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Abstract

Tuberculosis (TB) remains a leading infectious cause of death worldwide. Reducing TB infections 

and TB-related deaths rests ultimately on stopping forward transmission from infectious to 

susceptible individuals. Critical to this effort is understanding how human host mobility shapes 

the transmission and dispersal of new or existing strains of Mycobacterium tuberculosis (Mtb). 

Important questions remain unanswered. What kinds of mobility, over what temporal and spatial 

scales, facilitate TB transmission? How do human mobility patterns influence the dispersal of 

novel Mtb strains, including emergent drug-resistant strains? This review summarizes the current 

state of knowledge on mobility and TB epidemic dynamics, using examples from three topic 

areas, including inference of genetic and spatial clustering of infections, delineating source–sink 

dynamics, and mapping the dispersal of novel TB strains, to examine scientific questions and 

methodological issues within this topic. We also review new data sources for measuring human 

mobility, including mobile phone-associated movement data, and discuss important limitations on 

their use in TB epidemiology.

Introduction

The future of global TB control rests ultimately on our ability to avert disease transmission 

from infectious to susceptible individuals [1,2]. This goal remains elusive, with progress 

toward it impeded by both limited implementation of existing interventions [3] and 

continued gaps in our scientific understanding of TB transmission [4-6]. Renewed 

investment in TB transmission science [7] has led to important insights into individual 

and environmental determinants of transmission (including inter alia HIV-mediated immune 

suppression, environmental exposure to inhaled pollutants, and exposure to congregate 
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living environments) [4,5] and has expanded the evidence base on transmission-interrupting 

interventions for TB [8,9]. Concurrent with these advances, whole genome sequencing 

(WGS) has yielded unprecedented new insights into the transmission of Mtb in both highly 

endemic [10-12] and low-incidence contexts [13,14].

Progress on other key scientific questions relevant to TB transmission has been slow by 

comparison. Importantly, our understanding of how human host mobility, a central force 

in other infectious disease epidemics [15-17], influences transmission in TB is still limited 

[18]. An important body of literature has explored mobility as an individual risk factor for 

TB exposure [19-22], but work examining mobility as a determinant of population-level 

TB dynamics is still lacking [18]. Multiple important questions in this area remain largely 

unexplored. What kinds of mobility, over what geographic and temporal scales, facilitate 

contact between infectious and susceptible individuals? How does host mobility influence 

our ability to identify TB transmission clusters or delineate sources and sinks of new TB 

cases? How does mobility shape the geographic dispersal of new TB strains, including 

emergent drug-resistant strains [10]?

Understanding how human mobility shapes epidemic dynamics is a longstanding and 

ongoing scientific question [16]. For directly transmitted infections with short incubation 

periods and straightforward clinical diagnoses, host mobility patterns are reflected directly 

in the spatiotemporal distribution of observed cases. These epidemics (including measles 

and influenza) typically exhibit distinct wave-like dispersal across space [15,23]. However, 

for infections with more complicated transmission dynamics, including those with extended 

or variable latent periods or vector-mediated transmission, the distribution of incident cases 

over space and time is less directly linked to host mobility. Recent studies in malaria [17,24], 

chikungunya [25], and dengue [26] have demonstrated how empiric estimates of human 

mobility flows, combined with novel analytical approaches, can reveal important insights 

into epidemics with more complicated dynamics. For example, mobile phone-associated 

mobility data has helped to uncover how holiday travel during Eid drove dispersal of the 

2017 chikungunya epidemic in Bangladesh [25].

