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Children’s cognitive function and educational perfor-
mance are sensitive to environmental input, robustly 
predict their future social attainments and health, and 
consistently differ by major dimensions of social 
inequality, such as parental education, income, and race 
(Engelhardt et al., 2019; Korous et al., 2020). Socioeco-
nomic and racial disparities in child cognitive develop-
ment arise through various factors tied to classism and 
racism, including inequitable access to high-quality 
childcare, educational resources, health care, nutrition, 
and differences in exposure to toxicants, family stress, 
and neighborhood threat, among other factors (Anglin 
et al., 2021). For example, the social advantage of White 
identity, or White privilege, describes the generational 
legacy of social power experienced by White people 
through state-sanctioned social marginalization, which 

persistently shapes the disadvantaged context that 
Black and Latinx youths face in the United States. 
Because of the chronic nature of interpersonal and 
vicarious discrimination in the day-to-day lives of these 
youths, indicators of socioeconomic disadvantage do 
not fully capture the effects of racism on child develop-
ment (Williams et  al., 2019). Given that research in 
developmental psychology investigating the role of 
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Abstract
Children’s cognitive functioning and educational performance are socially stratified. Social inequality, including classism 
and racism, may operate partly via epigenetic mechanisms that modulate neurocognitive development. Following 
preregistered analyses of data from 1,183 participants, ages 8 to 19 years, from the Texas Twin Project, we found 
that children growing up in more socioeconomically disadvantaged families and neighborhoods and children from 
marginalized racial/ethnic groups exhibit DNA methylation profiles that, in previous studies of adults, were indicative of 
higher chronic inflammation, lower cognitive functioning, and a faster pace of biological aging. Furthermore, children’s 
salivary DNA methylation profiles were associated with their performance on in-laboratory tests of cognitive and 
academic skills, including processing speed, general executive function, perceptual reasoning, verbal comprehension, 
reading, and math. Given that the DNA methylation measures that we examined were originally developed in adults, 
our results suggest that children show molecular signatures that reflect the early life social determinants of lifelong 
disparities in health and cognition.
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race, including racial disparities in adversity, is rare, 
scientific understanding of how racism manifests in 
children’s lives and affects their development remains 
limited (Roberts et al., 2020).

Epigenetic mechanisms that regulate the expression 
of genes are hypothesized to be involved in the biologi-
cal embedding of environmental privilege and disadvan-
tage (Danese & Lewis, 2017). With regard to cognition, 
a consistent finding from experimental manipulations of 
the social environment in nonhuman animals is that 
social adversity increases expression of genes linked to 
inflammation (Snyder-Mackler et al., 2020), which can 
modulate the continued development and function of 
the brain (Danese & Lewis, 2017). The central nervous 
system, and the cognitive functions that it supports, is 
susceptible to inflammation because the blood-brain bar-
rier can be disrupted by peripheral inflammation via 
multiple pathways (Huang et al., 2021). Inflammatory 
insults on neurocognitive development may have lasting 
effects on late-life cognitive function by way of molecu-
lar processes originating in childhood and adolescence. 
In this way, epigenetic mechanisms actuated by classism 
and racism may, in part, contribute to social disparities 
in children’s cognitive function.

New advances of genomewide technology and 
“omic” approaches have now quantified molecular sig-
natures of a host of exposures, biological processes, 
and phenotypes that can be used to investigate the 
etiology of social disparities in life-course development. 
For example, studies have identified patterns of DNA 
methylation across the epigenome in association with 
a peripheral proxy for systemic inflammation (Ligthart 
et  al., 2016), multisystem biological aging processes 
(Horvath & Raj, 2018), and psychological phenotypes 
(McCartney et al., 2022). Results from such discovery 
studies can be used in prediction studies to construct 
epigenetic profiles in new samples that can then be 
examined in relation to a wide range of measured vari-
ables. Specifically, DNA methylation profiles may be 
useful for examining the early life etiology of social 
disparities in life-span development. In particular, if 
DNA methylation measures that were originally devel-
oped in adults are shown to be related to pediatric 
phenotypes and exposures, this result is evidence of a 
molecular continuity between childhood social inequal-
ities and adulthood health disparities. However, little 
work has been conducted to date to examine whether 
DNA methylation measures known to be related to 
adult health disparities are sensitive to social inequality 
in childhood (Raffington et  al., 2021) and associated 
with psychological and health-relevant phenotypes in 
children and adolescents.

DNA methylation is a dynamic process and can be 
tissue specific with, for example, different epigenetic 

signatures in brain, blood, and saliva (Bakulski et al., 
2016). DNA methylation discovery studies most com-
monly analyze methylation from blood or other tissues, 
rather than methylation in salivary DNA, which comes 
from a mixture of buccal cells and leukocytes (https://
ngdc.cncb.ac.cn/ewas/statistics). However, because 
DNA methylation profiling using saliva is amenable at 
large scale in pediatric samples, this method offers dis-
tinct opportunities for large-scale epidemiological and 
longitudinal studies. It is currently unclear whether 
DNA methylation profiles developed using blood sam-
ples in adults translate not just across development 
(from adults to youths) but also across tissue (from 
blood to saliva). Of particular interest in this study, 
then, is to use these molecular signatures to investigate 
the etiology of social disparities in life-course dispari-
ties in health and cognition. Following preregistered 
analyses (https://osf.io/x978n/), we examined whether 
salivary DNA methylation measures derived from adult 
discovery studies trained on inflammation, cognitive 
function, and the pace of biological aging are (a) strati-
fied by major dimensions of social inequality and (b) 
associated with cognitive functions in children and 
adolescents.

