre-rRNA (white) and indi-

vidual sub-complexes such as UTP-A (pink), UTP-B (light blue), UTP-C (violet), Emg1 (green), ANN (light green) complex, and additional RBFs, are shown as surfaces.

KRR1/Krr1, C1orf131/Faf1, and the NAT10/Kre33 module are indicated as pre-A1-specific RBFs (sand). They are released after A1 cleavage. The exosome complex (yellow)

is bound to the pre-A1* yeast particle and it is associated only with the human post-A1 structure. In the post-A1 structures, DHX37/Dhr1 and DIM1/Dim1 are displayed

in orange.
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Table 6. Small subunit processome subcomplexes and early assembly factors.

Yeast 40S 60S Human 40S 60S
Function in early nucleolar ribosome
biogenesis Citation

Utp4 x UTP4/
CIRH1A

x UTP-A complex, interacts with the start of 50 ETS,
required for recruitment of UTP-B and U3 snoRNP,
essential for formation of 50 ETS particle

Krogan et al (2004), Prieto and
McStay (2007), Freed et al (2012),
Chaker-Margot et al (2017) and
Singh et al (2021)

Utp5 x UTP5/WDR43 x

Utp8 x NOL11 x

Utp9 x

Utp10 x UTP10/
HEATR1

x

Utp15 x UTP15 x

Utp17 x UTP17/
WDR75

x

Pol5 x x MYBBP1A x

Utp1/
Pwp2

x PWP2 x UTP-B complex, binds 50 ETS and U3 snoRNA,
supports structural pre-rRNA remodeling, essential
for formation of 50 ETS particle, Utp18 contains
exosome interaction motif

Krogan et al (2004), Sloan
et al (2015), Barandun et al (2017),
Barandun et al (2018) and Singh
et al (2021)

Utp6 x UTP6 x

Utp12/
Dip2

x UTP12/WDR3 x

Utp13 x TBL3 x

Utp18 x UTP18 x

Utp21 x WDR36 x

DDX21 x

NOP2 x

Nop1 x FBL x U3 snoRNP, U3 snoRNA base pairs with 50 ETS,
chaperones pre-rRNA folding steps, essential for
formation of 50 ETS particle

Kiss-L�aszl�o et al (1996), Grandi
et al (2002), Barandun et al (2017)
and Singh et al (2021)

Nop56 x NOP56 x

Nop58 x NOP58 x

Snu13 x SNU13/15.5 K x

Rrp9 x U3-55K/
U3IP2

x

Mpp10 x MPHOSPH10 x Mpp10-Imp3-Imp4 complex, interacts with U3
snoRNA, supports formation of 50 ETS particle

Lee and Baserga (1999) and
Granneman et al (2003)

Imp3 x IMP3 x

Imp4 x IMP4 x

Rrp7 x RRP7A x UTP-C complex, chaperones 50 domain of 18S rRNA Baudin-Baillieu et al (1997), Krogan
et al (2004), Rudra et al (2007),
Barandun et al (2017) and Singh
et al (2021)

Utp22 x NOL6 x

Cka1 x CK2A1 x

Cka2 x CK2A2 x

Ckb1 x CK2N x

Ckb2 x CK2N x

Rrp36 x RRP36 x

Utp7 x WDR46 x Sof1-Utp7 complex, aids organization of A1 cleavage
site

Barandun et al (2017)

Utp14 x UTP14A x

Sof1 x WDSOF1 x

Rcl1 x RCL1 x Rcl1-Bms1-complex, GTPase activity (Bms1),
mediates cleavage at A2 site, also required for A0
and A1 cleavage, interacts with U3 snoRNP

Karbstein and Doudna (2006) and
Horn et al (2011)

Bms1 x BMS1 x

Enp1 x ENP1/BYSL x In yeast: Nop14-Noc4-Enp1 complex, in humans:
NOP14-NOC4L-UTP14A-EMG1, structural role: binds
to 30 domain of 18S pre-RNA, Emg1:
methyltransferase

Liu and Thiele (2001), K€uhn
et al (2009), Warda et al (2016) and
Barandun et al (2017)

Utp2/
Nop14

x NOP14 x

Noc4 x NOC4L x

Emg1 x EMG1 x
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Table 6 (continued)

Yeast 40S 60S Human 40S 60S
Function in early nucleolar ribosome
biogenesis Citation

Bfr2 x AATF x in humans: ANN complex, required for cleavage at
A0, 1 and in the ITS1, in yeast: Bfr2-Enp2 recruit
Dpb4

Soltanieh et al (2014) and Bammert
et al (2016)

Lcp5 x NGDN x

Enp2 x NOL10 x

XRN2 x XND complex, required for A0 cleavage, recruits XRN2
for degradation of excised spacer fragment

Dragon et al (2002) and Memet
et al (2017)

NKRF x

Prp43 DHX15 x

Utp30 x RSL1D1 x Utp30-Rrt14 complex, binds 50 ETS and pre-18S
rRNA, Rrt14 is non-essential

Barandun et al (2017)

Rrt14 x

Utp11 x UTP11 x

Bud21/
Utp16

x NOL7 x Required for 18S pre-rRNA processing Dragon et al (2002) and Singh
et al (2021)

Fcf2 x TDIF2 x Binds U3 snoRNP, TDIF2 contains AIM putative motif Rempola et al (2006), Barandun
et al (2017) and Singh et al (2021)

Sas10 x UTP3 x Stabilizes and chaperones Mpp10 complex to
nucleolus, blocks Emg1 active site

Zhao et al (2019)

Utp24 x UTP24 x Endoribonuclease, couples pre-rRNA cleavages in
yeast at sites A1 and A2, in humans: site 1 and E

Bleichert et al (2006) and Wells
et al (2016)

Esf1 x ESF1 Involved in early pre-rRNA processing Peng et al (2004)

Esf2 x ABT1 Stimulates Dbp8 Granneman et al (2006b)

Dbp8 x DDX49 x DEAD box RNA helicase Granneman et al (2006b) and
Awasthi et al (2018)

Dbp4 x DDX10 x DEAD box RNA helicase Granneman et al (2006a) and Turner
et al (2009)

Rrp3 x DDX47 x DEAD box RNA helicase Granneman et al (2006a)

Bud22 x SRFBP1 Dakshinamurthy et al (2010)

Efg1 x Required for 18S pre-rRNA processing (A1, A2),
initiates degradation of aberrant 23S pre-rRNA

Choque et al (2018)

Rrp5 x x PDCD11 x x Structural SSU component supporting pre-rRNA,
compaction, important for 18S maturation (site A0-
A2) and 5.8S processing (site A3)

Venema and Tollervey (1996) and
Lebaron et al (2013)

Krr1 x KRR1 x Interacts with Faf1, important for 40S platform,
assembly as it is replaced by Dim2

Zheng et al (2014) and Sturm
et al (2017)

Rok1 x DDX52 x DEAD box RNA helicase, releases Rrp5, releases
snR30

Khoshnevis et al (2016)

Utp25 x DEF/
C1orf107

x Charette and Baserga (2010) and
Tao et al (2017)

Kri1 x KRI1 Interacts with Krr1 Sasaki et al (2000)

Utp23 x UTP23 x Endoribonuclease, in yeast: likely inactive, in
humans: cleavage at site A0

Wells et al (2017)

Fyv7 x Peng et al (2003)

Mrd1 x RBM19 x Aids formation of central pseudoknot, required for
dynamic U3 snoRNA-rRNA interaction (release)

Segerstolpe et al (2013) and
Lackmann et al (2018)

Fal1 x DDX48/
EIF4A3

x DEAD box RNA helicase Kressler et al (1997) and Davila
Gallesio et al (2020)

Sgd1 x NOM1 x Fal1 cofactor Davila Gallesio et al (2020)

Cms1 x CMS1 x Grandi et al (2002)

Nop9 x NOP9 Impedes Nob1 cleavage Garc�ıa-G�omez et al (2011) and
Zhang et al (2016a)

Nop6 x Not essential for ribosome biogenesis Garc�ıa-G�omez et al (2011)
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50 ETS particle and the SSU “head domain”. Recent structural and

biochemical data obtained from yeast indeed revealed that the

nuclear exosome already binds 90S particles prior to cleavage at site

A1 as visualized in pre-A1* particles (Fig 4) (Du et al, 2020; Lau

et al, 2021). Yet, in humans, the exosome was only found to be

associated with the post-A1 structure and its binding sites are

blocked in the described human pre-A1 particles (Singh et al, 2021).

The disassembly of the SSU processome involves the activity of

the conserved RNA helicase Dhr1/DHX37 (Sardana et al, 2015;

Boneberg et al, 2019; Choudhury et al, 2019), which drives the

release of the U3 snoRNP to allow the formation of the conserved

pseudoknot in the 18S rRNA. Dhr1/DHX37 is recruited to the SSU

processome already upon release of the ANN complex, and initially

kept in an inhibited state. Activation is tightly linked to the choreo-

graphy of SSU processome disassembly, when the RNA helicase

gains spatial proximity to its activator UTP14 (Boneberg et al, 2019;

Choudhury et al, 2019; Singh et al, 2021). Recent in vitro work

reconstituted the Dhr1-dependent release of the U3 snoRNA,

allowing the visualization of these ATP-dependent remodeling steps

and details of central pseudoknot maturation (Cheng et al, 2022).