Despite these advances, we still know very little about how human host mobility shapes 

TB transmission and dispersal. What explains this discrepancy? Like other pathogens 

that can cause chronic and asymptomatic infections [27], there are several features of 

Mtb infection that may confound attempts to understand mobility-related determinants 

of transmission. Preinfectious latency is highly variable in TB, lasting decades in some 

individuals and months or weeks in others [28,29], and many others never develop 

active disease. Subclinical TB, in which individuals have active transmissible infection 

with minimal or no symptoms, poses a related challenge to tracking TB transmission 

[28]. Individuals may relocate during latent infection, obfuscating spatial patterns in 

transmission [30,31]. Likewise, individual mobility patterns may change considerably in 

the time between exposure and the development of active (i.e., symptomatic), transmissible 

disease, particularly during extended periods of latent infection. In addition, infectiousness 

is highly variable between individuals with active disease [32] (with 10- to 20-fold variation 

observed in experimental studies [33]), confounding efforts to disambiguate individual 

mobility patterns versus disease physiology as drivers of increased transmission. Individuals 
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with active TB may be more infectious if they have a physiologically more transmissible 

infection [34] or if they have a greater number of effective contacts with susceptible 

individuals due to increased mobility and other behavioral factors. Importantly, the mutation 

rate of Mtb is markedly slower than it is for most other epidemic pathogens [35], limiting 

the utility of many genomic epidemiological approaches that have proven useful elsewhere 

[36]. Lastly, multiple technical obstacles, including lack of reliable mobility data in most 

highly endemic countries [37], and challenges inherent to mathematical modeling of TB 

epidemics [27], have impeded deeper understanding of mobility and TB transmission.

This review focuses on three specific topic areas with direct relevance to understanding 

and preventing TB transmission: identifying clustered infections, delineating source–sink 

dynamics, and mapping the dispersal of novel TB strains. For each topic area we review 

existing research, outline unanswered questions or limitations, and, by examining parallel 

work on other epidemics, identify opportunities for advancing our understanding in this 

important field. We use this framework to inform a wider discussion on the questions 

listed above and revisit the challenges inherent to studying mobility and TB epidemiology. 

Lastly, we discuss available data sources for measuring human mobility (including mobile 

phone-associated movement data [37]), their potential applications to TB epidemiology, and 

important limitations on their use.

Topic 1: Genetic and spatial clustering of incident infections

Detecting clusters of incident cases, and identifying groups of individuals and/or locations 

with ongoing transmission, can provide important information for TB control efforts. This 

information can inform geographically or demographically targeted interventions, including 

intensified case-finding and screening efforts. TB cases are considered to be genetically 

clustered if their respective Mtb isolates are genetically similar to one another, as compared 

to a prespecified threshold of genetic similarity that varies across genotyping methods. Mtb 
has a relatively slow mutation rate, and Mtb populations are in general genetically less 

diverse than other disease-relevant microbes [38,39]. In TB outbreaks driven by infections 

with short latency periods and relatively rapid progression to active disease (for example, 

those occurring in populations with high rates of HIV coinfection), outbreak-associated 

isolates typically exhibit highly restricted genetic diversity and often complete clonality 

[10]. Whole genome sequencing (WGS) has largely replaced earlier Mtb genotyping 

methods (reviewed in Mathema et al. [40]) that are limited in their power to discriminate 

between closely related Mtb isolates. WGS-based methods have uncovered previously 

unknown diversity within Mtb populations [41] and revealed important aspects of TB 

transmission in both high transmission [11,12,42] and low transmission [13,14,43] contexts. 

Multiple methods exist for inferring genetic clustering of infections from WGS data, 

including simple single-nucleotide polymorphism (SNP) difference thresholds (reviewed in 

Hatherell et al. [44]) and novel probabilistic methods that combine SNP difference, timing 

of infections, and an Mtb molecular clock rate [45]. There remain important challenges 

for all of these methods, including those related to sampling bias, polyclonal infections, 

and variability of within-host evolution between individuals [46,47]. Recent studies have 

found significant within-host diversity in some Mtb infections [48,49], even within a single 

pulmonary cavity [50], which may have important implications for sampling Mtb isolates 
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from TB cases. Specifically, clinical samples from TB patients (including expectorated 

sputa, bronchoalveolar lavage, or samples from other anatomical sites), may capture only 

a limited subset of the multiple diverse Mtb subpopulations present in a given infection. 