Three salivary DNA methylation composite scores 
were of particular interest in the present study because 
their blood-derived composites have been associated 
with cognitive function or they have been found to be 
sensitive to socioeconomic inequality. First, we examined 

Statement of Relevance

A child’s cognitive function can be harmed if their 
environment is stressful—for example, if they reg-
ularly experience social inequalities due to things 
such as their social class or race/ethnicity. We can 
measure how much stress a person experiences 
by looking at an epigenetic profile—a score based 
on markers on the DNA that turn genes “on” or 
“off.” Using salivary DNA taken from a sample of 
adolescents from the Texas Twin Project, we cre-
ated epigenetic profiles that were developed to 
predict chronic inflammation, lower cognitive 
function, and a faster pace of biological aging. We 
found that (a) the epigenetic profiles of children 
from disadvantaged backgrounds looked worse 
than other children and (b) children’s epigenetic 
profiles were associated with their performance 
on a range of cognitive tests. Epigenetic profiles 
are a promising tool and can help us better under-
stand how social inequalities become embedded 
in the body and impact the mind.

https://ngdc.cncb.ac.cn/ewas/statistics
https://ngdc.cncb.ac.cn/ewas/statistics
https://osf.io/x978n/


172	 Raffington et al.

DNA methylation profiles of C-reactive protein (CRP; i.e., 
DNAm-CRP), which in blood samples have previously 
been found to be associated with cognitive functions in 
adults (Stevenson et al., 2020) and children (Barker et al., 
2018). Second, we examined DNA methylation profiles 
of cognitive performance (i.e., Epigenetic-g) from a 
blood-based epigenome-wide association study of  
general cognitive functions (g) in adults, which accounted 
for 3.4% and 4.5% of the variance in general cognitive 
functioning in two external adult cohorts using methyla-
tion from blood samples (McCartney et al., 2022). Third, 
we examined Dunedin methylation pace of aging (i.e., 
DunedinPoAm), which was developed from an analysis 
of rate of longitudinal change in organ-system integrity 
occurring in middle adulthood in a cohort of individuals 
who were all the same chronological age (Belsky et al., 
2020).

We previously reported (Raffington et al., 2021) that 
socioeconomic disadvantage and Latinx identity com-
pared with White identity are associated with a faster 
pace of biological aging, as indicated by the Dunedin-
PoAm, in an earlier data freeze of Texas Twin salivary 
DNA methylation data (n = 600). In contrast, epigenetic 
clocks and the mortality predictor “GrimAge” were not 
sensitive to socioeconomic inequality and therefore not 
considered in analyses reported here (profiles of inflam-
mation and cognitive functioning were not previously 
examined). Participants in the current study were 1,183 
(609 female) children and adolescents with at least one 
DNA methylation sample from the population-based 
Texas Twin Project, including 426 monozygotic twins 
and 757 dizygotic twins, ages 8 to 19 years (M = 13.6 
years, SD = 3.05), from 611 unique families.

Method

Sample

The Texas Twin Project is an ongoing longitudinal study 
that includes the collection of saliva samples for DNA 
and DNA methylation extraction (Harden et al., 2013). 
Participants were recruited via public school rosters, 
support groups for parents of twins and other multiples, 
and word of mouth. Children with severe developmen-
tal and/or cognitive delays who would be unable to 
fully participate in the research study were excluded 
from participation. Participants in the current study 
were 1,183 (609 female) children and adolescents, 
including 426 monozygotic twins and 757 dizygotic 
twins (see zygosity measure), ages 8 to 19 years (M = 
13.6 years, SD = 3.05), from 617 unique families, who 
had at least one DNA methylation sample. Within the 
analytic sample, 183 participants contributed two DNA 
methylation samples (time between repeated samples: 

M = 22 months, SD = 6.5, range = 3–38 months), and 
15 samples were assayed in duplicate for reliability 
analyses. For descriptive statistics of the analytic sam-
ple, see Table 1. The University of Texas Institutional 
Review Board granted ethical approval.

Measures

DNA methylation preprocessing.  Saliva samples were 
collected during a laboratory visit using Oragene kits 
(DNA Genotek, Ottawa, ON, Canada). DNA extraction 
and methylation profiling were conducted by the Edin-
burgh Clinical Research Facility (UK). The Infinium Meth-
ylationEPIC BeadChip kit (Illumina, Inc., San Diego, CA) 
was used to assess methylation levels at 850,000 methyla-
tion sites. DNA methylation preprocessing was primarily 
conducted with the “minfi” package (Aryee et al., 2014) 
in the R programming environment (Version 4.0.4; R Core 
Team, 2021). Within-array normalization was performed 
to address array background correction, red/green dye 
bias, and probe type I/II correction, and it has been 
noted that at least part of the probe type bias is a combi-
nation of the first two factors (Dedeurwaerder et  al., 
2014). Noob preprocessing as implemented by minfi’s 
“preprocessNoob” (Triche et al., 2013) is a background 
correction and dye-bias equalization method that has simi-
lar within-array normalization effects on the data as probe 
type correction methods such as BMIQ (Teschendorff 
et al., 2013).

In line with our preregistered preprocessing plan, 
CpG probes with detection p greater than .01 and fewer 
than three beads in more than 1% of the samples and 
probes in cross-reactive regions were excluded (Pidsley 

Table 1.  Descriptive Statistics of the Analytic Sample

Variable Frequency

Zygosity  
  Monozygotic 426 (36.0%)
  Dizygotic 757 (64.0%)
Agea M = 13.6 years (SD = 3.05)
Sex  
  Female 609 (51.5%)
  Male 574 (48.5%)
Race/ethnicity  
  White only 731 (61.8%)
  Latinx only 144 (12.2%)
  Latinx & White 94 (7.9%)
  Black+ 116 (9.8%)
  Asian+ 89 (7.5%)
  Other 9 (0.8%)