Cleavage in the ITS1 leads to the separation of pre-40S and pre-

60S particles, which further mature independently in nucleoli and

nucleoplasm. In both yeast and human, the ITS1 is cleaved at two

sites (site A2 and A3, E and 2, respectively) by the conserved

enzymes UTP24 (site A2, E) and RMRP (site A3, 2) (Udem

et al, 1971; Lygerou et al, 1996; Rouquette et al, 2005; Tomecki

et al, 2017; Aubert et al, 2018). The order of cleavages however

differs: in yeast cleavage at site A2 by Utp24 is responsible for split-

ting the pre-ribosomal particles, while in human cells the majority

of pre-rRNAs is first processed at site 2 by RMRP resulting in pre-

40S and pre-60S separation (Allmang et al, 2000; Preti et al, 2013;

Sloan et al, 2013b).

Nuclear maturation and export of the pre-40S subunit

Recent structural analyses provided insights into the molecular orga-

nization of a series of nucleoplasmic 40S precursors from yeast and

human cells (Cheng et al, 2022). Early nucleoplasmic 40S assembly

intermediates already possess many features of mature 40S subu-

nits, except that the head region remains largely delocalized and

helix 18 of the 18S rRNA is kept in an immature conformation

(Cheng et al, 2022). This is achieved by Bud23/WBRSC22, the

binding of which has been implicated in the remodeling of the SSU

processome into immature 40S particles (Black et al, 2020; Cheng

et al, 2022). Bud23/WBRSC22 together with its adaptor Trm112/

TRMT112 also acts as an RNA methyltransferase factor and is

required for the methylation of a conserved guanosine in the P-site

of the 40S subunit (White et al, 2008; Figaro et al, 2012; L�etoquart

et al, 2014; Zorbas et al, 2015). Besides Bud23/WBRSC22, Tsr1/

TSR1 and Slx9/C21orf70/FAM207A are also already bound to these

early nucleoplasmic precursors (Table 7).

Table 6 (continued)

Yeast 40S 60S Human 40S 60S
Function in early nucleolar ribosome
biogenesis Citation

Utp20 x UTP20 x Associates with faulty intermediates, might play a
role in rRNA quality control

Dez et al (2007)

Kre33 x NAT10 x ATP-dependent RNA acetyltransferase Ito et al (2014) and Sharma
et al (2017, 2015)

Faf1 x C1orf131 Interacts with Krr1/KRR1 Zheng et al (2014) and Singh
et al (2021)

Dim2/
Pno1

x PNO1/DIM2 x Interacts with Nob1 Chaker-Margot et al (2017)

Rrp12 x RRP12 x Part of the 30 minor domain Ameismeier et al (2018)

Nob1 x NOB1 x Endoribonuclease, associates with ITS1, catalyzes
removal of final part of ITS1 (site D/3), might only
associate in nucleoplasm

Fatica et al (2004)

Dhr1 x DHX37 x DEAH box RNA helicase, releases U3 snoRNA Boneberg et al (2019)

Dhr2 x DEAH box RNA helicase, interacts with Utp25 and
Nop19

Granneman et al (2006a)

Nop19 x Important for Utp25 incorporation Choque et al (2011)

Rrp8 x NML/RRP8 x Methyltransferase Peifer et al (2013)

Slx9 x FAM207A/
C21orf70

Non-essential, supports efficient ITS1 processing Bax et al (2006)

Pol5 x x MYBBP1A x Turnover of 50 ETS fragment, required for recycling of
SSU RBFs

Braun et al (2020)

Bud23 x WBSCR22 x Methyltransferase, supports disassembly of SSU
particle

Black et al (2020)

Nip7 x NIP7 x In contrast to yeast, human NIP7 and FTSJ3 were
shown to function in 40S biogenesis

Morello et al (2011a)

Sbp1 x FTSJ3 x
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The addition of further factors, including Hrr25/CKId/e and

Ltv1/LTV1, into the pre-40S subunits then results in partial stabili-

zation of the 40S head and neck region (Cheng et al, 2022). The

large RBF RRP12, which embraces the immature head region, is

central in further steps of head maturation. These entail the sequen-

tial joining of a set of ribosomal proteins, RPSA/uS2, RPS2/uS5, and

RPS21/eS21, recruitment of Nob1/NOB1, and conformational

changes in several rRNA helices (Ameismeier et al, 2018; Cheng

et al, 2022). Incorporation of these RPs is followed by the release of

Bud23, which occurs in coordination with the recruitment of Rio2

that associates with the decoding center between the platform and

the head region, prior to nuclear export (Heuer et al, 2017; Ameis-

meier et al, 2018; Black & Johnson, 2022; Cheng et al, 2022). Stabili-

zation of the head region thus precedes nuclear export of pre-40S

subunits, while beak formation is completed later in the cytoplasm.

Of the RBFs present in these 40S precursors, several are early-

associating RBFs that remain bound throughout maturation in the

nucleoplasm and even accompany 40S precursors to the cytoplasm,

namely Enp1/BYSL, Dim2/PNO1, and RRP12 (Table 6). One notable

early-binding RBF is the methyltransferase Dim1/DIM1, which

remains particle-bound until it methylates two adenosines in the 30

region of the 18S rRNA (Lafontaine et al, 1994). While this occurs

during cytoplasmic maturation steps in yeast, human DIM1 performs

the corresponding modification earlier, in the nucleus, where it

dissociates from maturing particles before they are eventually

exported to the cytoplasm (Wyler et al, 2011; Zorbas et al, 2015).

Compared to yeast, the processing of the ITS1 is more complex

in higher eukaryotes and involves an additional endonucleolytic

cleavage step, generating the 21S pre-rRNA (Fig 3). Moreover, 21S

pre-rRNA maturation also includes exonucleases, namely the

exosome with its catalytic subunits DIS3 and EXOSC10, and the

poly(A)-specific ribonuclease PARN (Preti et al, 2013; Tafforeau

et al, 2013; Sloan et al, 2013b; Montellese et al, 2017).

The association of several conserved RBFs, including Nob1/NOB1,

Rio2/RIOK2, Ltv1/LTV1, Slx9/C21orf70/FAM207A, and Tsr1/TSR1

(Table 7) with 40S precursors during nuclear 40S maturation paves

the way for nuclear export (Ferreira-Cerca et al, 2005, 2007; Sch€afer

et al, 2006; Carron et al, 2011; Wyler et al, 2011; Zemp et al, 2014;

Heuer et al, 2017; Ameismeier et al, 2018; Cheng et al, 2022). Pre-

ribosomal particles are among the largest transport cargos that pass

through nuclear pore complexes (NPCs) and they need to be bound

by multiple nuclear export receptors for NPC passage (Table 8).

Binding of export factors to ribosomal pre-particles is thought to func-

tion as a quality control step of subunit maturation (Johnson

et al, 2002; Woolford & Baserga, 2013). In both yeast and mammalian

cells, export of pre-40S subunits depends on the RanGTP-binding

exportin Crm1/XPO1 (Hurt et al, 1999; Moy & Silver, 1999; Thomas &

Kutay, 2003; Wild et al, 2010). The yeast 40S RBFs Dim2, Rio2, and

Ltv1 contain nuclear export sequences (NES) and have been suggested

to serve as redundant adaptors for Crm1 binding to the small subunit

(Sch€afer et al, 2003; Vanrobays et al, 2003, 2008; Seiser et al, 2006;

Merwin et al, 2014). Further factors linked to pre-40S export in yeast

are the mRNA export factor Mex67/Mtr2 (Faza et al, 2012), Rrp12

(Oeffinger et al, 2004), and Slx9, the latter with a proposed role in

mediating Crm1 binding to Rio2 (Fischer et al, 2015). Its human

homolog SLX9/C21orf70/FAM207A is also associated with nucleo-

plasmic pre-40S particles (Wyler et al, 2011), but is not known to

accompany pre-40S subunits into the cytoplasm. Like in yeast, pre-

40S export in human cells also exploits the atypical protein kinase

RIOK2 as an adaptor for XPO1 (Zemp et al, 2009). Other NES-

containing RBFs are expected to contribute to the recruitment of XPO1

(Zemp et al, 2009), among them PDCD2L, which was suggested to

support pre-40S export in mammals (Landry-Voyer et al, 2016).

Cytoplasmic steps of 40S subunit biogenesis

In the cytoplasm, several final maturation steps occur on both ribo-

somal pre-particles, including incorporation of late-assembling RPs,

structural rearrangements, final pre-rRNA processing steps, and the

Table 7. Factors involved in nucleoplasmic steps of pre-40S maturation.