Likewise, different TB subpopulations within individual patients may be more or less able to 

grow in standard laboratory cultures [51], introducing another potential source of bias that 

may influence our ability to infer transmission between individuals. These features may have 

important implications for TB surveillance programs that use SNP difference thresholds to 

infer linked transmission between TB cases [52].

'Spatial' clustering refers to infections that occur in close physical proximity to another, 

resulting in a geographically localized excess number of incident TB cases in a given area 

(i.e., a spatial cluster of infections). Methods for inferring spatial clusters of TB infections 

are similar to those used for other infectious diseases, and their use and limitations have 

been reviewed in detail [53]. Sampling bias, introduced via geographic heterogeneity in TB 

case detection, and confounding, introduced via concurrent reactivation TB in colocated 

individuals with shared risk factors, are important issues for these methods [53].

Prior to the introduction of WGS, a number of studies identified limited spatial aggregation 

of genetically clustered TB cases [54-56]. There are likely multiple factors that explain 

this phenomenon. These include the lower discriminatory power of pre-WGS genotyping 

methods, leading to misclassification of clustered versus nonclustered cases [57]. Using 

WGS data, which can distinguish isolates at the limit of heritable strain differences, largely 

obviates this problem and has enabled improved identification of infection clusters that 

would not be detected via spatial clustering methods (for example, closely related infections 

propagated via spatially dispersed or otherwise cryptic contact networks). Movement 

of individual hosts, during the extended period over which TB infections and disease 

unfold, may obfuscate spatial cohesion between cases with shared transmission links [30]. 

Transmission outside the home, an important contributor in highly endemic contexts [58], 

may link cases separated by larger geographic distances; understanding what these locations 

are, and how they contribute to longer-distance linkages between cases, will likely require 

more detailed data on daily and long-term mobility behaviors [19]. Importantly, many other 

epidemics exhibit spatially incoherent dispersal patterns, in which geographic distance is 

poorly correlated with linked transmission [59]. For example, epidemic arrival times for 

influenza and severe acute respiratory syndrome (SARS) dispersal are poorly correlated 

with geographic distance, but highly correlated with effective connectivity, as measured by 

airline traffic volume between locations [59]. Importantly, infections with longer incubation 

periods (like Ebola) typically exhibit less spatially coherent dispersal than those with 

short incubation periods (like cholera), which exhibit more spatially organized, wave-like 

dispersal [31]. Thus, spatial clustering methods that rely on geographic distance alone 

can fail to detect clustering that may be captured if alternative measures of 'effective 

connectivity' are considered (for example, host movement between locations, Figure 1) 

[60]. Revealing these hidden patterns of connectivity, and resolving how TB cases are 

linked across complex spatial networks, would provide important, actionable guidance for 

TB control interventions, particularly in highly endemic countries. Specifically, identifying 

these more complex or cryptic networks may guide the development and implementation 
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of interventions targeting networks of individuals or locations that are highly linked by 

mobility.

Topic 2: Source–sink dynamics and spatially-targeted interventions

Source–sink dynamics, in which highly endemic locations ('hotspots') serve as sources of 

infections exported to lower-incidence sink locations, are important for propagating and 

sustaining epidemics. Important examples of this phenomenon include malaria [17,61,62], 

Ebola virus disease [63], and chikungunya [25]. TB is typically heterogeneous across 

populations, and TB hotspots in both high- and low-burden countries often colocalize 

with areas where higher proportions of residents experience relative social disadvantage 

or marginalization (based on poverty, class, or racialization) [64-66]. In addition, there 

is evidence from mathematical modeling studies indicating that reducing transmission in 

hotspots can reduce overall transmission in both source and sink locations [67]. Thus, 

reducing transmission in hotspots may be a high value intervention for TB control programs. 

