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Summary

Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-

negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic 

reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes 

activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found 

that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the 

mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG 

formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like 

endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically 

induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant 

did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) 

activator, and lysosomal inhibitors, NH4Cl and chloroquine, suppressed SubAB-induced SG 

formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of 

PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in 

response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal 

*For correspondence. yahirok@faculty.chiba-u.jp; Tel. (+81) 43 226 2048; Fax (+81) 43 226 2049.
†These authors contributed equally to this work.

Supporting Information
Additional Supporting Information may be found in the online version of this articleat the publisher’s web-site:

HHS Public Access
Author manuscript
Cell Microbiol. Author manuscript; available in PMC 2023 April 03.

Published in final edited form as:
Cell Microbiol. 2016 July ; 18(7): 1024–1040. doi:10.1111/cmi.12565.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an 

ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that 

SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may 

be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in 

Thapsigargin-induced SG formation.

Introduction

Shiga-toxigenic Escherichia coli (STEC) produces Shiga toxin (Stx) 1 and 2, which are 

critical virulence factors (Karmali, 2004), resulting in hemorrhagic colitis and hemolytic 

uremic syndrome (Riley et al., 1983; Shiomi and Togawa, 1997; Latorre-Martinez et al., 

2007). A new member of the AB5 toxin family from STEC, named subtilase cytotoxin 

(SubAB), was identified in E. coli O113: H21 strain 98NK2, which produces Stx2 and was 

responsible for an outbreak of hemolytic uremic syndrome (Paton et al., 2004). SubAB 

was mainly produced by locus of enterocyte effacement (LEE)-negative serotypes STEC 

(Velandia et al., 2011; Bentancor et al., 2012; Sanchez et al., 2012; Feng and Reddy, 

2013). SubAB binds to receptors on the target cells (Yahiro et al., 2006; Byres et al., 

2008; Yahiro et al., 2011) and then enters the cells via clathrin (Chong et al., 2008) or 

lipid rafts-dependent and an actin-dependent pathways (Nagasawa et al., 2014), followed 

by Golgi trafficking involving a COG/Rab6/COPI-dependent pathway (Chong et al., 2008; 

Smith et al., 2009). In the endoplasmic reticulum (ER), SubAB cleaved chaperone protein 

BiP/Grp78, which initiated an ER stress-induced unfolded protein response; this leads to 

activation of ER stress sensor proteins, which induce a variety of cellular events including 

cytotoxicity (Paton et al., 2006; Morinaga et al., 2007; Morinaga et al., 2008; Wolfson et 

al., 2008; Hu et al., 2009; Huang et al., 2009; Matsuura et al., 2009; May et al., 2010; 

Nakajima et al., 2010; Wang et al., 2010; Yahiro et al., 2010; Nakajima et al., 2011; Yahiro 

et al., 2012) and damage in mice (Wang et al., 2007; Furukawa et al., 2011; Wang et al., 

2011; Amaral et al., 2013). In addition, we recently demonstrated in mouse macrophages 

that SubAB inhibited Lipopolysaccharide-stimulated nitric oxide (NO) production through 

inhibition of NF-κB nuclear translocation and iNOS expression (Tsutsuki et al., 2012). 

Death-associated protein 1 (DAP1) regulated SubAB-mediated apoptosis and autophagy in 

HeLa cells (Yahiro et al., 2014). These findings suggest that SubAB constitutes a novel 

bacterial strategy for resistance to host defence.

In eukaryotic cells, stress granule (SG) formation is induced by various environmental 

stresses (i.e. heat shock, oxidative stress, viral infection, UV irradiation, etc.) (Anderson 

and Kedersha, 2009). SG assembly is seen in non-membranous cytoplasmic foci, which 

typically contain poly(A) + mRNA, 40S ribosomal subunits, eIF4E, eIF4G, eIF4A, eIF4B, 

eIF3, eIF2, TIAR, G3BP1 and HuR (Kedersha et al., 1999; Kedersha and Anderson, 2002; 

Kimball et al., 2003; Anderson and Kedersha, 2006; Mazroui et al., 2006; White et al., 2007; 

Buchan and Parker, 2009). Recent studies have shown that SG contain various components 

that play an important role in mRNA translation and stability and the protein quality control 

(Kawaguchi et al., 2003; Mazroui et al., 2007; Anderson and Kedersha, 2008; Buchan and 

Parker, 2009; Athanasopoulos et al., 2010; Seguin et al., 2014). Previous studies showed 

that the pathological SG formation caused by mutations in RNA binding proteins might be 
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involved in neurodegenerative disease (Wolozin, 2012; Vanderweyde et al., 2013; Wolozin, 

2014).