Note: N = 1,183 twins.
aThis includes repeated observations from 183 individuals for whom 
methylation data were extracted on two occasions.
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et al., 2016). None of these failed probes overlapped 
with the probes used for DNA methylation scores. Forty-
four samples were excluded because (a) they showed 
low intensity probes as indicated by the log of average 
methylation of less than 9 and their detection p was 
greater than .01 in greater than 10% of their probes, (b) 
their self-reported and methylation-estimated sex was 
mismatched, and/or (c) their self-reported and DNA-
estimated sex was mismatched. Cell composition of 
immune and epithelial cell types (i.e., CD4+ T-cell, natu-
ral killer cells, neutrophils, eosinophils, B cells, mono-
cytes, CD8+ T-cell, and granulocytes) was estimated 
using a newly developed child saliva reference panel 
implemented in the R package “BeadSorted.Saliva.EPIC” 
within “ewastools” (Middleton et al., 2022). Surrogate 
variable analysis was used to correct methylation values 
for batch effects using the “combat” function in the “SVA” 
package ( Johnson et al., 2007).

DNA methylation profiles.
DNAm-CRP.  Profiles of inflammation were computed 

on the basis of an epigenome-wide association study of 
CRP (Ligthart et al., 2016). Using the summary statistics 
of the associations between CpG sites and adult CRP, we 
created one methylation score per person by summing 
the product of the weight and the individual beta esti-
mate for each individual at each of the 218 CpG sites 
significantly associated (p < 1.15 × 10−7) with CRP.

DunedinPoAm.  DunedinPoAm was developed from 
DNA methylation analysis of pace of aging in the Dune-
din Study birth cohort. Pace of aging is a composite phe-
notype derived from analysis of longitudinal change in 
18 biomarkers of organ-system integrity measured when 
Dunedin Study members were all 26, 32, and 38 years 
of age (Belsky et  al., 2015). In contrast, so-called epi-
genetic clocks are trained on chronological age (Raff-
ington & Belsky, 2022). Elastic-net regression machine 
learning analysis was used to fit pace of aging to Illu-
mina 450k DNA methylation data generated from blood 
samples collected when participants were 38 years old. 
The elastic-net regression produced a 46-CpG algorithm. 
Increments of DunedinPoAm correspond to “years” of 
physiological change occurring per 12 months of chron-
ological time. The Dunedin Study mean was 1, that is, 
the typical pace of aging among 38-year-olds in that 
birth cohort. Thus, 0.01 increment of DunedinPoAm cor-
responds to a percentage point increase or decrease in 
an individual’s pace of aging relative to the Dunedin 
birth cohort at midlife. DunedinPoAm was calculated on 
the basis of the published algorithm (Belsky et al., 2020) 
using code available at https://github.com/danbelsky/
DunedinPoAm38.

DNA methylation profiles of cognitive functioning.  Sal-
ivary DNA methylation profiles of cognitive functioning, 
or Epigenetic-g, were computed on the basis of weights 
from a blood-based epigenome-wide association study of 
general cognitive functions (g) in adults using BayesR+ 
(McCartney et  al., 2022). General cognitive ability was 
derived from the first unrotated principal component of 
logical memory, verbal fluency and digit symbol tests, and 
vocabulary. We calculated DNA methylation profiles of 
cognitive functioning on the basis of the algorithm avail-
able at https://gitlab.com/danielmccartney/ewas_of_cog 
nitive_function. Prior to computation, methylation values 
were scaled within each CpG site (M = 0, SD = 1). All 
DNA methylation scores were residualized for array, slide, 
batch, and cell composition and then standardized to ease 
interpretation.

Cognitive function.  A battery of cognitive tasks was 
administered on the same day as the saliva samples were 
taken.

Processing speed.  Three tasks were used to construct 
a latent measure of processing speed and were avail-
able to participants in Grades 3 through 8: Symbol Search 
(Wechsler, 2003), Pattern Comparison, and Letter Com-
parison (Salthouse & Babcock, 1991). Each task assessed 
how quickly and accurately participants identified simi-
larities between symbols, patterns, or letters.

Executive functions.  The current study included 15 
tasks assessing four executive function domains that 
were available to participants in Grades 3 through 8: inhi-
bition, switching, working memory, and updating. Tasks 
were administered orally, on the computer, or on paper. 
Inhibition was assessed with four tasks: Animal Stroop 
(Wright et al., 2003), Mickey (Lee et al., 2013), and Stop 
Signal. The study originally used an auditory Stop Sig-
nal task (Logan et al., 1997), which was replaced with a 
visual Stop Signal task (Verbruggen et al., 2008) after the 
3rd year of data collection to accommodate the needs of 
administering executive function tasks in the MRI scan-
ner. Switching was assessed using four tasks: Trail Mak-
ing (Salthouse, 2011), Local-Global, Plus-Minus (Miyake 
et  al., 2000), and a computerized Cognitive Flexibility 
task (Baym et  al., 2008). Cognitive Flexibility replaced 
the Plus-Minus task, again to accommodate MRI task 
administration after the 3rd year of data collection. Work-
ing memory was assessed using three tasks: Symmetry 
Span (Kane et al., 2004), Digit Span Backward (Wechsler, 
2003), and Listening Recall (Daneman & Carpenter, 
1980). These tasks tap spatial, verbal, and auditory work-
ing memory, respectively. Updating was assessed with 
four tasks: Keeping Track (Miyake et al., 2000), Running 

https://github.com/danbelsky/DunedinPoAm38
https://github.com/danbelsky/DunedinPoAm38
https://gitlab.com/danielmccartney/ewas_of_cognitive_function
https://gitlab.com/danielmccartney/ewas_of_cognitive_function
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Memory for Letters (Broadway & Engle, 2010), Two-Back 
task ( Jaeggi et al., 2010), and, as a replacement for the 
Two-Back task after the 3rd year of data collection, a 
One- and Two-Back task ( Jaeggi et al., 2010). More com-
prehensive task descriptions can be found in the work by 
Engelhardt et al. (2015).