Yeast 40S 60S Human 40S 60S
Function in nucleoplasmic steps of pre-40S
maturation Citation

Tsr1 x TSR1 x Associates Gelperin et al (2001)

Nob1 x NOB1 x Endoribonuclease, associates with ITS1, catalyzes removal
of final part of ITS1 (site D/3), might associate earlier

Fatica et al (2004), Zemp
et al (2009) and Ameismeier
et al (2018)

Hrr25 x CKI-d/
CSNK1D

x Associates Sch€afer et al (2006) and Zemp
et al (2014)

Hrr25 x CKI-e/
CSNK1E

x Associates Sch€afer et al (2006) and Zemp
et al (2014)

Rio1 x RIOK1/
RIO1

x Associates Rouquette et al (2005) and
Widmann et al (2012)

Rio2 x RIOK2/
RIO2

x Associates Vanrobays et al (2003) and Zemp
et al (2009)

Ltv1 x LTV1 x Associates Seiser et al (2006) and Zemp
et al (2014)

PARN x Processes 30 end of the 18S pre-rRNA Montellese et al (2017)

Slx9 FAM207A/
C21orf70

x Wyler et al (2011)
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release of late-acting RBFs (Zemp & Kutay, 2007; Nerurkar

et al, 2015). Several RBFs accompany these particles from the

nucleus to the cytoplasm and are thought to prevent premature 40S-

60S joining and translation initiation by keeping the particle in an

inactive conformation and shielding functional sites on the subunit

interface (Greber, 2016).

In yeast, exported pre-40S particles are bound by the RBFs Dim1,

Dim2, Enp1, Nob1, Hrr25, Rio2, Rrp12, and Tsr1 (Sch€afer

et al, 2006). The function of these factors is widely conserved in

mammalian cells, although DIM1 acts earlier and is not part of

human late 40S precursors (Table 9). Recently published cryo-EM

structures of cytoplasmic 40S pre-particles from yeast and human

cells have highlighted that cytoplasmic 40S maturation mostly

involves structural changes in the head and beak region, formation

of the decoding center by rearrangement of helix 44 (h44) and final

processing of the 18S pre-rRNA (Fatica et al, 2003; Lamanna & Karb-

stein, 2011; Larburu et al, 2016; Heuer et al, 2017; Scaiola

et al, 2018; Ameismeier et al, 2020, 2018). These steps are coordi-

nated by the conserved kinases Hrr25/CKId/e, Rio2/RIOK2, and

Rio1/RIOK1 (Vanrobays et al, 2003, 2001; Rouquette et al, 2005;

Widmann et al, 2012; Ferreira-Cerca et al, 2014, 2012; Zemp

et al, 2014, 2009; Mitterer et al, 2019; Plassart et al, 2021), with an

additional kinase, RIOK3, supporting 18S pre-rRNA processing in

mammalian cells (Baumas et al, 2012; Widmann et al, 2012). While

Hrr25/CKId/e is thought to phosphorylate and thereby trigger the

release of Enp1/BYSL and Ltv1/LTV1 (Sch€afer et al, 2006; Zemp

et al, 2014), no substrates are known for the RIO kinases. Both Rio1

and Rio2 have been suggested to act as ATPases rather than kinases

(Ferreira-Cerca et al, 2012, 2014), with respective conformational

changes regulating their association with 40S precursors. It is still

unclear whether the kinase activity of Rio kinases is indeed

exploited for structural remodeling of pre-40S particles as originally

suggested (Ferreira-Cerca et al, 2012).

Intriguingly, the endonuclease Nob1/NOB1, which mediates the

final cleavage of 20S pre-rRNA (18S-E in humans) to mature 18S

rRNA, is already associated with nuclear pre-40S particles.

However, its access to the cleavage site at the 30 end of 18S rRNA is

restricted by Dim2/PNO1, thereby preventing premature removal of

the remaining ITS1 fragment (Fig 5) (Turowski et al, 2014; Scaiola

et al, 2018; Ameismeier et al, 2020). It has been suggested that in

yeast, the formation of mature 18S rRNA is supported by the inter-

action of pre-40S particles with mature 60S particles forming an

80S-like complex, stimulated by the translation initiation factor

Fun12/eIF5B (Lebaron et al, 2012; Strunk et al, 2012). The forma-

tion of an 80S-like particle has not been described for human cells.

However, two additional, human-specific cytoplasmic RBFs were

observed on late particles, namely EIF1AD and LRRC47 (Ameis-

meier et al, 2020; Montellese et al, 2020; Plassart et al, 2021). While

LRRC47 associates with the subunit interface and might prevent

premature 60S joining, binding of EIF1AD leads to a series of events,

including repositioning of RIOK1 and the central helix h44, trig-

gering PNO1 release and final pre-rRNA processing by NOB1. These

Table 8. Factors involved in nuclear export of ribosomal pre-particles.

Yeast 40S 60S Human 40S 60S Function in nuclear export Citation

Crm1/
Xpo1

x x XPO1/CRM1 x x Facilitates export in RanGTP-dependent manner Hurt et al (1999) and Thomas and
Kutay (2003)

Dim2/
Pno1

x PNO1/DIM2 x Possible adaptor for XPO1-mediated export Vanrobays et al (2008)

Rio2 x RIOK2 x Possible adaptor for XPO1-mediated export Vanrobays et al (2003) and Zemp
et al (2014)

Ltv1 x LTV1 x Possible adaptor for XPO1-mediated export Seiser et al (2006)

PDCD2L x Possible adaptor for XPO1-mediated export Landry-Voyer et al (2016)

Yrb2 x RANBP3 x Stage-Zimmermann et al (2000) and
Badertscher et al (2015)

Slx9 x FAM207A/
C21orf70

Fischer et al (2015)

Rrp12 x x RRP12 Potential function in export, interaction with FG
repeat nucleoporins in vitro

Oeffinger et al (2004)

Mex67 x x NXF1 Mex67-Mtr2 complex
Export receptor

Yao et al (2008, 2007)

Mtr2 x x NXT1

Nmd3 x NMD3 x Adaptor for XPO1-mediated export Ho et al (2000) and Thomas and
Kutay (2003)

Arx1 x PA2G4/EBP1 Induces structural changes allowing export Bradatsch et al (2007)

Bud20 x ZNF593 Binds FG repeats Altvater et al (2012)

Ecm1 x Binds FG repeats Yao et al (2010)

Npl3/
Nop3

x SRSF1 Binds FG repeats Hackmann et al (2011)

Gle2/
Rae1

x RAE1 x x Binds to Nup116 and recruits pre-60S via second
binding site

Wild et al (2010) and Occhipinti
et al (2013)

Msn5 XPO5 x Facilitates export in RanGTP-dependent manner Wild et al (2010)
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final maturation steps, entailing incorporation of RPS26/eS26, ATP

hydrolysis on RIOK1, and dissociation of the few remaining RBFs,

renders 40S subunit competent for 60S joining and mRNA transla-

tion (Plassart et al, 2021). The deubiquitinase USP16, which deubi-

quitylates RPS27A/eS31 in a translation-dependent manner,

supports these last maturation events in a not yet fully understood

fashion, potentially linking surveillance of subunit maturation to

translation initiation (Montellese et al, 2020).

Nucleolar pre-60S biogenesis

After the subunit separating cleavage in the ITS1, the 60S precursor

matures independently of the 40S subunit. At this point, the pre-60S

subunit contains the 27S (yeast) or 32S pre-rRNA (human) that

comprises both the 5.8S and 25S/28S rRNA portions (Fig 3) (Kater

et al, 2017). Based on conserved secondary and tertiary structures,

the 25/28S rRNA is subdivided into six domains, named I to VI from

50 to 30, which fold in a hierarchical process (Gamalinda et al, 2014;

Klinge & Woolford, 2019). While the two most 50 domains of the

25S rRNA were observed to fold first (Zhou et al, 2019a), later steps

of 60S domain formation are more complex and intertwined as they

do not follow the order of domain transcription, as illustrated by

structural snapshots of several pre-60S particles (Wu et al, 2016;

Kater et al, 2017, 2020; Sanghai et al, 2018; Kargas et al, 2019; Zhou

et al, 2019a, 2019b). Cryo-EM structures of the first nucleolar pre-

60S particles could not be obtained so far, presumably due to the

high flexibility and heterogeneity of these complexes, in which

RNA–RNA and RNA-protein interactions are gradually established

(Burlacu et al, 2017; Pöll et al, 2017). In a recent study, an early

Table 9. Factors involved in cytoplasmic pre-40S maturation.