Translational inhibition by phosphorylation of eukaryotic translation initiation factor 2α 
(eIF2α) at Ser51 is a major trigger that induces SG formation (Kedersha et al., 1999). Thus, 

eIF2α phosphorylation in response to ER stress occurs through an ER stress transducer, 

protein kinase RNA (PKR)-like ER kinase (PERK), and induces preferential translation of 

activating transcription factor 4 (ATF4) (Ron and Walter, 2007). Recent reports indicate that 

the PERK-eIF2α-ATF4 pathway is associated with the maintenance of homeostasis (B’Chir 

et al., 2013; Matsumoto et al., 2013; Jiang et al., 2014), suggesting that eIF2α-related 

signalling controls a cross-talk between apoptosis, autophagy and SG formation.

Subtilase cytotoxin induces eIF2α phosphorylation through PERK activation (Morinaga et 

al., 2008; Wolfson et al., 2008; Yahiro et al., 2012). We hypothesized that SubAB-induced 

ER stress causes PERK/eIF2α-dependent SG formation. To our knowledge, this is the 

first report of a relationship between exotoxins and SG formation. In this study, we 

demonstrate that SG formation by SubAB is regulated by protein kinase C (PKC) isoforms. 

PKCs are ubiquitous serine/threonine kinases comprising a large superfamily composed 

of three classes: classical isoforms (α, β and γ); novel isoforms (δ, ε, η and θ); and 

atypical isoforms (λ and ζ) (Toker, 1998). Each isoform, exhibiting diversity in Ca2+ and 

phosphatidylserine sensitivity, is involved in multiple signal transduction actions through 

specific regulatory molecules (Mellor and Parker, 1998; Rosse et al., 2010). PKCμ/PKD1 is 

an atypical member of the PKC family (Johannes et al., 1994; Valverde et al., 1994), which 

participates in various cell signal processes (Sundram et al., 2011; Steinberg, 2012). The 

aim of this study was to investigate the mechanism of SubAB-induced SG formation. We 

show here that SubAB-induced SG formation is dependent on activation of the PERK/DAP1 

signalling pathway with its modulation by PKCδ/PKD1.

Results

Subtilase cytotoxin-induced stress granule formation is dependent on PERK signalling 
pathway

Our previous study demonstrated that SubAB-induced cell death was mediated by activation 

of PERK-eIF2α pathway (Yahiro et al., 2012). After 30 min incubation with SubAB, 

we observed eIF2α phosphorylation, which was not increased by catalytically inactive 

mutant SubAS272AB (Fig. 1A). A previous study showed that activation of the PERK-eIF2α 
pathway participates in SG formation (Kedersha et al., 1999). We next examined whether 

SubAB treatment induced SG. HeLa cells were incubated with SubAB for the indicated 

times, then fixed and immunostained for the SG marker proteins, TIAR and eIF4γ. As 

shown in Fig. 1B, TIAR was translocated from nucleus to dense cytoplasmic foci and 

colocalized with eIF4γ the cytoplasm in a time-dependent manner, consistent with the time-

course of SG formation, SubAB-induced BiP cleavage and eIF2α phosphorylation (Fig. 

1A). SubAB-induced TIAR translocation was observed in HeLa, RAW264.7 and Caco2 

cells (Fig.1C).
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Our previous study indicated that SubAB induced eIF2α-phosphorylation via a PERK-

dependent pathway (Yahiro et al., 2012). PERK is a stress sensor in the ER and associated 

with the maintenance of homeostasis (B’Chir et al., 2013; Matsumoto et al., 2013; Jiang 

et al., 2014). We tested if activation of PERK was associated with SubAB-induced SG 

formation. Control or PERK siRNA-transfected HeLa cells were incubated with mt or wt 

SubAB for 2 ~ 3 h and reacted with antibodies against SG marker proteins. We found that 

SubAB-induced SG formation was not seen in PERK-knockdown cells (Fig. 1D). Further, a 

previous report showed that the activation of the PERK-eIF2α pathway induces preferential 

translation of activating transcription factor 4 (ATF4) (Ron and Walter, 2007). However, 

SubAB-induced SG formation was not altered in ATF4 knockdown cells compared with 

control cells (Fig. S1a). These findings suggest that SubAB-induced SG formation is a 

PERK-dependent and ATF4-independent pathway.

Depletion of G3BP1 inhibits subtilase cytotoxin-induced stress granule formation

Stress granule recruits RNA binding proteins such as Ras GTPase-activating protein-binding 

protein 1 (G3BP1) and Hu protein R (HuR) for assembly, and G3BP1 is essential for SG 

formation (Gallouzi et al., 2000; Tourriere et al., 2003). To investigate whether SG formation 

was associated with SubAB-induced apoptosis, we examined the effect of depletion of 

G3BP1 in HeLa cells. The expression level of G3BP1 was suppressed by the specific siRNA 

respectively (Fig S1b). G3BP1 depletion decreased SubAB-induced SG formation (Fig S1c). 

As shown in Fig S1d, knockdown of G3BP1 did not affect SubAB-induced PARP cleavage 

compared with control cells. These results indicate that SG formation is not essential for 

SubAB-induced apoptotic signalling.