Previous research in this sample (Engelhardt et al., 
2015; Sabhlok et al., 2022) demonstrated that variation 
in executive function is best captured by a hierarchi-
cal factor model, with individual executive function 
tasks loading onto one of four latent factors represent-
ing each executive function domain and each of these 
loading onto a common executive function factor (for 
graphical depiction, see Sabhlok et  al., 2022). We 
controlled for age-related differences in performance 
by regressing first-order latent executive function fac-
tors onto age in all models. This same hierarchical 
model was adopted in all the analyses presented in 
the current research to examine general executive 
function.

Verbal comprehension and perceptual reasoning.  We 
administered the Wechsler Abbreviated Scale of Intel-
ligence (Wechsler, 2011) to all participants to assess 
perceptual reasoning, also called nonverbal fluid intel-
ligence, and verbal comprehension, also called verbal 
crystallized intelligence. Perceptual reasoning is the sum 
of the age-normed t scores on the Block Design and 
Matrix Reasoning subtests. Verbal comprehension is the 
sum of the age-normed t scores on the Vocabulary and 
Similarities subtests.

Math and reading.  To assess more specific reading 
comprehension and mathematics skills, we had partici-
pants in Grades 3 through 8 complete the Passage Com-
prehension and Calculation subtests, respectively, of the 
Woodcock-Johnson III Tests of Academic Achievement 
(Woodcock et al., 2001). The dependent variable for the 
reading and math subtests is the total number of items 
correct.

Socioeconomic context.
Family-level socioeconomic disadvantage.  The family- 

level measure was computed from parent reports of house
hold income, parental education, occupation, history of 
financial problems, food insecurity (based on the U.S. 
Household Food Security Survey Module, 2012), father 
absence, residential instability (changes in home address), 
and family receipt of public assistance. These were aggre-
gated to form a composite measure of household-level 
cumulative socioeconomic disadvantage described by 
Engelhardt et al. (2019) and coded so that higher scores 
reflect greater disadvantage.

Neighborhood-level socioeconomic disadvantage.  The 
neighborhood-level measure was composed from tract-
level U.S. Census data according to the method described 
by Engelhardt et al. (2019). Briefly, participant addresses 
were linked to tract-level data from the U.S. Census 
Bureau American Community Survey averaged over 5 
years (https://www.census.gov/programs-surveys/acs). 
A composite score of neighborhood-level socioeconomic 
disadvantage was computed from tract-level proportions 
of residents reported as unemployed, living below the 
federal poverty threshold, having fewer than 12 years of 
education, not being employed in a management posi-
tion, and single mothers. These were aggregated using 
principal component analysis to form a neighborhood-
level socioeconomic disadvantage composite measure 
described by Engelhardt et al. (2019) and coded so that 
higher scores reflect greater disadvantage.

Neighborhood opportunity.  The neighborhood oppor-
tunity measure indexed the intergenerational economic 
mobility of children of low-income parents. It examines 
average annual household income in 2014–2015 of off-
spring (born between 1978 and 1983, who are now in 
their 30s and 40s) of low-income parents (defined as 
mean pretax income at the household level across 5 
years—1994, 1995, and 1998–2000—at the 25th percen-
tile of the national income distribution, or $27,000/year) 
within each census tract. Household income was obtained 
from federal tax return records between 1989 and 2015, 
the 2000 and 2010 Decennial Census (United States Cen-
sus Bureau / American FactFinder, 2000, 2010; https://
data2.nhgis.org/main), and 2005–2015 American Com-
munity Surveys (https://www.census.gov/programs-sur 
veys/acs). Census tracts reflect where the child resided 
through the age of 23 years. These data were compiled 
by and obtained from the Opportunity Atlas (https://
opportunityatlas.org; Chetty et al., 2018).

Developmental covariates.
Body mass index (BMI).  BMI is socially patterned with 

high BMI being more common in children from families 
and neighborhoods of low socioeconomic status (Datar 
& Chung, 2015). BMI is also associated with differential 
DNA methylation patterns across the genome (Wahl et al., 
2017). We therefore considered BMI in our analysis. We 
measured BMI from in-laboratory measurements of height 
and weight transformed to gender- and age-normed z 
scores according to the method published by the U.S. 
Centers for Disease Control and Prevention (https://www 
.cdc.gov/growthcharts/percentile_data_files.htm).

Pubertal development.  The onset of puberty is some-
times reported at younger ages in children growing up 

https://www.census.gov/programs-surveys/acs
https://data2.nhgis.org/main
https://data2.nhgis.org/main
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
https://www.cdc.gov/growthcharts/percentile_data_files.htm
https://www.cdc.gov/growthcharts/percentile_data_files.htm
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in conditions of socioeconomic disadvantage (Colich 
et  al., 2020). Puberty is also associated with a range of 
DNA methylation changes (Almstrup et al., 2016; Aylwin 
et  al., 2019). We therefore considered children’s puber-
tal development in our analysis. Pubertal development 
was measured using children’s self-reports on the Puber-
tal Development Scale (Petersen et  al., 1988). The scale 
assesses the extent of development across five sex-specific 
domains (for both sexes: height, body hair growth, skin 
changes; for girls: onset of menses, breast development; 
for boys: growth in body hair, deepening of voice). A 
total pubertal status score was computed as the average 
response (1 = not yet begun to 4 = has finished changing) 
across all items. Pubertal development was residualized 
for age, gender, and an age-by-gender interaction.