Yeast 40S 60S Human 40S 60S Function in cytoplasmic pre-40S maturation Citation

Enp1 x ENP1/
BYSL

x Released by Hrr25/CKI phosphorylation, Release allows stable
incorporation of Rps3/uS3, Rps10/eS10 and Rps20/uS10,
Formation of the beak structure

Sch€afer et al (2006), Zemp
et al (2014) and
Ameismeier et al (2018)

Ltv1 x LTV1 x

Tsr1 x TSR1 x Released, occludes binding sites for mRNA and translation
initiation factors

Larburu et al (2016) and
Scaiola et al (2018)

Dim1 x DIMT1 x Methyltransferase, yeast: modifies subsequent adenines near 30

end of 18S rRNA; human: function occurs already in the nucleus
Strunk et al (2011) and
Zorbas et al (2015)

Rrp12 x RRP12 x Released, which allows incorporation of Asc1 (RACK1 in humans) Wyler et al (2011) and
Larburu et al (2016)

Dim2/
Pno1

x PNO1/
DIM2

x Inhibits binding of eIF3; release contributes to Major structural
rearrangements, allowing Nob1 activity

Ameismeier et al (2018)
and Scaiola et al (2018)

Nob1 x NOB1 x Endonucleolytic cleavage of 20S pre-rRNA (18S-E pre-rRNA in
humans) to yield mature 18S rRNA

Fatica et al (2003) and
Lamanna and
Karbstein (2011)

Hrr25 x CKI-d/
CSNK1D

x Phosphorylation of Enp1-Ltv1-Rps3/uS3 complex, which triggers
release of Ltv1

Sch€afer et al (2006) and
Zemp et al (2014)

CKI-e/
CSNK1E

x

Rio1 x RIOK1/
RIO1

x Orchestrates structural changes, pre-rRNA maturation and trans-
acting factor release

Vanrobays et al (2003) and
Widmann et al (2012)

Rio2 x RIOK2/
RIO2

x Kinase contributes to pre-rRNA maturation and trans-acting
factor release

Geerlings et al (2003) and
Zemp et al (2009)

RIOK3 x Promotes 18S-E processing Geerlings et al (2003)

Prp43 x DHX15 Conformational pre-rRNA switch, which allows Nob1 activity Pertschy et al (2009)

Pfa1/
Sqs1

x SON x Cofactor for Prp43 Sloan et al (2013b)

Pxr1/
Gno1

x PINX1 x Cofactor for Prp43 Guglielmi and
Werner (2002) and Chen
et al (2014)

Hbs1 x HBS1 In yeast: facilitates formation of 80S like particle Lebaron et al (2012), Strunk
et al (2012) and Hector
et al (2014)

Dom34 x PELO

Rli1 x ABCE1

Fun12 x EIF5B

USP16 x Deubiquitylates lysine 113 in RPS27A/eS31 Montellese et al (2020)

LRRC47 x Bound to late cytoplasmic pre-40S particle Ameismeier et al (2020)

EIF1AD x Supports trans-acting factor release and pre-rRNA maturation Ameismeier et al (2020)
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pre-60S was visualized in a bipartite structure with a 90S particle,

but the existence of this intermediate needs to be confirmed in wild-

type cells (Ismail et al, 2022). The earliest visualized yeast particles

reveal that 60S biogenesis first yields the solvent exposed subunit

surface, initiated by folding of the 25S domains I and II (Zhou

et al, 2019a). This pre-particle is stabilized by several RBFs,

including the Nsa1 module at the solvent-exposed side. In inter-

mediate pre-60S particles, folding and positioning of domain VI

toward the forming core can be observed, as well as folding of the

pre-5.8S rRNA, while domains III-V remain too flexible to be

resolved (Kater et al, 2017; Sanghai et al, 2018; Zhou et al, 2019a).

In later stages of nuclear pre-60S maturation (Fig 6), domains III,

IV, and V, progressively fold and are positioned in the context of the

maturing particle, leading to the gradual formation of PET, PTC,

and the 60S/40S subunit interface (Barrio-Garcia et al, 2016; Wu

et al, 2016; Kater et al, 2017; Ma et al, 2017; Malyutin et al, 2017;

Zhou et al, 2019b).

Pre-rRNA folding, compaction, and cleavage steps, as well as

incorporation of RPs, are supported by a number of 60S-specific

RBFs (Table 10). Many of these RBFs join the particle already early

in nucleoli and the number of associated factors steadily decreases

as 60S subunits mature on their way to the cytoplasm (Nerurkar

et al, 2015). Importantly, directionality of the 60S assembly process

is ensured by the activity of energy-dependent RBFs, for example,

ATP-dependent RNA helicases (e.g., Has1/DDX18 and Dpb10/

DDX54), AAA-ATPases (e.g., Rix7/NVL2 and Rea1/MDN1) and

GTPases (including Nug1/GNL3 and Nog1/GTPBP4) (Table 10)

(Nissan et al, 2002; Bernstein et al, 2006; Ulbrich et al, 2009; Baßler

et al, 2010; Kressler et al, 2010, 2008; Wild et al, 2010; Kappel

et al, 2012; Dembowski et al, 2013; Matsuo et al, 2014; Manikas

et al, 2016; Zhang et al, 2016b; Hiraishi et al, 2018; Klinge & Wool-

ford, 2019). Several other RBFs involved in 60S biogenesis contain

multiple RNA binding motifs, which likely provide structural

support and reduce the conformational freedom of rRNA during

folding and compaction. Importantly, correct binding and posi-

tioning of RPs also critically contribute to correct pre-rRNA folding

in the maturing 60S particle (de la Cruz et al, 2015; Pöll et al, 2021,

2009). This is exemplified by the largest Rpl, Rpl3/uL3, which binds

very early during pre-60S biogenesis and spans several rRNA

domains (Ben-Shem et al, 2011; de la Cruz et al, 2015). Rpl3 stabi-

lizes the interaction between the 50 and 30 end of the 25S rRNA and

its binding is prerequisite for the incorporation of most other Rpls

(Pöll et al, 2009; Ohmayer et al, 2013; Gamalinda et al, 2014; de la

Cruz et al, 2015).

In general, DExD/H-box ATPases facilitate ribosome biogenesis

by unwinding snoRNA-pre-rRNA base pairs and remodeling of

RNA–RNA and protein-RNA interactions, thereby supporting major

structural rearrangements in the forming subunits as well as pre-

rRNA folding (Dembowski et al, 2013; Rodr�ıguez-Gal�an et al, 2013;

Martin et al, 2014; Khoshnevis et al, 2016; Br€uning et al, 2018).

Seven DExD/H-box ATPases have been implicated in the first

steps of 60S maturation (Table 10) (reviewed in Mitterer &
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Figure 5. Overview of late maturation steps of the small ribosomal subunit.

Front and back views of human pre-40S particles at different stages of cytoplasmic maturation as derived from cryo-EM analyses (PDB ID: 6G4S, 6G18, 6ZXE, 6ZXF,

6ZXH). Factors involved in these steps are color-coded and pre-rRNA is shown in white. After RRP12 release from the state B particle, RACK1 occupies its place and the

pre-rRNA is rearranged for head formation. PNO1 directly interacts with NOB1 and keeps it in an inactive state (from state B to F2). Association of EIF1AD, concomitant

with rearrangements of RIOK1, triggers PNO1 dissociation, RPS26/eS26 incorporation, and final pre-rRNA processing. LRRC47 association prevents 60S joining until the

mature decoding region is formed.
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Pertschy, 2022). Recently, it was shown that absence of yeast Dbp3

and Prp43 results in a drastic reduction of rRNA modifications

(Aquino et al, 2021; Bailey et al, 2022), and several snoRNPs accu-

mulate on early 60S pre-particles (Leeds et al, 2006; Bohnsack

et al, 2009; Aquino et al, 2021). Similarly, DDX51 facilitates release

of U8 snoRNA (Srivastava et al, 2010), whereas Dbp7 was proposed

to regulate the association of snR190, a snoRNA that structurally

inhibits aberrant folding of 25S rRNA (Jaafar et al, 2021a).

Pre-rRNA processing during 60S maturation commences with

removal of the remaining ITS1 spacer at the 50 end of 27S/32S pre-
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Figure 6. Overview of key nuclear maturation events of the large ribosomal subunit in yeast.

Cryo-EM structures of yeast pre-60S particles at different stages of maturation (PDB ID: 6ELZ, 3JCT, 6YLG, 6N8J). RBFs involved in these steps are color-coded, as well as

the pre-rRNA (white), L1 stalk (red), and 5S rRNA (orange). The nucleolar pre-60S in state E shows a displacement of the L1 stalk from its position in the mature subunit.