Depletion of subAB gene in STEC O113:H21 impairs stress granule formation in Caco2 
cells

To determine whether STEC O113:H21-produced SubAB is an essential factor for 

SG formation, we used a wild-type strain, one lacking the subAB gene (ΔsubAB) 

strain and a ΔsubAB strain complemented with a wild-type SubAB expressing plasmid 

(ΔsubAB/subAB). These three strains exhibited similar growth, suggesting that deletion or 

complement of the subAB gene did not affect STEC growth (Fig. 2A). The expression 

of SubAB in STEC O113:H21 ΔsubAB strain was completely absent compared with the 

wild-type strain and the ΔsubAB/subAB strain (Fig. 2B). We next examined activity of 

SubAB-mediated BiP cleavage in the culture supernatant from each strain. Caco2 cells were 

incubated with the culture supernatants, with purified SubAB as a positive control and 

SubAS272AB as a negative control. Although the culture supernatant of wild-type strain, 

complement strain and purified SubAB induced BiP cleavage, ΔsubAB strain and purified 

SubAS272AB did not induce BiP cleavage, suggesting that the ΔsubAB strain completely 

lost SubAB activity (Fig. 2C). Consistent with the BiP cleavage patterns, we observed SG 

formation in Caco2 cells when incubated with the culture supernatant of the wild-type 

strain and complement strain but not with that of the ΔsubAB strain (Fig. 2D). These 

results suggest that STEC O113:H21-produced SubAB causes BiP cleavage, resulting in SG 

formation.
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Subtilase cytotoxin-induced stress granule formation is suppressed by lysosomal 
inhibition, not by caspase inhibition

Next, we investigated whether SubAB-induced caspase activation was required for SG 

formation. As shown in Fig. 3A, a general caspase inhibitor, Z-VAD-FMK, suppressed 

SubAB-induced caspase-7 activation and PARP cleavage as previously reported (Yahiro et 

al., 2012). However, SG formation by SubAB was not inhibited in the presence of Z-VAD-

FMK, suggesting that caspase activation by SubAB was not involved in SubAB-induced SG 

formation (Fig. 3B). Mazroui et al. (2007) have demonstrated that inhibition of ubiquitin-

dependent proteasome system (UPS) activity by MG132 induced the formation of SG. We 

previously reported that SubAB-induced caspase activation was significantly inhibited by 

MG132 (Yahiro et al., 2012). We next monitored the effect of MG132 treatment on the SG 

formation by SubAB. Pretreatment cells with MG132 significantly increased SG formation, 

even in the absence of SubAB activity, and promoted SubAB-induced SG formation (Fig. 

3C). These results support the conclusion that SubAB-induced SG fraction is independent of 

caspase activation.

A previous study showed that co-incubation of the cells with MG132 and lysosomal 

inhibitors ammonium chloride (NH4Cl) or Chloroquine (CQ) reduced MG132-induced SG 

formation. They also suggested that NH4Cl suppressed MG132-induced SG by controlling 

steps downstream of polysome disassembly (Seguin et al., 2014). We next monitored 

whether NH4Cl and CQ inhibited SubAB-induced SG formation. In control cells, SubAB 

induced SG formation in approximately 40% of cells. Following pretreatment of cells with 

NH4Cl and CQ, SubAB-induced SG formation was suppressed throughout the cytoplasm 

(Fig. 3D). We also found that these inhibitors suppressed SubAB-induced SG formation in 

Caco2 cells (Fig. 3E). As shown in Fig. 3F, NH4Cl and CQ did not affect SubAB delivery 

and its activity. Thus, SubAB-induced SG does not result from a massive cell death by 

caspase activation, rather than ubiquitin proteasome system, and lysosomal activity may 

control SG formation.

Subtilase cytotoxin-induced stress granule formation is inhibited by PMA treatment and 
enhanced by protein kinase C inhibition

Some protein kinases are associated with SG formation (Buchan and Parker, 2009; Shah et 

al., 2014). We screened effects of the kinase activators or inhibitors on SubAB-induced SG 

formation; effects of PKC activator, PMA; PKA activators, 8Br-cAMP and Forskolin; PKC 

inhibitors, Gö6976, Gö6983 and Bisindolylmaleimide II; PKD inhibitor, CID755673; PKA 

inhibitor, 14–22 Amide; ROCK II inhibitor, Y-27632; and CaM kinase II inhibitor, KN-93. 