For these reasons, there is growing interest in spatially targeting TB control interventions in 

higher-incidence source locations [68], but evidence supporting these approaches is mixed 

[8] and additional evaluation of their effectiveness is still needed [9].

Improved understanding of host mobility may be helpful for the design and implementation 

of these spatially targeted interventions. For example, if hotspots are identified via spatial 

clustering methods they may (as described above) fail to capture spatially incoherent 

populations that, although not geographically contiguous with one another, may be strongly 

linked via mobility. Thus, spatial clustering may fail to detect these 'hidden' or 'dispersed' 

hotspots (or 'hot networks'), or fail to identify their full extent, resulting in improperly 

targeted spatial interventions. In addition, studies in other epidemic pathogens [24] have 

highlighted the importance of delineating connectivity, and thus mobility, between sources 

and potential sinks, given that this information can help to prioritize non-source areas 

where importation of infections from source locations are most likely. In the context of 

TB, this information could potentially guide surveillance and case detection activities, and 

may be particularly useful for understanding the dispersal of drug-resistant TB strains (as 

described below). Implementing disease control interventions in transmission 'hubs', that 

is, TB hotspots that are also highly connected nodes in transmission-relevant mobility 

networks, may yield outsized TB control benefits compared to interventions in isolated or 

poorly connected locations.

Topic 3: Emergence and dispersal of novel TB strains

Emergent Mtb strains, including those with novel drug-resistance phenotypes, are often 

identified only after they have achieved sustained transmission and dispersed into larger 

geographic areas away from their origin location [10,12,42]. Epidemic transmission of 

specific drug-resistant strains [12], including widespread community transmission via 

household and casual contact [42], is the primary driver of new drug-resistant TB cases in 

most highly endemic settings. Improved understanding of how mobility shapes transmission 

and broader geographic dispersal of these strains could have important implications for the 

early detection of these threats to global health. This work may also guide early control 
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interventions to stop the transmission of new drug-resistant Mtb strains at the critical 

juncture between local outbreak and widespread epidemic.

Novel methods examining the population genetic signatures of geographic dispersal 

have yielded important insights into the geographic origins of drug-resistant pathogens, 

including methicillin-resistant Staphylococcus aureus in the USA [69] and extensively 

drug-resistant Mtb in South Africa [10]. Briefly, these methods, initially developed for 

studying wildlife and other nonmicrobial populations, use geolocated bacterial genome 

sequences to characterize genetic changes that are expected to arise as a population 

expands across a larger geographic range. These signatures are generated during serial 

founder events as a given strain spreads to new locations away from its origin (Figure 

2) [70]. Relevant population genetic signatures include decreasing genetic diversity [71] 

and increasing derived allele frequency within populations [72], and increasing genetic 

differentiation between populations (typically measured using estimators of the fixation 

index, FST) with increasing distance away from the origin location. The serial founder events 

are also expected to reduce effective population size and may reduce the efficacy of natural 

selection – a phenomenon referred to as 'expansion load' [73].

These methods are still early in their development and there are important technical issues 

that are relevant for applying these methods to TB epidemiology. For example, the time 

required for detectable signatures of range expansion to accrue is expected to vary across 

different microbial populations undergoing range expansion, due to both intrinsic biological 

factors (including mutation rate) and extrinsic epidemiological factors that may shape the 

magnitude and frequency of bottlenecking during serial founder events. Very short time 

intervals between strain origin and sampling, which may be expected in the case of new 

drug-resistant TB strains, may require very sensitive measures of genetic diversity and 

differentiation to detect differences within and between populations. Data size requirements 

for evaluating population genetic signatures of range expansion, including requirements for 

the number of genetic markers that need to be typed and the number of isolates that need 

to be sampled, are still not clear, although existing and ongoing work may provide some 

guidance [74].