Tobacco exposure.  Smoking is a socially patterned 
health behavior to which children from families and 
neighborhoods of low socioeconomic status are dis-
proportionately exposed. It is also associated with dif-
ferential DNA methylation patterns across the genome 
( Joehanes et  al., 2016; Joubert et  al., 2016). We there-
fore considered tobacco exposure in our analysis. We 
measured tobacco exposure using a DNA methylation 
smoking (DNAm-smoke) score created by summing the 
product of the weight and the individual beta estimate for 
each individual at each CpG site significantly associated 
with smoking in the discovery epigenome-wide associa-
tion study (EWAS; Joehanes et al., 2016). Excluding self-
reported tobacco users (n = 53) did not significantly alter 
results. For descriptive statistics of all study variables, see 
Table S1 in the Supplemental Material available online.

Statistical analyses

Following the preregistered analysis plan (https://osf 
.io/x978n/), we conducted the analysis in three main 
steps. Supplemental analyses (not preregistered) were 
also conducted and are clearly indicated below. A pre-
liminary analysis examined the reliability of and inter-
relatedness between the methylation measures used in 
the current study. After this preliminary analysis, the first 
step in the analysis explored the association between 
DNA methylation profiles and measures capturing dif-
ferent levels/aspects of socioeconomic factors.

The second step shifted focus to race/ethnicity and 
examined disparities in DNA methylation across groups. 
A supplemental analysis (not preregistered) additionally 
examined whether racial/ethnic disparities observed in 
levels of DNA methylation were robust to adjustment 
for socioeconomic factors.

The third step in the analysis examined associations 
between DNA methylation profiles and six cognitive out-
comes, including (a) processing speed, (b) general 

executive function, (c) perceptual reasoning, (d) verbal 
comprehension, (e) reading, and (f) math. Supplemental 
analyses of the third step (not preregistered) included 
sensitivity analyses relating to the sample selection pro-
cess and adjustment for genetic and environmental fac-
tors using a biometric (twin) model. A final supplemental 
analysis was conducted to examine the potential of 
genetic confounding by examining the association 
between genetic profiles for CRP and cognitive outcomes 
in a subsample of European ancestry participants.

The analyses that we performed were multilevel, mul-
tivariate regression models fitted with FIML in Mplus 
(Version 8.2; Muthén & Muthén, 2017). To account for 
nesting of repeated measures within individuals, and 
multiple twin pairs within families, we used the Mplus 
sandwich correction to estimate cluster-robust standard 
errors. All models included a random intercept, repre-
senting the family-level intercept of the dependent 
variable, to correct for nonindependence of twins. All 
models included age, gender, and an age-by-gender 
interaction as covariates. All effect sizes are reported as 
standardized regression coefficients that are interpre-
table as Pearson’s r. We controlled for multiple testing 
using the Benjamini-Hochberg false-discovery-rate 
method (Benjamini & Hochberg, 1995).

Results

Salivary DNA methylation profiles in 
children are reliably measured and 
show expected patterns of association 
with covariates

DNA methylation profiles of inflammation (DNAm-
CRP), cognitive functioning (Epigenetic-g), and Duned-
inPoAm measured from salivary DNA were approximately 
normally distributed (for descriptive statistics before 
correction for the cell composition of saliva samples, 
see Table S1). Analyses of 15 technical replicates sug-
gested moderate-to-good reliability of DNA methylation 
profiles residualized for technical artifacts and cell com-
position (intraclass correlation coefficient for DNAm-
CRP = .73, Epigenetic-g = .80, DunedinPoAm = .84). 
Biometric models using the twin family structure, where 
the similarity between twins due to both additive 
genetic factors (A) and environmental factors shared 
by twins living in the same home (C) represents a lower 
bound estimate of reliability, also suggested good reli-
ability of DNA methylation profiles (A + C variation for 
DNAm-CRP = 60.7%, Epigenetic-g = 55.3%, Dunedin-
PoAm = 54.2%, accounting for age and gender).

Higher profiles of inflammation (DNAm-CRP) were 
strongly correlated with profiles of a faster Dunedin-
PoAm (r = .89, 95% confidence interval, or CI = [.81, 

https://osf.io/x978n/
https://osf.io/x978n/
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.96], p < .001, accounting for age and gender) and 
moderately correlated with lower profiles of cognitive 
performance (Epigenetic-g, r = −.31, 95% CI = [−.42, 
−.19], p < .001). This result is unsurprising because CRP 
levels were one of the 18 biomarkers that the Duned-
inPoAm measure was trained on (Belsky et al., 2020). 
Lower DNA methylation profiles of cognitive perfor-
mance were weakly correlated with a faster pace of 
aging (r = −.17, 95% CI = [−.29, −.04], p = .011).

Older children had DNA methylation profiles of higher 
inflammation (DNAm-CRP: r = .35, 95% CI = [.26, .44], p < 
.001), higher cognitive performance (Epigenetic-g: r = 
.64, 95% CI = [.56, .72], p < .001), and a faster pace of 
aging (DunedinPoAm: r = .13, 95% CI = [.02, .23], p = 
.018). Boys had profiles of lower inflammation (d = −0.26, 
95% CI = [−.34, −.18], p < .001) and a slower pace of aging 
(d = −0.18, 95% CI = [−.27, −.10], p < .001) but not differ-
ent profiles of cognitive performance (d = 0.06, 95% CI = 
[−.02, .14], p = .143). All models included age, gender, 
and an age-by-gender interaction as covariates.