In HeLa and Caco2 cells, we found that SubAB-induced SG formation was suppressed 

by PMA pretreatment (Fig. 4A). Further, we also found approximately twofold increase 

in SubAB-induced SG formation in the presence of Gö6976 and CID755673, although 

inhibitors with mutant SubAB did not affect SG formation (Fig. 4B). Moreover, other PKC 

inhibitors, Bisindolylmaleimide II and Gö6983, enhanced SubAB-induced SG formation 

(Fig S2). Other reagents (e.g. PKA inhibitor, PKA activator, ROCK II inhibitor and 

CaM kinase II inhibitor) did not affect SubAB-induced SG formation. Interestingly, PMA 

pretreatment did not suppress TG-induced SG formation in HeLa cells (Fig S4a). Although 

SubAB-induced eIF2α phosphorylation and BiP cleavage did not alter, SubAB-induced 
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PARP cleavage was inhibited by PMA pretreatment (Fig. 4c). These results indicate that 

SubAB-induced SG formation was regulated by PKC activity, which acts downstream of 

eIF2α, and activation of PKC could suppress SubAB-induced activation of apoptosis.

Next, we investigated whether PKD control SubAB-induced SG formation. We found that 

the amount of PKD1 protein was suppressed by PKD1 siRNA; however, that did not affect 

SubAB-mediated BiP cleavage and eIF2α phosphorylation (Fig. 5A and B). Consistent 

with these data with a PKD inhibitor CID755673, SubAB-induced SG formation in PKD1 

knockdown cells approximately doubled that in control siRNA-transfected cells (Fig. 5C). 

These findings strongly suggest that PKD1 controls SubAB-induced SG formation.

Protein kinase D1 activity is regulated by PKC through phosphorylation at Ser738/742 

in the activation loop, followed by autophosphorylation at Ser-916, which correlates with 

elevated PKD1 kinase activity (Matthews et al., 1999; Harrison et al., 2006). Next, we 

analysed if SubAB affects the level of phosho-PKD1. After 3 h of incubation, SubAB 

suppressed phospho-PKD1 (S916) in control cells. After treatment of cells with PMA, 

phospho-PKD1 (S738/742) and phospho-PKD1 (S916) were detected at increased molecular 

weight; these modifications were not suppressed by incubation with SubAB. Anti-phospho-

PKD1 (S738/742) antibody recognized phospho-PKD1 (95 kDa) and unknown 70 kDa 

bands. Treatment with PKD inhibitors (CID755673, Gö6976) caused a reduction of the 

basal level of phospho-PKD1 (S916), which was accompanied by an additional decrease 

by SubAB. We also used anti-phospho (S/T) PKD substrates antibodies, which recognize 

phosphorylated PKD substrates, to investigate if SubAB causes downregulation of PKD1 

activity. PMA treatment promoted the amount of phospho-(S/T) PKD substrate proteins, 

which were decreased by PKD inhibitors. SubAB suppressed phospho-PKD1 (S916) and 

phospho-(S/T) PKD substrate proteins (Fig. 5D).

Protein kinase Cδ is involved in subtilase cytotoxin-induced stress granule formation

As shown earlier, broad-spectrum PKC inhibitors, Bisindolylmaleimide II and Gö6983, 

treatment enhanced SubAB-induced SG formation (Fig. S2). Both PKC inhibitors 

commonly suppress PKCα, PKCβ and PKCδ but not PKD1 (Sewald et al., 2011). 

Furthermore, it has been reported that PKD1 activation is PKC-dependent signalling 

(Rozengurt et al., 2005). In PKCδ siRNA-transfected cells, the amount of PKCδ was 

significantly suppressed. We found here that SubAB-induced SG formation was increased 

in PKCδ-knockdown cells compared with control cells (Fig. 6A). Next, we investigated 

effects of PKCδ-depletion on PKD1 phosphorylation with or without SubAB. PKCδ 
was suppressed by the specific siRNA. Depletion of PKCδ led to a reduction of basal 

phospho-PKD1 (S916) and phospho-(S/T) PKD substrate proteins, which were additionally 

suppressed by SubAB (Fig. 6B). These findings suggest that PKCδ/PKD1 signalling is 

involved in SubAB-induced SG formation.

Death-associated protein 1 controls subtilase cytotoxin-induced stress granule formation

We previously demonstrated that DAP1 regulates SubAB-stimulated apoptotic pathway 

and acts downstream of PERK-eIF2α signalling (Yahiro et al., 2014). To examine if 

DAP1 involves in SubAB-induced SG formation, DAP1-knockdown cells were incubated 
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with SubAB in the presence or absence of CID755673. SG formation by SubAB was 

dramatically decreased in DAP1-knockdown cells compared with control cells. Treatment 

of DAP1-knockdown cells with CID755673 and Gö6983 led to reappearance of SubAB-

induced SG formation (Fig. 7A). Interestingly, TG-induced SG formation was slightly 

inhibited in DAP1-knockdown cells (Fig. S4b).

We further examined if DAP1 controlled PKD1 phosphorylation in the presence or absence 

of SubAB. Depletion of DAP1 increased basal phospho-PKD1 (S916) and phospho-(S/T) 

PKD substrate proteins, which are slightly decreased by SubAB (Fig. 7B). These results 

indicate that DAP1 acts upstream of PKC/PKD1 and SubAB-induced SG formation. 