These methods are also subject to many of the same mobility-related issues that 

challenge spatial-clustering methods. Thus far, studies have relied on geographic distances, 

including Euclidean and shortest road distances, to represent spatial changes in genetic 

signatures [10,69], but efforts to infer strain origin locations may be unsuccessful if 

geographic distance does not correspond with true connectivity between individuals in 

different locations. Likewise, underlying human mobility networks, which may prove 

to be informative for predicting where new drug-resistant TB strains will disperse, 

are often spatially incoherent and effective connectivity is often poorly correlated with 

geographic distance [75]. Recent studies on chikungunya and dengue have highlighted 

how incorporating empiric estimates of human mobility can markedly improve forecasting 

and prediction of epidemic dispersal (for example, from urban Dhaka and Bangkok into 

outlying areas of Bangladesh [25] and Thailand [76], respectively). Using such data to 

understand and detect early dispersal of novel TB strains could potentially yield important 

improvements to existing approaches.
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Finally, existing models of geographic range expansion that were developed with empirical 

data from nonmicrobes may require modifications to be more appropriate for studying 

emergent pathogens. The population genetic signatures that are expected under a range 

expansion models assume a series of short-distance dispersals. Long-distance dispersals, 

via founder events that 'leapfrog' over more proximate locations, can strongly influence 

observed spatial patterns of genetic diversity [77,78]. Even if relatively rare compared to 

short-distance dispersals, these long-distance dispersals can form irregular and spatially 

incoherent patterns in genetic diversity [79]. Incorporating empiric data on connectivity 

between locations may help to account for long-distance dispersals, but this approach may 

still not completely resolve this issue. More work is needed in order to better understand the 

application of these methods to real world data from emerging epidemics.

Data sources for studying human mobility and TB epidemic dynamics

Identifying informative data sources on human mobility, including those that can delineate 

movement patterns relevant to TB transmission, is an important research goal. Desirable 

features of such a data source would include: (i) capture of movement patterns for both 

infectious and susceptible individuals, with minimal and measurable selection bias across 

demographic, socio-economic, or other important population subgroups; (ii) spatial and 

temporal resolution adequate for identifying nonhousehold locations where individuals 

may interact; and (iii) adequate capture of different epidemiologically relevant types of 

mobility, including daily recurrent movements (commuting), seasonal migration, and long-

term or permanent relocation. Few if any data sources will have all of these features, and 

many analyses may involve multiple kinds of data, including both conventional and newer 

(digital) data sources. Conventional data sources include travel surveys collected via random 

household sampling, which can measure the location, distance, duration, and purpose of 

different kinds of human movement in a given population, and individual-level data on 

specific groups of interest (for example, new TB cases [19]). Recent work characterizing 

the 'activity space' of individual TB cases has provided early insights into new types of 

movement and location data that can be used for understanding TB transmission [80-82]. 

These approaches account for the inherent 'spatial polygamy' of human movement [83], 

mapping the multiple locations an individual visits over time rather than anchoring on a 

single location (e.g., home address at the time of TB diagnosis), and thus provide much 

richer information on the spatiotemporal space in which TB transmission may occur. 

Convergent approaches, in which novel data sources (for example, mobile device-associated 

movement data) are used to measure individuals’ activity spaces, may provide highly 

useful information for studying TB epidemic dynamics. Lastly, extending data collection 

efforts to include not only TB-infected individuals but also noninfected individuals at 

risk for transmission, may be important for more fully characterizing the mobility-related 

determinants specific to TB transmission.

The use of mobile phone-associated movement data, including data records from mobile 

network operators and GPS-enabled mobile applications, requires robust safeguards to 

protect end-user privacy [84]. Anonymization of data records alone is insufficient in this 

regard, given that individual users can be readily identified by the locations they visit 

frequently [84,85]. In fact, individual users can be identified in large mobility datasets 
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using as few as four time-location data points [85]. Precomputed, aggregated mobility 

indicators (for example, matrices of total trips between locations) are an important tool 

for protecting privacy [86], and even coarsely aggregated indicators can be informative for 

some applications (specifically, modeling influenza dispersal [87]). Developing aggregation 

methods and research protocols that both protect privacy and meet the criteria for usefulness 

described above is an important research objective.