Salivary DNA methylation profiles  
are socially stratified in children

Salivary DNA methylation profiles in children were 
socially stratified. Children from socioeconomically dis-
advantaged families, socioeconomically disadvantaged 
neighborhoods, and neighborhoods with less intergen-
erational economic mobility (i.e., neighborhood oppor-
tunity) demonstrated higher levels of DNA methylation 
profiles associated with poor health and lower levels of 
DNA methylation profiles associated with cognition (see 
Fig. 1; see Table S2 in the Supplemental Material). Chil-
dren reporting Latinx-only or Black+ identity relative to 
White-only identity exhibited DNA methylation profiles 
associated with higher chronic inflammation, a faster 
pace of biological aging, and lower cognitive function-
ing (see Fig. 2; see Table S2). Children reporting Black+ 
and Latinx-only identities lived in the most socioeco-
nomically disadvantaged families and neighborhoods 
compared with children reporting White-only identity 
(see Table S3 in the Supplemental Material). Family-level 
socioeconomic disadvantage accounted for racial/ethnic 
disparities in DNA methylation profiles of inflammation, 
but not cognitive functioning. Family-level socioeco-
nomic disadvantage accounted for the difference in 
DunedinPoAm between Black+, but not Latinx-only, and 
White-only identity (see Table S2). For effect size esti-
mates between socioeconomic inequality and DNA 
methylation profiles reported separately for each racial/
ethnic group, see Table S4 in the Supplemental Material 
(this analysis was not preregistered).

Comparing White-only identifying children with all 
other groups (this comparison was not preregistered) 

indicated that the advantage, or privilege, of White 
identity compared with other racial/ethnic categories 
was evident in all three DNA methylation profiles 
(DNAm-CRP: r = −.14, 95% CI = [−.22, −.06], p < .001; 
Epigenetic-g: r = .23, 95% CI = [.16, .31], p < .001; 
DunedinPoAm: r = −.25, 95% CI = [−.34, −.16], p < .001). 
White identity remained evident in DNA methylation 
profiles of cognitive functioning (Epigenetic-g: r = .21, 
95% CI = [.13, .29], p < .001) and DunedinPoAm (r = 
−.19, 95% CI = [−.29, −.09], p < .001) but not inflamma-
tion (DNAm-CRP: r = −.08, 95% CI = [−.17, .01], p = .067), 
after accounting for the lower rates of family-level dis-
advantage experienced by White children (r = −.29, 95% 
CI = [−.38, −.19], p < .001). Effects of White identity were 
reduced but also still remained evident in DNA methyla-
tion profiles of cognitive functioning (r = .17, 95% CI = 
[.09, .25], p < .001) and DunedinPoAm (r = −.16, 95% CI = 
[−.26, −.05], p = .003) but not inflammation (r = −.04, 
95% CI = [−.13, .05], p = .373), after accounting for the 
lower rates of both family-level (r = −.30, 95% CI = [−.39, 
−.21], p < .001) and neighborhood-level (r = −.34, 95% 
CI = [−.42, −.26], p < .001) socioeconomic disadvantage 
experienced by White children.

We next examined the role of BMI, pubertal stage, 
and DNA methylation profiles related to smoking 
(DNAm-smoke) in associations of social inequality and 
DNA methylation profiles of interest. Socioeconomic 
and racial/ethnic inequalities in DNA methylation 
largely remained after we included these covariates, 
with the exception that correlations with DNA methyla-
tion profiles of inflammation were attenuated by includ-
ing BMI (see Table S2).

Salivary DNA methylation profiles  
are associated with cognitive functions

Salivary DNA methylation profiles were associated with 
performance on multiple in-laboratory tests of cognitive 
functioning (see Fig. 3). Higher DNA methylation pro-
files of inflammation were associated with worse per-
formance on tests of processing speed, general executive 
function, perceptual reasoning, and verbal comprehen-
sion. Lower DNA methylation profiles of cognitive per-
formance were associated with lower scores on tests of 
perceptual reasoning, verbal comprehension, reading, 
and math. Finally, a faster pace of aging was associated 
with lower scores on tests of verbal comprehension and 
perceptual reasoning (see Table 2). Notably, the largest 
effect size was observed for DNA methylation profiles 
of cognitive performance and math, where DNA meth-
ylation profiles of cognitive performance explained an 
R2 of 11.1% of the variation in math performance. For 
effect size estimates between DNA methylation profiles 
and cognition reported separately for each racial/ethnic 
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group, see Table S5 in the Supplemental Material (this 
analysis was not preregistered).

As all three DNA methylation profiles were associated 
with perceptual reasoning and verbal comprehension, 
we performed commonality analyses to examine the 
proportion of overlapping and unique variation 
explained. DNA methylation profiles of inflammation 
(DNAm-CRP) and DunedinPoAm explained largely over-
lapping variation in perceptual reasoning (DNAm-CRP 
alone: 2.6%, DunedinPoAm alone: 4%, combined: 3.8%) 
and verbal comprehension (DNAm-CRP alone: 2%, 
DunedinPoAm alone: 3.4%, combined: 3.8%). In con-
trast, DNA methylation profiles of cognitive functioning 

(Epigenetic-g) explained largely unique variation in per-
ceptual reasoning (Epigenetic-g alone: 2.4%) and verbal 
comprehension (Epigenetic-g alone: 2.9%) relative to 
both inflammation (perceptual reasoning combined: 
5.9%, verbal comprehension combined: 5.5%) and pace 
of aging (perceptual reasoning combined: 6.5%, verbal 
comprehension combined: 6.3%).