The successive nucleoplasmic Arx/Nog2 particle is a result of a stepwise release and binding of the indicated RBFs and the 5S RNP. The Rix-Rea1 remodeling machinery

initiates the formation of the central protuberance (CP) and rotation of the 5S RNP to its mature conformation, visible in the successive late nuclear (LN) particle.
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rRNAs, before cleavage in the ITS2 (at site C2/4) separates the pre-

5.8S and pre-25/28S rRNAs (Lygerou et al, 1996; Rouquette

et al, 2005; Schillewaert et al, 2012; Gasse et al, 2015; Pillon

et al, 2017). Removal of the ITS1 spacer is initiated by endonucleo-

lytic cleavage at site A3 in yeast, while it is removed solely exonu-

cleolytically in human cells (Tomecki et al, 2017). Depletion

experiments revealed that a set of 12 yeast RBFs (Ytm1, Erb1, Nop7,

Rlp7, Cic1, Nop15, Has1, Drs1, Rpf1, Pwp1, Nop12, and Rrp1) is

required for A3 site processing, and they were consequently termed

A3-factors (Table 10) (Merl et al, 2010; Granneman et al, 2011;

Sahasranaman et al, 2011; Shimoji et al, 2012; Dembowski

et al, 2013; Woolford & Baserga, 2013; Talkish et al, 2014). Struc-

tural data showed that the binding sites of most of these factors are

not located in proximity of the ITS1 fragment, indicating that they

are rather needed as structural components for correct folding and

configuration of a pre-60S assembly intermediate to render it amen-

able to A3 cleavage (Sahasranaman et al, 2011; Woolford &

Baserga, 2013; Kater et al, 2017; Konikkat & Woolford, 2017;

Sanghai et al, 2018; Zhou et al, 2019a). Interestingly, A3 cleavage

was found to be coupled with termination of RNAPI transcription

and 30 ETS processing, suggesting a link between 60S assembly and

transcription, yet the underlying molecular mechanism remains to

be deciphered (Allmang & Tollervey, 1998; Lebaron et al, 2012;

Gamalinda et al, 2014; Chen et al, 2017).

After ITS1 removal, pre-rRNA processing is focused on the

separation of the 27SB/32S precursor into the 7/12S and 26/28.5S

pre-rRNAs by cleavage in the ITS2. More than a dozen RBFs, origin-

ally termed “B-factors,” are required to prepare the particle for this

processing step and many of them are bound to the subunit inter-

face (Talkish et al, 2012; Woolford & Baserga, 2013). Interestingly,

some B-factors, including Nip7 and Nop2, are already part of the

90S particle, before endonucleolytic separation of the two subunits

occurs (Kater et al, 2017). B-factors contribute to the construction of

the PET (e.g., Nog1; Fuentes et al, 2007; Wu et al, 2016) and the

assembly of the PTC (e.g., Nsa2, Dpb10, Nug1, and Rsa4; Baßler

et al, 2014; Matsuo et al, 2014; Barrio-Garcia et al, 2016; Wu

et al, 2016).

Before ITS2 cleavage can take place, pre-60S subunits undergo

major structural rearrangements driven by the AAA-ATPases Rix7/

NVL2 and Rea1/MDN1. First, Rix7 releases Nsa1, which leaves the

particle together with Rpf1, Rrp1, and Mak16 (Saveanu et al, 2003;

Kressler et al, 2008; Lo et al, 2017, 2019). This allows the forma-

tion of the outer part of the PET (Kater et al, 2017; Sanghai

et al, 2018; Zhou et al, 2019a). Rix7 activity is then followed by

ATP hydrolysis by Rea1. This giant 550 kDa protein removes the

Erb1-Ytm1 subcomplex (Fig 6), which interacts with many RBFs

covering the yet to form intersubunit surface (Baßler et al, 2010,

2014; Thoms et al, 2016; Kater et al, 2017; Chen et al, 2018;

Ahmed et al, 2019). The MIDAS domain of Rea1 was biochemically

shown to bind the UBL domain of Ytm1, yet a structure illustrating

the binding of Rea1 to Ytm1 is still missing. Erb1 likely stabilizes

the premature architecture at this stage with its N-terminus deeply

embedded in the particle (Kater et al, 2017; Prattes et al, 2019). Its

active removal by Rea1 presumably contributes to the major struc-

tural rearrangements and compositional changes observed during

particle transition from the nucleolus to the nucleoplasm. Release

of Erb1 also allows the recruitment of the GTPases Nog2 just

before ITS2 cleavage and transition to the nucleoplasm (Talkish

et al, 2012; Fromm et al, 2017; Biedka et al, 2018). Finally, clea-

vage at site C2/4 within ITS2 is mediated by the conserved endonu-

clease Las1/LAS1, which functions in a complex with the

polynucleotide kinase Grc3, together called RNase PNK (Schille-

waert et al, 2012; Castle et al, 2013; Gasse et al, 2015; Pillon

et al, 2017; Frazier et al, 2021).

The release of pre-particles from nucleoli could be governed by

the state of pre-rRNA compaction and processing. According to this

model, pre-ribosomal particles that still expose binding sites for

general nucleolar RNA chaperones such as nucleophosmin (NPM)

(Szebeni & Olson, 1999; Box et al, 2016) or nucleolin (NCL)

(Mongelard & Bouvet, 2007) (Table 14) would remain partitioned in

the nucleolar “phase” by low-affinity interactions of exposed RNA

segments with these multivalent RNA chaperones. Once the pre-

rRNAs in the emerging subunits have been sufficiently compacted,

processed, and covered by RPs and RBFs, they would no longer be

retained and released into the nucleoplasm. Along these lines,

in vitro experiments showed a preferential partitioning of protein-

free bacterial rRNA but not mature ribosomal subunits into droplets

formed by human NPM (Riback et al, 2020). Furthermore, a similar

model has recently been proposed based on bioinformatic analyses

of cryo-EM structures, which revealed that earlier nucleolar ribo-

somal precursors contain more unstructured rRNA regions as well

as RBFs with predicted intrinsically disordered regions compared to

nucleoplasmic subunit assembly intermediates, and both these

elements could contribute to nucleolar retention of subunits

(LaPeruta et al, 2022).

Formation of the 5S RNP and its incorporation into
pre-60S subunits

During its maturation, the pre-60S subunit must incorporate the

mature 5S rRNA. The 5S rRNA first associates with its partner RPs

Rpl5/uL18 and Rpl11/uL5, which are co-imported into the nucleus

with help of the RP chaperone Syo1/HEATR3 which also serves as a

platform for 5S RNP assembly (Kressler et al, 2012; Calvi~no

et al, 2015). The 5S RNP is then bound by pre-60S particles in the

nucleolus aided by the associated Rpf2-Rrs1 complex (Table 11)

(Wu et al, 2016). In mature 60S subunits, the 5S RNP forms the

central protuberance, yet the 5S RNP is not immediately placed in

its final position in the pre-60S, but rotated by about 180°, as

revealed by structures of Arx1/Nog2 pre-60S particles from yeast

(Leidig et al, 2014; Wu et al, 2016).

In mammalian cells, the incorporation of the 5S RNP into the

nascent 60S subunit serves as an important checkpoint to relay

defects in nucleolar ribosome synthesis into the p53 pathway,

referred to as the “nucleolar stress response” (reviewed in Chakra-

borty et al, 2011; Bohnsack & Bohnsack, 2019). If nucleolar 60S

maturation is perturbed, the unincorporated 5S RNP accumulates,

to then bind and inhibit the p53 E3 ubiquitin ligase MDM2, leading

to p53 stabilization and cell cycle arrest (Donati et al, 2013; Sloan

et al, 2013a). This 5S RNP-dependent mechanism has emerged as a

key nuclear stress response pathway that reacts to a broad range of

insults ranging from diverse DNA damaging insults, proteasome

inactivation to nuclear export inhibition (Hannan et al, 2022),

putting the 5S RNP and ribosome biogenesis defects into the center

of nuclear stress sensing.
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Table 10. Factors involved in nucleolar steps of 60S maturation.

Yeast 40S 60S Human 40S 60S Function in nucleolar steps of pre-60S maturation Citation

Rrp5 x x PDCD11 x Part of Rrp5-Noc1-Noc2 complex, supports early steps of pre-
rRNA Compaction, Rrp5 contains multiple RNA binding motifs

Hierlmeier et al (2013)

Noc1 x CEBPZ x

Noc2/
Rix3

x NOC2L/
NIR

x

Npa1/
Urb1

x URB1 Npa1-Npa2-Nop8-Rsa3-Dbp6 complex, organization of early
pre-rRNA compaction steps, Dbp6/DDX51 is a DEAD box RNA
helicase
DDX51: 28S 30 end maturation, release of U8 snoRNA (only in
metazoans)

Rosado et al (2007) and
Srivastava et al (2010)

Npa2/
Urb2

x URB2

Nop8 x

Rsa3 x

Dbp6 x DDX51 x

Dbp2 x DDX5 x DEAD box RNA helicases, involved in early pre-rRNA remodeling
steps, including release of snoRNPs (Dbp3)

Bond et al (2001) and
Saporita et al (2011)

Dbp3 x Aquino et al (2021)

Dbp7 x DDX31 x Bernstein et al (2006)

Dbp9 x Bernstein et al (2006)

Mak5 x DDX24 x Bernstein et al (2006)

Nsa1 x WDR74 x Nsa1 module, stabilizes solvent exposed side, bridges 25S
domains I and II, Rpf1 protrudes into PET

Kater et al (2017) and Lo
et al (2017)

Rpf1 x RPF1

Mak16 x MAK16 x

Rrp1 x RRP1 x

Nop4 x RBM28 Binds 50 end of 5.8S rRNA Granneman et al (2011)