Furthermore, we next examined the effect of CID755673 on SubAB-induced PARP cleavage 

in DAP1-knockdown cells. As shown in Fig. 7C, depletion of DAP1 by siRNA suppressed 

SubAB-induced PARP cleavage as reported previously (Yahiro et al., 2014). Inhibition 

of PKD activity by CID755673 did not affect SubAB-induced PARP cleavage in DAP1-

knockdown cells. Thus, PKD signalling pathway was not involved in SubAB-induced 

apoptotic signalling.

Discussion

Stress granules are known to aggregate in the cytoplasm when cells are exposed to 

stresses, e.g. heat shock, oxidative stress, viral infection and UV irradiation (Anderson and 

Kedersha, 2009). SG formation helps protect against stress-induced cell death (Arimoto et 

al., 2008; Tsai and Wei, 2010). Further, recent studies have shown that SG are associated 

with neurodegenerative diseases, e.g. Huntington’s disease, amyotrophic lateral sclerosis, 

frontotemporal lobar dementia and Alzheimer’s disease (Wolozin, 2012; Vanderweyde et 

al., 2013). In this study, we report that the bacterial toxin SubAB induced SG formation 

through BiP cleavage and PERK-eIF2α activation, followed by a DAP1-dependent and 

PKC-dependent pathway.

Knockdown of PERK by siRNA inhibited SubAB-induced SG formation. Activation of 

PERK by ER stress controls protein synthesis via eIF2α, this pathway is involved in 

autophagy and apoptosis (Yahiro et al., 2012; B’Chir et al., 2013; Matsumoto et al., 2013; 

Jiang et al., 2014). In agreement with our findings, recent studies demonstrated that cold 

shock or salubrinal, a PERK activator, caused activation of PERK-eIF2α pathway, which 

induces SG formation (Hofmann et al., 2012; Walker et al., 2013). Thus, these findings 

suggest that PERK plays an essential factor in SubAB-induced SG formation.

Treatment of HeLa and Caco2 cells with PMA completely suppressed SubAB-induced 

SG formation; hence, both PKD inhibitor CID755673 and PKD1 knockdown enhanced 

SG formation in HeLa cells. PKD1 is a serine/threonine kinase that is involved in 

crucial biological processes, including cell growth, apoptosis, adhesion and angiogenesis 

(Rozengurt et al., 2005; Sundram et al., 2011; Steinberg, 2012). In addition, subcellular 

localization of PKD1 is cell-specific (Van Lint et al., 2002). Although overexpressed PKD1 

localizes in the trans-Golgi network and regulates anterograde membrane trafficking in 

HeLa cells (Prestle et al., 1996; Maeda et al., 2001), a previous study demonstrated that 

PKD1 interacts with transcription factor Snail1 in nuclei of HeLa cells and regulates cell 
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proliferation (Eiseler et al., 2012). In addition, PKD1 phosphorylates Enabled/Vasodilator-

stimulated phosphoprotein (Ena/VASP), leading to increased filopodia formation and length 

at focal adhesion contacts. These findings indicate that PKD1 acts not only in the trans-

Golgi network but also in nuclei and at sites of actin remodelling to regulate biological 

processes. Hence, TG-induced SG formation was not inhibited by PMA, suggesting that TG-

induced SG formation is independent of PKC activation. Our study now shows that PKD1 

participates in SubAB-induced SG formation; PKD1 signalling regulates TIAR translocation 

from nuclei to cytoplasm and G3BP1 movement from cytosol to the SG compartment.

Because SubAB-induced SG formation was enhanced by depletion of PKD1 and its 

inhibitor CID755673, we focused on PKD1 in this study. However, PKD isoforms, PKD2 

and PKD3, are also inhibited by CID755673 (Sharlow et al., 2008). SubAB-mediated SG 

was not enhanced in PKD2-knockdown and PKD3-knockdown cells (Fig. S3a). PKD1 

knockdown did not affect the level of PKD2 and PKD3 (Fig. S3b). Thus, PKD1 is 

specifically involved in SubAB-induced SG formation.

Protein kinase D1 is activated by PMA or diacyl-glycerols (Rozengurt et al., 2005). 

Previous studies showed that activation of PKD1 by phosphorylation at Ser-738/742 causes 

autophosphorylation at other sites, including Ser910 in the C-terminal domain (Rybin et al., 

2009; Steinberg, 2012). Treatment of the cells with PMA increased the molecular weight 

and basal phosphorylation of PKD1 and its substrates (Fig. 5D). In contrast, SubAB caused 

a slight reduction of phospho-PKD1 (S916 and S744/748) and PKD1 substrates. These 

findings raise the possibility that SubAB negatively regulates PKD1 function, which triggers 

SG formation, because PMA-activated PKD1 suppressed SubAB-induced SG formation. 