We next examined the role of BMI, puberty, DNAm-
smoke, and family-level disadvantage in associations of 
DNA methylation measures with cognitive test perfor-
mance. Associations were largely unaffected by control-
ling for BMI, puberty, and DNAm-smoke, with the 
exception that associations of DNA methylation profiles 
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Fig. 1.  Associations between three measures of socioeconomic factors and three DNA methylation profiles in children and adoles-
cents. DNA methylation profiles and socioeconomic disadvantage values are in standard deviation units. For standardized regression 
coefficients with and without covariate controls for body mass index and puberty, see Table S2 in the Supplemental Material available 
online. DNAm-CRP = DNA methylation profiles of C-reactive protein; DunedinPoAm = Dunedin methylation pace of aging; Epigenetic-g = 
DNA methylation profiles of cognitive performance.
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of inflammation with cognition were mostly accounted 
for by controlling for BMI. Associations of DNA meth-
ylation profiles of inflammation and DunedinPoAm with 

cognition were largely accounted for by controlling for 
family-level disadvantage, except for perceptual reason-
ing. In contrast, associations of DNA methylation 

DNAm-CRP DunedinPoAm Epigenetic-g
−2 0 2 −2 0 2 −2 0 2

Asian+

Black+

Latinx & White

Latinx Only

White Only

Fig. 2.  Raincloud plot of associations between self-identified racial/ethnic identity and three DNA methylation profiles in children and 
adolescents. DNA methylation profile values are in standard deviation units. The racial/ethnic identity boxplots display group DNA meth-
ylation differences in the mean (black midline), standard errors of the mean (error bars), the first and third quartiles (lower and upper 
hinges), and the mean across groups (black dashed line). Participants self-identified as White only (62%), Latinx only (12.2%), Latinx and 
White (8.1%), Black and potentially another race/ethnicity (10%), Asian and potentially another race/ethnicity but not Latinx or Black 
(7.5%), and Indigenous American, Pacific Islander or other, but not Latinx, Black, or Asian (0.6%, not shown because of small sample size). 
For standardized regression coefficients with and without covariate controls for body mass index, puberty, and socioeconomic inequality, 
see Table S2 in the Supplemental Material available online. DNAm-CRP = DNA methylation profiles of C-reactive protein; DunedinPoAm = 
Dunedin methylation pace of aging; Epigenetic-g = DNA methylation profiles of cognitive performance.



Psychological Science 34(2)	 179

profiles of cognitive functioning with cognitive test per-
formance were unaffected by controlling for family-
level disadvantage (see Table S2).

We assessed potential effects of differing sample sizes 
of cognitive measures on effect size estimates (this anal-
ysis was not preregistered). Effect size estimates based 
on models using listwise deletion were largely similar 
to reported results, suggesting that differing sample sizes 
across measures did not substantially affect effect sizes 
(see Fig. S1 in the Supplemental Material).

We further examined the extent to which DNA meth-
ylation associations with cognition are robust to com-
plete genetic and family-level environmental control in 
a bivariate biometric model that used the twin family 
structure of the Texas Twin Project (see Table S6 in the 

Supplemental Material). Consistent with the hypothesis 
that DNA methylation associations with cognitive func-
tion represent (partially unmeasured) effects of family-
level stratification, we found no evidence to suggest 
that identical twins who differ from their cotwins in 
DNA methylation show corresponding differences in 
their cognitive functioning. In other words, associations 
between interindividual variation in DNA methylation 
and cognitive functions entirely arose at the level of 
variation occurring across, rather than within, families. 
The DNA methylation indices examined here are there-
fore likely to index aspects of family-to-family dif-
ferences, such as socioeconomic and school and 
neighborhood factors, underlying inequalities in cogni-
tive development. Finally, we explored the possibility 

Processing
Speed

Executive
Function

Perceptual
Reasoning

Verbal
Comprehension

Reading

Math

DNAm-CRP
DunedinPoAm
Epigenetic-g

0.0

0.2

0.4

Fig. 3.  Radar plot of effect sizes (Pearson’s r) for three DNA methylation profiles 
across six measures of cognition in children and adolescents. The plot depicts the 
standardized regression coefficients (rs) calculated by regressing cognitive functions 
on DNA methylation measures separately. Note that effect sizes are presented as 
absolute values to facilitate plotting; the polarity of original effect sizes is indicated 
by line type, with solid lines indicating positive values and dashed lines representing 
negative values. All models included covariate adjustment for child’s age, gender, 
and technical covariates. For standardized regression coefficients with and without 
covariate controls for body mass index, puberty, and socioeconomic inequality, see  
Table 2. DNAm-CRP = DNA methylation profiles of C-reactive protein; DunedinPoAm =  
Dunedin methylation pace of aging; Epigenetic-g = DNA methylation profiles of 
cognitive performance.
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of confounding in our results due to genetic profiles spe-
cifically associated with inflammation. Using a polygenic 
score for CRP (see Supplemental Methods in the Supple-
mental Material) and a subsample of European ancestry 
dizygotic twins, we found that the polygenic score for 
CRP was not associated with any of the cognitive mea-
sures (see Table S7 in the Supplemental Material).

Discussion

We analyzed salivary DNA methylation data from 1,183 
children and adolescents participating in the Texas 
Twin Project to investigate the etiology of social dispari-
ties in life-course disparities in health and cognition. 
We examined whether salivary DNA methylation mea-
sures of inflammation, cognitive function, and the pace 
of aging are (a) stratified by major dimensions of social 
inequality and (b) associated with performance on tests 
of cognitive function in childhood. We found that chil-
dren and adolescents growing up in more socioeco-
nomically disadvantaged families and neighborhoods 
and children from marginalized racial/ethnic groups 
compared with their more privileged peers exhibit DNA 
methylation profiles associated with higher chronic 
inflammation, lower cognitive functioning, and a faster 
pace of biological aging. Children reporting Black+ or 
Latinx-only identity lived, on average, in substantially 
more socioeconomically disadvantaged families and 
neighborhoods compared with children reporting 
White-only identity. Socioeconomic disadvantage sta-
tistically accounted for some, but not all, of the differ-
ences between racial/ethnic groups in DNA methylation 
profiles. For example, the social advantage of White 
identity, or White privilege, remained evident in DNA 
methylation profiles after accounting for the lower rates 
of both family-level and neighborhood-level disadvan-
tage experienced by White families. Thus, our findings 
are consistent with observations that racial and ethnic 
disparities leave biological traces in the first two 
decades of life and reflect multiple dimensions of social 
inequality (Anglin et al., 2021).