Concluding remarks

Understanding how human movement contributes to TB transmission and dispersal is an 

important front in global efforts to curb new TB infections. As described here, achieving 

this goal will require researchers to solve multiple important challenges, some attributable 

to inherent features of TB infection and disease, some attributable to the difficulties in 

measuring relevant human mobility patterns, and some due to the confluence of these 

factors. Overcoming these challenges will likely require a wide-reaching, multidisciplinary 

scientific effort drawing on expertise from infectious disease epidemiologists, modelers, 

population geneticists, and specialists in the use of human mobility data (see Outstanding 

questions).
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Highlights

Mobility-related determinants of tuberculosis (TB) transmission and dispersal remain 

poorly understood, lagging behind recent advances for other epidemic pathogens. 

Multiple inherent features of TB infection contribute to this knowledge gap, including 

variable and often prolonged latency of infection, the slow mutation rate of 

Mycobacterium tuberculosis (Mtb), and high within-host diversity of Mtb populations 

in many patients.

Methods that use geographic distance between infections (for example, those that attempt 

to detect spatial clustering of infections) may fail to detect meaningful epidemiological 

patterns if connectivity and transmission linkages between locations are not consistently 

correlated with distance. Empiric measurement of human mobility patterns may improve 

the use of these methods in this situation.

Geolocated pathogen whole genome sequence data (i.e., sequence data that is linked 

to the home or clinic location for incident infections), and spatial patterns of genetic 

diversity and divergence in these data, have yielded important insights into the 

geographic origins and dispersal of drug-resistant TB and other epidemics. Models of 

geographic range expansion, which detect genetic signatures of a population expanding 

away from its origin, may provide an important tool for understanding the origin of novel 

TB strains.
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Outstanding questions

The mutation rate of Mtb is slow, compared to many other epidemic pathogens, and 

TB outbreaks are often characterized by collections of isolates with very low genetic 

diversity, posing difficulties for genomic epidemiology approaches that may require a 

larger amount of genetic variation to make reliable inferences. Do novel approaches exist 

that can address this difficulty and provide meaningful information on TB transmission 

and dispersal given limited genetic variation?

Euclidean or other geographic measures of distance may correlate poorly with true 

connectivity between locations, with important implications for understanding the spatial 

epidemiology of TB. Can empiric measurements of human mobility patterns (for 

example, those derived from mobile phone-associated movement data) improve inference 

of spatial clustering and dispersal patterns in TB?

Population genetic models of range expansion are a promising approach to inferring the 

origin location and dispersal networks of emerging TB strains, but applying these models 

to real-world epidemics involves multiple challenges. What improvements are needed 

to existing models of range expansion, and how can these models benefit from using 

empiric measurements of human mobility?

Using digital data sources on human mobility involves multiple critical considerations 

around individual privacy and identifiability. Are there data protocols that can ensure 

these essential protections and also provide useable, informative data for understanding 

TB epidemiology?
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Figure 1. Geographic distance, effective connectivity, and genetic clustering of Mycobacterium 
tuberculosis cases.
Genetically clustered cases may not exhibit spatial clustering if geographic distance 

is not consistently correlated with effective connectivity between locations (left panel). 

Considering effective network distances (for example, connectivity via human mobility 

between locations) may identify clustered infections (right panel).
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Figure 2. Range expansion of a Mycobacterium tuberculosis strain.
During geographic range expansion of a strain, a population spreads via serial founder 

events that result in distinct population genetic signatures, including decreasing genetic 

diversity and increasing genetic divergence when compared with samples from the origin 

population. A ➔ B: short-distance founder events between adjacent territories. B ➔ C: 

long-distance founder event between noncontiguous territories. Orange territories indicate 

geographic areas in which a new TB strain is present at a given time.
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