Puf6 x PUM3 Chaperone for Rpl43/eL43, aids 7S processing, interacts with H63
(25S rRNA), required for export of 60S at low temperature

Liang et al (2019)

Loc1 x Chaperone for Rpl43/eL43 Liang et al (2019)

Rrp15 x RRP15 x x Rrp15-Ssf1 complex, Ssf1 and Ssf2 are 94% identical Fatica et al (2002) and de
Marchis et al (2005)

Ssf1 x PPAN

Ssf2 x PPAN

Rrp14 x SURF6 Oeffinger et al (2007)

METTL18 x Methylation of RPL3/uL3 His245 Małecki et al (2021)

“A3”-factors, involved in A3 site processing and ITS1 trimming, incorporation of Rpl17/uL22, Rpl26/uL24, Rpl35/uL29, Rpl37/eL37, recruitment of Rrp17

Nop7 x PES1 x Erb1-Ytm1-Nop7/PeBoW complex, Stabilizes early fold of 5.8S
and domain I of 25S rRNA; important for structuring of PTC and
PET, DDX27 also functions independently in 47S 30 end
formation, Drs1 is not associated with Erb1-Ytm1-Nop7 complex

Rohrmoser et al (2007),
Kellner et al (2015) and
Konikkat et al (2017)

Erb1 x BOP1 x

Ytm1 x WDR12 x

Drs1 x DDX27 x

Nop15 x MKI67IP x Nop15-Rlp7-Cic complex, Supports folding of ITS2, part of the
foot structure of pre-60S particles

Sahasranaman
et al (2011) and Kater
et al (2017)

Rlp7 x RLP7

Cic1 x

Pwp1 x PWP1 Important for 5.8S folding, ubiquitylated by CRL4VPRBP Talkish et al (2014) and
Han et al (2020)

Nop12 x RBM34 Important for 5.8S folding Talkish et al (2014)

Has1 x DDX18 DEAD-box RNA helicase, binding triggers trimming of 50 end of
5.8S pre-rRNA, important for 25S domain I folding, facilitates
incorporation of Rpl17/uL22 and other PET forming proteins,
also: linked to release of U14 snoRNA

Dembowski et al (2013)

Brx1 x BRIX1 x Brx1-Ebp2 complex,
prevents premature RNA–RNA interactions of domains I and V,
important for PET formation

Sanghai et al (2018)

Ebp2 x EBNA1BP2 x
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Nucleoplasmic assembly steps and export of
pre-60S subunits

The transition of pre-60S particles from the nucleolus to the nucleo-

plasm is accompanied by the release and binding of a significant

number of RBFs, resulting in substantial compositional and

structural changes in the emerging subunits (Fig 6) (Kater

et al, 2017, 2020; Sanghai et al, 2018). These include the reposi-

tioning of the L1 stalk, which is first delocalized and then accommo-

dated into its mature position following the release of Spb1 (Kater

et al, 2020). Furthermore, 20O-methylation of G2922 in the PTC A-

site loop by Spb1 was suggested to be prerequisite for stable binding

Table 10 (continued)

Yeast 40S 60S Human 40S 60S Function in nucleolar steps of pre-60S maturation Citation

“B” factors, required for endonucleolytic cleavage at site C2 by Las1

Nip7 x NIP7 x Nip7-Nop2 complex, aids formation of PTC, recruits Rpf2-Rrs1,
Nop2 is a methyltransferase

Morello et al (2011b) and
Kater et al (2017)

Nop2 x NOP2

Rrs1 x RRS1 x Rpf2-Rrs1 complex, facilitates incorporation of 5S RNP Wu et al (2016)

Rpf2 x BXDC1 x

Spb4 x DDX55 x Binds domain IV of 28S rRNA Wu et al (2016)

Mak11 x PAK1IP1 x Manikas et al (2016)

Dbp10 x DDX54 Binds h89, role in PTC formation Bernstein et al (2006) and
Manikas et al (2016)

Nug1 x GNL3 x GTPase, required for Dbp10 binding Manikas et al (2016)

Rlp24 x RLP24/
RSL24D1

Placeholder for Rpl24/eL24, recruits and activates Drg1 Kappel et al (2012)

Tif6 x EIF6 x Basu et al (2001)

Nog1 x GTPBP4 x GTPase, proofreading/maturation of PET Wu et al (2016) and Liang
et al (2020)

Nsa2 x NSA2 x Talkish et al (2012)

Rsa4 x NLE1 de la Cruz et al (2005)

Pol5 x x MYBBP1A x Binds to domain III of 25S rRNA, important for PET formation Braun et al (2020)

Noc3 x NOC3L Milkereit et al (2001)

Other factors

Nog2 x GNL2 x Dembowski et al (2013)

Nop16 x NOP16 x Pratte et al (2013)

Nop53 x GLTSCR2/
NOP53

x Binds to similar position as Erb1, after Erb1 is released, recruits
nuclear exosome by Mtr4possibly structural role of Nop53
rearranging and stabilizing the foot interface

Falk et al (2017), Sanghai
et al (2018) and Bagatelli
et al (2021)

Spb1 x FTSJ3 x Methyltransferase, involved in PTC formation Kater et al (2017)

Mrt4 x MRT4/
MRTO4

x Structural placeholder for P stalk Rodr�ıguez-Mateos
et al (2009)

Mtq2 x N6AMT1 Acts together with its cofactor Trm112 Lacoux et al (2020)

YBL028C x LLPH x Kater et al (2017) and
Liang et al (2020)

Bud20 x ZNF593 Nuclear export factor Altvater et al (2012)

Arx1 x PA2G4/
EBP1

x Binds at PET exit, suggested to proofread PET exit region,
supports structural changes allowing nuclear export

Greber et al (2012)

Rix7 x NVL2 x AAA-ATPase, removes Nsa1 (+associated factors), which together
with release of Erb1-Ytm1 allows Las1 cleavage and transition
of the particle to the nucleoplasm, NVL2 was shown to be
associated with Mtr4 (exosome) and WDR74

Kressler et al (2008) and
Hiraishi et al (2018)

Rea1/
Mdn1

x MDN1 x AAA-ATPase, releases Erb1-Ytm1 complex, binds again at a later
stage of pre-60S maturation

Baßler et al (2010) and
Wild et al (2010)

Las1 x LAS1L x Endoribonuclease C2 cleavage Schillewaert et al (2012)

Grc3 x NOL9 Polynucleotide kinase, phosphorylation of ITS2 cleavage product,
forms constitutive complex with Las1 in yeast

Pillon et al (2017)
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of Nog2 to H92 (Kressler et al, 1999; Lapeyre & Purush-

othaman, 2004; preprint: Yelland et al, 2022). Finally, the associa-

tion of Arx1, Cgr1, and Rsa4 to the forming subunit interface

complete the well-characterized Arx1/Nog2 particle (Fig 6)

(Bradatsch et al, 2012; Leidig et al, 2014; Wu et al, 2016).

The L1 stalk together with the RBF Sda1 provides a binding plat-

form for the Rix1 complex (Table 12) (Barrio-Garcia et al, 2016; Wu

et al, 2016; Kater et al, 2020). Association of Rix1-Ipi3-Ipi1 initiates

the formation of the central protuberance as it recruits the ATPase

Rea1 for a second round of action (Fig 6). Rea1 then catalyzes the

release of the Rpf2-Rrs1 complex powered by ATP hydrolysis

(Baßler et al, 2010; Matsuo et al, 2014; Barrio-Garcia et al, 2016).

This leads to a 180° rotation of the 5S RNP and accommodation in

its final position, coupled to maturation of PET and PTC (Micic

et al, 2020). Moreover, the RBF Nop53 joins the pre-60S subunits

(Falk et al, 2017; Kater et al, 2020) and binds the RNA helicase

Mtr4, thereby recruiting the nuclear exosome to trim the ITS2 part

of the 7S pre-rRNA (Michael et al, 2018). Elimination of this ITS2

fragment results in the removal of the so-called foot region visible

in cryo-EM structures of Nog2 particles (Fromm et al, 2017; Zhou

et al, 2019a). Coupled to its role in 5S RNP accommodation, Rea1

ATPase activity also triggers the release of Rsa4 (Baßler et al, 2014,

2010), and is prerequisite for GTP hydrolysis-dependent release of

the GTPase Nog2 (Matsuo et al, 2014). The precise molecular

mechanism by which the mechano-chemical force of ATP hydro-

lysis by Rea1 leads to these structural rearrangements needs to be

further investigated, but the liberation of the Nog2 binding site on

pre-60S particles sets the stage for the recruitment of the export

adaptor Nmd3. Nmd3 binding serves as a quality control check-

point probing the correct assembly of the E- and P-sites as well as

of the L1 stalk (Sengupta et al, 2010; Matsuo et al, 2014; Malyutin

et al, 2017).

Table 11. Factors involved in 5S RNP formation and incorporation.