Moreover, these socially stratified DNA methylation 
profiles were related to performance on multiple in-
laboratory cognitive tests with nonnegligible effect sizes, 
including tests of processing speed, general executive 
function, perceptual reasoning, verbal comprehension, 
reading, and math. After we corrected for multiple com-
parisons, DNA methylation profiles of higher inflamma-
tion were associated with lower in-laboratory processing 
speed, general executive function, perceptual reasoning, 
and verbal comprehension. Lower DNA methylation 
profiles of cognitive performance (Epigenetic-g) were 
associated with lower perceptual reasoning, verbal com-
prehension, reading, and math performance. A faster 

pace of biological aging was correlated with lower ver-
bal comprehension and perceptual reasoning. Notably, 
DNA methylation profiles of cognitive performance 
explained 11.1% of the variation in math performance. 
Associations of DNA methylation measures of inflam-
mation and the pace of aging with cognition were 
largely accounted for by controlling for family-level 
socioeconomic disadvantage.

Given that the DNA methylation measures that we 
examined were originally developed in adults, our 
results suggest that social inequalities in childhood are 
reflected in molecular signatures that, when observed 
in adults, are associated with chronic inflammation, 
advanced aging, and reduced cognitive function. Our 
findings indicate that salivary DNA methylation mea-
sures may be useful for indexing social inequality and 
risk for disparities in cognitive function in childhood 
and adolescence. They also support the notion that 
adult cognitive function, morbidity, and mortality are 
partially driven by molecular processes that begin in 
childhood and adolescence, sensitive developmental 
periods in which cognitive functions, and the physio-
logical processes that support them, are susceptible to 
environmental inputs.

DNA methylation is a dynamic process and can be 
tissue specific with, for example, different epigenetic 
signatures in brain, blood, and saliva. Whereas we mea-
sured methylation in salivary DNA, the original esti-
mates on which our profiles were based were measured 
from DNA methylation in blood. We caution that there 
is still considerable uncertainty about what DNA meth-
ylation measures from peripheral tissues such as saliva 
reflect. Increasing confidence in our findings with sali-
vary DNA methylation, epigenetic clocks were highly 
correlated with chronological age in a subsample of the 
present sample (Raffington et al., 2021). We have also 
observed good correspondence of pace of aging mea-
surements across blood and saliva in adults (Raffington 
et al., 2021), although this type of analysis should be 
repeated in blood and saliva samples from children. 
Moreover, recent research suggests that salivary DNA 
methylation collected with Oragene kits (as was done 
here) in children is enriched for immune cells rather 
than epithelial cells (Middleton et  al., 2022). It may 
therefore be particularly sensitive to inflammatory  
processes, which contribute to DNA methylation pro-
files of inflammation (DNAm-CRP) and pace of aging 
(DunedinPoAm). In contrast, genetic profiles related to 
inflammation (i.e., polygenic scores of CRP) were not 
associated with cognitive functioning.

Our findings linking DNA methylation profiles of 
inflammation with pace of aging and cognitive func-
tioning are in line with experimental animal studies 
reporting that social adversity increases expression of 
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genes linked to inflammation, which may be critically 
involved in multisystem aging processes (i.e., “inflam-
maging”) and can modulate the development of the 
brain (Danese & Lewis, 2017; Snyder-Mackler et  al., 
2020). Moreover, our results showing that socioeco-
nomic and racial/ethnic inequalities in DNA methyla-
tion profiles of inflammation were attenuated by 
including BMI fits with conceptualizations of obesity 
as an inflammatory disease reflected in increased cir-
culating levels of pro-inflammatory proteins in adults, 
adolescents, and children (de Heredia et al., 2012). Yet 
the measurements that we studied are molecular deriva-
tives of unobserved inflammatory processes and not 
direct observations of chronic inflammation. Accord-
ingly, this type of omics research is not well-suited to 
identifying precise biological processes. However, it 
may prove to be a powerful tool to elucidate social and 
developmental mechanisms.

We acknowledge several limitations. First, our cross-
sectional, observational design did not allow us to 
examine whether policy changes mitigating socioeco-
nomic inequality (e.g., increases in minimum wage, 
child tax credits) and structural racism (e.g., eliminating 
the legacy of redlining, police reforms) affect children’s 
DNA methylation profiles. Longitudinal samples includ-
ing earlier childhood and experimental manipulations 
of social inequality, for example through income sub-
sidies (https://www.childtrends.org/publications/ 
lessons-from-a-historic-decline-in-child-poverty), are 
needed to examine potential pathways of epigenetic 
mediation and (bi-)directionality of effects between 
epigenetic mechanisms and cognition. Second, we used 
data from twins, and the conditions of twin pregnancy 
could alter DNA methylation patterns relative to single-
ton pregnancies. Although this may affect mean levels 
of DNA methylation, it is unlikely to lead to differen-
tial relationships with social inequality or cognitive 
performance.

Third, family and neighborhood indicators of socio-
economic disadvantage, privilege, and intergenerational 
mobility capture relevant but limited aspects of the 
effects of racism on child development (Williams et al., 
2019). Additional factors that are often neglected, such 
as the impact of race-based discrimination in education 
and health care systems and chronic exposure to inter-
personal and vicarious discrimination in daily life, may 
explain further variance in the effects of racial/ethnic 
marginalization (Goosby et al., 2018).

Our findings suggest that salivary DNA methylation 
profiles are promising candidate biomarkers of major 
dimensions of social inequality experienced in real-time 
during childhood. Because saliva can easily be collected 
in large-scale pediatric epidemiological studies, salivary 
DNA methylation profiles might be useful as surrogate 

endpoints in evaluation of ontogenetic theories and 
social programs that address the childhood social deter-
minants of lifelong cognitive disparities.
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