Seguin et al. (2014) also reported that both NH4Cl and chloroquine impaired SG formation 

induced by MG132. They suggested that interplay between proteasome, autophagy and 

lysosomes is needed to form optical SG assembly; NH4Cl suppressed MG132-induced 

SG by causing polysome disassembly. Our data demonstrated that inhibition of autophagy 

by Atg5 or Atg16L1 siRNA did not suppress SubAB-induced SG assembly (Fig. S5), 

suggesting that SubAB-induced SG formation is independent of autophagy and may occur 

by a different mechanism, as seen with MG132.

Although DAP1 is involved in negative regulation of autophagy and also in apoptosis 

(Koren et al., 2010; Yahiro et al., 2014), little is known of the biological process modulated 

by DAP1. We show here a novel function of DAP1; SubAB-induced SG formation was 

significantly inhibited in DAP1-knockdown cells; incubation with CID755673 and Gö6983 

reversed the effect on SubAB-induced SG formation (Fig. 7A). In addition, the basal level 

of phospho-PKD1 (S916) increased in DAP1-knockdown cells. We found here that broad-

spectrum PKC inhibitors Bisindolylmaleimide II and Gö6983, which do not affect PKD1 

activity, significantly enhanced SubAB-induced SG (Fig. S2), suggesting that both PKC 

and PKD1 are downstream of DAP1 and regulate SubAB-induced SG formation. While 

SubAB-induced SG formation was still observed in DAP1-knockdown cells, these findings 

might reflect the fact that the siRNA transfection did not suppress the level of DAP1 in all 

cells or that a DAP1-independent pathway modulated SG formation.
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Thapsigargin-induced SG formation was slightly inhibited in DAP1-knockdown cells, 

suggesting that TG-induced SG formation occurs predominantly by a DAP1-independent 

pathway. Thus, these data indicate that SubAB-induced SG formation pathway is different 

from that used by TG. However, we do not know how DAP1 is involved in PKCδ/PKD1 

signal transduction. Immunoprecipitation by anti-FLAG antibodies using FLAG-tagged 

DAP1 overexpressed in cell lysates did not detect a direct interaction with PKCδ/PKD1 

(data not shown). Thus, DAP1 might be indirectly involved with PKCδ/PKD1 to regulate 

SG formation by SubAB. Further experimentation is needed to clarify this point. Recent 

studies have shown that different PKC isoforms are acting upstream of PKD1 (Scheiter et 

al., 2013). For example, PKCδ is upstream of PKD1 in reactive oxygen species-mediated 

mitochondrial depolarization (Zhang et al., 2015), and PKCδ knockdown effectively 

attenuates PKD1 activation (Asaithambi et al., 2011). PKCε and PKCη interact and activate 

PKD1 (Waldron et al., 1999a,1999b; Brandlin et al., 2002a,2002b; Doppler and Storz, 

2007). We provide evidence in this study that depletion of PKCδ suppressed basal phospho-

PKD1 (S916) and phospho-(S/T) PKD substrate proteins, which were additionally decreased 

in the presence of SubAB, and enhanced SubAB-mediated SG formation. Thus, PKCδ is 

an important regulator involved in controlling PKD1 activity during SubAB-induced SG 

formation. These findings imply that, upon SubAB-induced ER stress, DAP1 may negatively 

regulate PKD1 activity through PKCδ.

Subtilase cytotoxin-induced ER stress caused a mitochondria-dependent apoptosis 

(Matsuura et al., 2009; May et al., 2010; Yahiro et al., 2010). Regarding the PKD1-

associated cell death pathway, recent studies showed that PKD1 is a key mediator 

of necrosis in acute pancreatitis (Yuan et al., 2012), activated and downregulated by 

PMA through a PKC-dependent ubiquitin-proteasome pathway, which is also involved in 

induction of apoptosis in LNCaP prostate cancer cells (Chen et al., 2011); further, selenite, 

an anti-cancer reagent, induced apoptosis through suppression of PKD/CREB/Bcl2 pathway 

(Hui et al., 2014). Meanwhile, PKD1 inhibited H2O2-induced intestinal cell death via 

upregulation of NF-kB and downregulation of p38 MAPK (Song et al., 2009). Here, we 

show that inhibition of PKD activity by CID755673 (Figs 4C and 7C) or PKD1 knockdown 

did not affect SubAB-induced PARP cleavage (Fig. S3c); however, treatment of cells with 

PMA completely inhibited PARP cleavage. Our findings suggest that, upon stimulation by 

PMA, PKC activation has a protective role in SubAB-induced apoptotic pathway.