Yeast 40S 60S Human 40S 60S Function in 5S RNP maturation Citation

Rex1 x REXO5 Exoribonuclease, 5S pre-rRNA trimming van Hoof et al (2000)

Rex2 x REXO2 Exoribonuclease, 5S pre-rRNA trimming van Hoof et al (2000)

Rex3 x REXO1 Exoribonuclease, 5S pre-rRNA trimming van Hoof et al (2000)

La x Binds immature 5S pre-rRNA Madru et al (2015)

TFIIIA x TFIIIA x Transcription factor for 5S DNA locus, but also binds 5S rRNA Layat et al (2013) and Sloan
et al (2013b)

Syo1 x HEATR3 x Chaperone for Rpl5/uL18 and Rpl11/uL5 Kressler et al (2012), Hannan
et al (2022) and O’Donohue
et al (2022)

Rrs1 x RRS1 x Rpf2-Rrs1 complex, aids incorporation of 5S RNP into mature
ribosomes, in yeast also important for nucleolar localization of
5S RNP

Wu et al (2016)

Rpf2 x BXDC1 x

Table 12. Factors involved in nucleoplasmic steps of pre-60S maturation.

Yeast 40S 60S Human 40S 60S
Function in nucleoplasmic steps of pre-60S
maturation Citation

Alb1 x Arx1 binding partner Greber et al (2012)

Cgr1 x CCDC86 Thoms et al (2018)

Sda1 x SDAD1 Sda1 suggested to initiate Rpf2-Rrs1 release as it
partially overlaps with Rpf2 binding site

Klinge and Woolford (2019)

Rix1 x PELP1 Rix1/PELP1 complex, important for Rea1/MDN1
positioning
PELP1 is SUMOylated, which is required for its
interaction with MDN1

Finkbeiner et al (2011), Barrio-
Garcia et al (2016) and Gordon
et al (2022)

Ipi3 x TEX10

Ipi1 x WDR18

Rea1/
Mdn1

x MDN1 x AAA-ATPase, rebinds to 60S particles in nucleoplasm,
releases Rsa4, triggers GTPase activity and release of
Nog2

Baßler et al (2010)

SENP3 x SUMO specific protease, activity results in
disengagement of MDN1 and PELP1 deSUMOylates NPM

Finkbeiner et al (2011) and Raman
et al (2016)

NF45/
ILF2

x NF45-NF90 complex Wandrey et al (2015)

NF90/
ILF3

x

Nmd3 x NMD3 x Nuclear export adaptor Ho et al (2000) and Thomas and
Kutay (2003)
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Notably, the various RNA expansion segments, located at the

solvent-exposed surface of mature ribosomes (Yusupova &

Yusupov, 2014), also play an important role in pre-rRNA processing

and subunit assembly. Studies in yeast have demonstrated that indi-

vidual deletion of the majority of expansion segments in 25S rRNA

leads to 60S biogenesis defects (Jeeninga et al, 1997; Ramesh &

Woolford, 2016). Interestingly, certain eukaryotic RPs and their

extensions (Ramesh & Woolford, 2016) as well as some RBFs such

as Arx1 (Bradatsch et al, 2012), Nop7 (Granneman et al, 2011),

Rlp7 (Dembowski et al, 2013), and Rrp5 (Lebaron et al, 2013) make

contact to RNA expansion segments (Granneman et al, 2011;

Bradatsch et al, 2012; Babiano et al, 2013; Dembowski et al, 2013;

Lebaron et al, 2013), guiding models of coevolution of expansion

segments with RPs and RBFs (Ramesh & Woolford, 2016).

While nucle(ol)ar pre-60S maturation in yeast is relatively well

understood, only a limited number of studies have addressed this

process in human cells (Wild et al, 2010; Finkbeiner et al, 2011;

Tafforeau et al, 2013; Wandrey et al, 2015; Dörner et al, 2022).

Although the human homologs of many yeast RBFs have been

identified (Wild et al, 2010; Tafforeau et al, 2013; Badertscher

et al, 2015; Dörner et al, 2022), the functional conservation of most

factors remains to be investigated (Table 12). Interestingly, SUMOy-

lation of PELP1, a component of the PELP1-TEX10-WDR18 complex

(Rix1 complex in yeast), was shown to be essential for recruitment

of MDN1 (the human ortholog of yeast Rea1) to the pre-60S

particle (Finkbeiner et al, 2011; Raman et al, 2016). Recently, the

structures of two late nuclear human pre-60S particles already asso-

ciated with the export factor NMD3 have been described (Liang

et al, 2020). Overall, the structures showed similar architecture and

composition as yeast particles at similar stages, indicating conser-

vation of the function of bound RBFs. Yet, they also revealed

mammalian-specific features of 60S subunit maturation, for

example, interaction of the N-terminal domain of ZNF622 (Rei1 in

yeast) with expansion segment ES27, which is much longer in

human cells. Cryo-EM structures of earlier nucle(ol)ar human pre-

60S particles remain to be solved and will provide additional

insights into similarities and differences of the process between

yeast and mammals.

Binding of the NES-containing export adaptor Nmd3/NMD3

licenses pre-60S subunits for Crm1/XPO1-dependent nuclear export

both in fungi and metazoan cells (Table 8) (Ho et al, 2000; Gadal

et al, 2001; Thomas & Kutay, 2003; Trotta et al, 2003). In vertebrate

cells, a second RanGTP-binding exportin, XPO5, was shown to

support pre-60S export in addition (Moy & Silver, 1999; Wild

et al, 2010). In yeast, a number of further auxiliary factors facilitate

pre-60S translocation through the NPC by directly interacting with

FG-repeats of nucleoporins, including Rrp12, Bud20, Ecm1, and

Npl3 (Oeffinger et al, 2004; Yao et al, 2010; Hackmann et al, 2011;

Altvater et al, 2012; Nerurkar et al, 2015) (Table 8).

In addition, the mRNA export receptor Mex67/Mtr2 aids export

of both 40S and 60S pre-particles in yeast, a function that is not

conserved in human cells (Yao et al, 2008, 2007). Interestingly,

recruitment of Mex67/Mtr2 has been linked to the assembly of the P

stalk. Pre-60S particles initially contain Mrt4, a structural homolog

of the P-stalk protein uL10/P0. As long as Mrt4 is bound, the recruit-

ment of the nuclear export receptor Mex67/Mtr2 is inhibited (Sarkar

et al, 2016). Yvh1/DUSP12 then dissociates Mrt4, thereby allowing

P-stalk formation by incorporation of the uL10/P0 (Kemmler

et al, 2009; Rodr�ıguez-Mateos et al, 2009; Lo et al, 2010, 2009;

Sarkar et al, 2016; Zhou et al, 2019b; Klingauf-Nerurkar et al, 2020).

It must be noted, however, that the exact timing of P-stalk assembly

is not fully resolved, since Mrt4 can be found on cytoplasmic parti-

cles upon expression of dominant-negative Drg1, a cytoplasmic 60S-

RBF, indicating that exchange may occur later, in the cytoplasm

(Klingauf-Nerurkar et al, 2020).

Cytoplasmic 60S maturation steps

While cytoplasmic pre-40S subunit maturation is primarily driven

by kinases, cytoplasmic maturation of pre-60S particles relies on the

function of GTPases and AAA-ATPases (Table 13) (Lo et al, 2010).

These ensure the timely release of some remaining assembly factors

(Fig 7), including the ribosomal-like protein Rlp24/RSL24D1, the

GTPase Nog1/GTPBP4, the export adaptor Nmd3/NMD3, Arx1/

PA2G4, and Tif6/EIF6. At the same time, RBFs acting in the cyto-

plasm drive the incorporation of the last RPs and proofread the

assembly state of the functional centers.

In a first step, the AAA-ATPase Drg1 releases Rlp24 (Fig 7),

which acts as a placeholder for Rpl24/eL24 (Table 13) (Pertschy

et al, 2007; Lo et al, 2010; Kappel et al, 2012). While Drg1 is the sole

factor known to be responsible for Rlp24 dissociation in yeast,

release of the human homolog of Rlp24, RLP24/RSL24D1, was

recently reported to involve two Drg1-related AAA-ATPases,

SPATA5, and SPATA5L1 (Ni et al, 2022). Interestingly, SPATA5 is

localized in the cytosol, similar to yeast Drg1 (Puusepp et al, 2018),

whereas SPATA5L1 is predominantly nuclear (Richard et al, 2021),

suggesting that either RLP24 release can in principle occur in both

compartments or that only one of these factors functions directly in

RLP24 exchange. In addition to SPATA5 and SPATA5L, RLP24

release was suggested to depend on CINP and C1orf109 (Ni

et al, 2022), two structurally related proteins. However, how these

factors function together with SPATA5 and SPATA5L1 in RLP24/

eL24 exchange remains to be mechanistically defined.