We found that SubAB-induced PARP cleavage was not suppressed in G3BP1-knockdown 

cells, suggesting that in HeLa cells, SG formation was not directly associated with 

apoptosis. On the other hand, a previous study indicated that G3BP1 mediates cross-talk 

between stress response and innate immune system (Reineke et al., 2015). Thus, this raised a 

possibility that SubAB-induced SG formation modifies host immune system by translational 

inhibition. In addition to their relevance in regulating translation by cellular stress, SG is 

induced during virus infection and countered by viruses to maximize replication efficiency 

(Raaben et al., 2007). Although SG are thought to be an anti-viral and host defence 

mechanism, pathogenic viruses such as herpes simplex virus (HSV) and influenza A virus 

(IAV) inhibit SG formation, resulting in suppression of the host immune system through 

varied mechanisms (Onomoto et al., 2014). These findings support the direct function of SG 

as a host defence system in viral infection. In the case of bacterial infection, the functional 
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role of SG is still unclear. It was reported that translational arrest promotes host immune 

system through detection of pathogenic bacteria or an effector-triggered signalling pathway 

(McEwan et al., 2012; Stuart et al., 2013). SubAB also causes translational arrest through 

PERK-dependent phosphorylation of eIF2α. SubAB-induced SG formation may modify a 

host innate immune system and contribute to an anti-bacterial host defence system. Thus, 

determination if SG formation by SubAB affects the host immune system is critical.

In conclusion, we provide the proposed molecular mechanisms for SubAB-induced SG 

formation as shown in Fig. 7D. Stressed cells need to silence non-essential transcripts and 

produce cytoprotective proteins. The role of SubAB-induced SG formation in LEE-negative 

STEC infectious disease is unknown and is under investigation. Our novel findings suggest 

that SubAB induces translation arrest via PERK activation and phosphorylation of eIF2α. 

These signals negatively regulate PKCδ/PKD1 activity via DAP1, resulting in induction 

of SG formation, which is inhibited by PKC activation. Interestingly, PKC activation also 

inhibited SubAB-induced PARP cleavage. Thus, DAP1 is a key regulatory factor in SG 

formation and apoptosis.

Experimental procedures

Reagents

Anti-α-tubulin monoclonal antibody was purchased from Sigma-Aldrich. Anti-eIF4γ, anti-

BiP/Grp78, anti-PKCδ and anti-G3BP1 monoclonal antibodies were from BD Bioscience; 

anti-Atg5, anti-Atg16L1, anti-eIF2α, anti-phospho-eIF2α, anti-cleaved caspase7 (cCas7), 

anti-PERK, anti-cleaved poly(ADP-ribose) polymerase (cPARP), anti-PKD1, anti-phospho-

(Ser/Thr) PKD substrates and anti-TIAR antibodies were from Cell Signaling Technology; 

anti-DAP1, phospho-PKD1 (S738/742) and phospho-PKD1 (S916) antibodies were from 

Abcam; anti-ATF4 antibody was from Santa Cruz Biotechnology; and anti-GAPDH, anti-

PKD2 and anti-PKD3 antibodies were from GeneTex. Anti-DnaK antibody was obtained 

from ENZO. Anti-SubAB antibody was prepared as previously described (Yahiro et 

al., 2006). PKC inhibitor Gö6976 was obtained from LC Laboratories; PKC activator 

PMA, PKC inhibitor Gö6983, PKD/PKCμ inhibitor CID755673, PKA activator 8Br-cAMP, 

Thapsigargin (TG), CaM kinase II inhibitor KN-93 were from Sigma Aldrich; and PKA 

inhibitor 14–22 Amide was from Calbiochem; PKC inhibitor Bisindolylmaleimide II was 

from ALEXIS Biochemicals; and ROCK II inhibitor Y-27632 was from Cayman Chemical.

Preparation of subtilase cytotoxin

Recombinant His-tagged SubAB and catalytically inactive mutant SubAS272AB were 

purified as reported previously (Morinaga et al., 2007).

Cell culture and gene silencing

HeLa and Caco2 cells were cultured at 37°C in a humidified 5% CO2 atmosphere in Eagle’s 

minimum essential medium (EMEM) (Sigma) containing 10% heat-inactivated fetal bovine 

serum (FBS), 100 U/ml penicillin and 0.1 mg ml−1 streptomycin. RAW264.7 cells were 

cultured in RPMI-1640 medium (Sigma) containing 10% heat-inactivated FBS, 100 U/ml of 

penicillin and 0.1 mg ml−1 of streptomycin. All cells were incubated at 37°C in a humidified 
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5% CO2 atmosphere. RNA interference-mediated gene knockdown was performed using 

validated Qiagen HP small-interfering RNAs (siRNAs) for PERK as described previously 

(Yahiro et al., 2012). To suppress PKD1 expression, we transfected PKD1 siRNA mixture 

as follows: PKD1-a, 5′-GUCGAGAGAAGAGGUCAAATT-3′(Fuchs et al., 2009), PKD1-

b, 5′-CAGGAAGAGAUGUAGCUAU-3′(Yin et al., 2008) and PKD1 siRNA pool (Santa 

Cruz Biotechnology, Inc.). As reported previously, we used specific siRNAs for PKD2 and 

PKD3 (Zou et al., 2012), which were synthesized by Sigma-Aldrich Japan. G3BP1 and 

DAP1 specific siRNAs were purchased from Dharmacon. Negative-control siRNAs were 

purchased from Sigma Aldrich or Dharmacon. HeLa cells were transfected with 100 nM 

of the indicated siRNAs for 48–72 h using Lipofectamine™ RNAiMax transfection reagent 

(Life Technologies) according to the manufacturer’s protocol. Transfection efficiency and 

effect were evaluated by Western blotting using the indicated antibodies.