Drg1 not only acts on Rlp24, but also contributes to the dissocia-

tion of the GTPase Nog1 and additional factors that bind in close

proximity to Rlp24. The GTPase Nog1 is deposited on the pre-60S

subunit already during nucleolar maturation steps and projects its

long C-terminal tail into the PET, almost reaching back to the PTC

(Wu et al, 2016). Nog1 is liberated in a two-step process. The first

step exploits its own GTPase activity, driving the dissociation of

both its N-terminal and GTPase domains. In the second step, the C-

terminal part of Nog1 is dissociated by Drg1 (Pertschy et al, 2007;

Kappel et al, 2012). After release of Nog1, the PET is further func-

tionally probed and potentially matured by insertion of the C-

terminal domain of Rei1/ZNF622, which is recruited via Rpl24

(Greber et al, 2016, 2012; Kargas et al, 2019; Zhou et al, 2019b).

Arx1 is bound close to the PET exit where it sterically impedes the

premature loading of nascent chain binding factors. It is set free by

Rei1, Jjj1 and the ATPase activity of Ssa1/Ssa2 (Hsp70) (Hung &

Johnson, 2006; Lebreton et al, 2006; Meyer et al, 2010; Bradatsch

et al, 2012; Greber et al, 2012). Then, the PET is again occluded by

the C-terminal a-helix of Reh1, which binds inside the PET (Ma

et al, 2017).

Cytoplasmic 60S maturation ends with the dissociation of

Reh1, Nmd3, and Tif6, which are bound on the subunit interface.
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These factors are suggested to function as anti-association

factors, inhibiting premature interaction of cytoplasmic pre-60S

particles with mature 40S subunits (Gartmann et al, 2010; Weis

et al, 2015; Ma et al, 2017). After incorporation of RPL40/eL40

and RPL10/uL16, Nmd3 is dissociated by the GTPase Lsg1/LSG1

(Fig 7) (Malyutin et al, 2017; Kargas et al, 2019; Zhou

Table 13. Factors involved in cytoplasmic pre-60S maturation.

Yeast 40S 60S Human 40S 60S Function in cytoplasmic pre-60S maturation Citation

Drg1/
Afg2

x SPATA5 x ATPase activity releases Rlp24 and Nog1 Pertschy et al (2007),
Kappel et al (2012) and
Ni et al (2022)

SPATA5L x

CINP x

C1orf109 x

Rlp24 x RLP24/
RSL24D1

x Released by Drg1, which allows incorporation of Rpl24/eL24
(placeholder)

Kappel et al (2012)

Bud20 x ZNF593 x Released Srivastava et al (2010)

Nug1 x GNL3 x Released, timing of release not clear in humans Altvater et al (2012) and
Ma et al (2017)

YBL028C x LLPH x Released Klingauf-Nerurkar
et al (2020) and Liang
et al (2020)

TMA16 x TMA16 x Might be released before export Liang et al (2020)

Nsa2 x NSA2 Released Altvater et al (2012) and
Ma et al (2017)

Nog1 x GTPBP4/
NOG1

x Inserts flexible helix into PET, which could function as proof
reading or maturation step, released after/with Rlp24, coordinates
bifurcation of pre-60S maturation pathway

Pertschy et al (2007) and
Kappel et al (2012)

Arx1 x PA2G4/
EBP1

x Prevents binding of proteins and complexes typically engaging
with the nascent peptide chain binding near the tunnel exit,
released by Rei1 (with Ssa and Jjj), which frees peptide exit tunnel,
function in human cells is less clear

Bradatsch et al (2012)
and Greber et al (2012)

Alb1 x Binding partner of Arx1, released Greber et al (2012)

Rei1 x ZNF622 x Inserts flexible helix into PET, which could function as proof
reading or maturation step; functions together with the ATPase
Ssa and Jjj to release Arx1

Meyer et al (2010),
Bradatsch et al (2012)
and Greber et al (2012)

Jjj1 x DNAJC21 x Cofactor for release of Arx1 by Rei1/Ssa Demoinet et al (2007)
and Greber et al (2012)

Ssa1 x HSPA1A Binds together with Rei1 and Jjj1, ATPase Activity releases Arx1 Pertschy et al (2007) and
Ma et al (2017)

Ssa2 x HSPA1B

Reh1 x Inserts C-terminal helix into PET Parnell and Bass (2009)

Mrt4 x MRT4/
MRTO4

x Placeholder for P stalk, released, which allows incorporation of
ribosome stalk, initiated by binding of RplP0/uL10

Kemmler et al (2009) and
Lo et al (2009)

Yvh1 x DUSP12 x Phosphatase, releases Mrt4 Kemmler et al (2009) and
Lo et al (2009)

Efl1/
Ria1

x EFL1/
EFTUD1

x GTPase activity releases Tif6/EIF6, works together with Sdo1/SBDS Basu et al (2001) and
Finch et al (2011)

Sdo1 x SBDS x Works together with Efl1/EFL1 Basu et al (2001) and
Finch et al (2011)

Tif6 x EIF6 x Anti-association factor, preventing premature association with 40S
subunits, released by Efl1/EFL1 (with Sdo1/SDAD)

Gartmann et al (2010)

Lsg1/
Kre35

x LSG1 x GTPase activity releases Nmd3/NMD3 Kallstrom et al (2003)
and Hedges et al (2005)

Sqt1 x AAMP x Chaperone of Rpl10/uL16 Kallstrom et al (2003)
and Hedges et al (2005)

Nmd3 x NMD3 x Released by Lsg1/LSG1, allows incorporation of Rpl10/uL16, before
release: prevents joining of premature subunits

Kallstrom et al (2003)
and Hedges et al (2005)
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et al, 2019b). Finally, Tif6 removal is mediated by the GTPase

Efl1/EFTUD1 and its guanine nucleotide exchange factor

Sdo1/SBDS (B�ecam et al, 2001; Senger et al, 2001; Menne

et al, 2007), which have also been suggested to probe function-

ality of the P stalk, P-site, and PTC (Ma et al, 2017; Zhou

et al, 2019b).
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Most factors involved in cytosolic pre-60S maturation in yeast

have human homologs, and recently solved structures of late

human pre-60S subunits revealed that the observed human homo-

logs of yeast RBFs bind to similar positions and are likely functional

homologs (Liang et al, 2020). One notable exception is PA2G4/

EBP1, which is significantly smaller than its yeast homolog Arx1.

PA2G4 has been implicated both in ribosome biogenesis and trans-

lation, as it was shown to bind to pre-60S as well as mature 80S

ribosomes in vivo (Liang et al, 2020; Bhaskar et al, 2021; Kraushar

et al, 2021). Several structural features of yeast Arx1 that might play

a role in 60S biogenesis are missing in PA2G4. Thus, further

analysis is needed to address its functional conservation as an RBF.

Altogether, eukaryotic cells exploit several hundred RBFs along

the intricate ribosome assembly line from the nucleolus to the cyto-

plasm (Tables 2–14). These RBFs not only promote RP deposition,

pre-rRNA folding, processing, and maturation as well as remodeling

of the emerging ribosomal particles, but also probe the correct

configuration of the functional centers. Once all RBFs are released,

both subunits are ready to fulfill their function in mRNA translation.

Concluding remarks

Over the past years, the field has made impressive progress in deci-

phering the molecular mechanisms of ribosomal subunit assembly

and maturation. Today, we know for the vast majority of RBFs at

which step of the complex pathway they function, how they

associate with precursor particles, and which task they perform.

What initially seemed an overwhelming list of accessory factors,

first merely named as players in either 40S or 60S synthesis, has

coalesced into an almost coherent molecular picture of the subunit

assembly lines. Of course, some pieces of the puzzle are still

missing. For instance, while we appreciate the impressive molecular

snapshots of the SSU processome, we still do not fully understand

how this gigantic RNP, similar in size to a mammalian ribosome, is

assembled in the first place. How are structural and compositional

remodeling steps of the SSU processome that are associated with

pre-rRNA folding and maturation driven? We also know little about

whether and how early nucleolar steps of 40S and 60S biogenesis

are coupled before RNA cleavage separates the precursors to both

subunits. Likewise, we still miss a structural depiction of some key

60S subunit assembly intermediates.

But not only the assembly process itself still contains some

uncharted territory, also other areas related to ribosome synthesis

are expected to hide a number of exciting secrets. For instance, it is

becoming increasingly clear that early errors in the assembly line

affect nucleolar morphology and structure. But how is nucleolar

organization governed in first place? And how are maturing particles

expelled from nucleoli for further maturation into the nucleoplasm?

Some first hints suggest, as discussed above, that pre-rRNA length

and compaction may govern this decisive step. Another almost

unexplored area concerns quality control of ribosome synthesis.

How are aberrant premature subunits recognized and eliminated?

This question especially pertains to the fate of the proteinaceous

parts of the precursor particles. Hence, which mechanisms coun-

teract the potential proteotoxicity of unassembled RPs or aberrant

precursors, especially in mammalian cells? Clearly, these and many

other questions remain to be resolved. Thus, despite the impressive

progress made, research on ribosome biogenesis will remain an

active and rewarding field of biology in the future.
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