Quantification of stress granule formation

To quantify SG formation in cells, 60× images of at least three to five random fields of 

view on the coverslip were used for analysis from at least three independent experiments. 

Colocalization of both TIAR-positive and G3BP1-positive or eIF4γ-positive puncta in 

cytoplasmic fractions was counted as SG-positive cells by two observers blinded to 

conditions using Image J software and then averaged.

Immunostaining

Cells were seeded in 12 well plates containing coverslips and incubated at 37°C overnight. 

After treatment with toxins for the indicated times at 37°C, the cells were fixed with 4% 

of formaldehyde in PBS at room temperature for 30 min and then washed three times with 

PBS. Cells were treated with PBS containing 5% of goat serum (Immuno BioScience) and 

0.05% of Triton X-100 for 1 h. Cells were incubated with the indicated antibodies overnight 

at 4°C and washed three times with PBS, followed by incubation at room temperature 

for 1 h with Cy3-conjugated anti-rabbit IgG (Sigma Aldrich), Alexa 488-conjugated anti-

rabbit IgG (Invitrogen) or Alexa 488-conjugated anti-mouse IgG (Invitrogen). Cells on the 

coverslips were then washed three times with PBS, once with water and then mounted on 

glass slides using ProLong Gold antifade reagent with DAPI (Invitrogen). The stained cells 

were visualized by FV10i-LIV confocal microscopy (Olympus). The images were arranged 

with Adobe Photoshop CS4.

Immunoblotting analysis

Cells lysed in SDS sample buffer were heated at 100°C for 10 min before proteins were 

analysed by SDS-PAGE. Separated proteins were transferred to polyvinylidene difluoride 

membranes (Millipore) at 100 V for 1 h, blocked with 5% of non-fat milk in TBS-T (20 

mM Tris pH 7.6, 137 mM NaCl and 0.1% Tween 20) for 30 min and then incubated with 

the primary antibodies for 1 h at room temperature or overnight at 4°C. After washing 

with TBS-T, membranes were incubated with horseradish peroxidase-labelled secondary 

antibodies. Bands were detected using Las 1000 (Fuji film).
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Knockout and complement of subAB gene in O113:H21 strain

The strain is an LEE-negative but stx2-positive, saa-positive and subAB-positive E. coli 
O113:H21. It was isolated from a patient with thrombotic thrombocytopenic purpura in 

Japan. To establish an O113:H21ΔsubAB strain, subAB gene in E. coli O113:H21 was 

disrupted by the insertion of a kanamycin-resistance gene (kan), as described previously 

(Datsenko and Wanner, 2000). The PCR primer sets for inserting Δ(subAB)::kan into the 

strain were subAB_F1 (5′-AGTCAATACGGCGCTCTGTTGACGCTTACATT 

TGTAACTAACTGGAGGAGCTTGTGTAGGCTGGAGCTGCTT-C-3′) and subAB_R1 

(5′-

GATCGGGACAGATCAGCGAGTCAGCGCCAGTGATATAAGACGATTATCACCATATG

AATATCCTCCTTAG-3′). To complement wild-type subAB gene, SubAB expressing 

plasmid (pET-23b) was transferred into O113:H21 (ΔsubAB) strain by electroporation, and 

then we selected an ampicillin-resistant and kanamycin-resistant O113:H21(ΔsubAB/

subAB) strain. These three strains (wild-type, ΔsubAB and ΔsubAB/subAB) were cultured 

in Brain Heart Infusion broth (BHI, Gibco) medium for 12 h at 37°C with shaking at 150 

r.p.m. After centrifugation at 17 400 × g for 10 min, the culture supernatant was collected.

Statistical analysis

Student’s t-test was used to determine significant difference when only two treatment groups 

were being compared.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Subtilase cytotoxin induces SG formation through a PERK-dependent pathway.

A. HeLa cells were incubated with catalytically inactive SubAS272AB or SubAB (400 ng 

ml−1) for the indicated times at 37°C, and cell lysates were subjected to immunoblotting 

with the indicated antibodies. α-tubulin served as a loading control.

B. After cells were treated with SubAB for the indicated times at 37°C, the fixed cells were 

reacted with anti-TIAR antibody (red) and anti-eIF4γ antibody (green) and observed by 

confocal microscopy. A merged picture shows colocalization in HeLa cells. Cell nuclei were 

stained by DAPI (cyan). The rate of SG formation is presented as mean ± standard deviation 

(SD) from four different fields, which included at least 20 cells/field (right panel). Bars 
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represent 50 μm. Experiments were repeated two times with similar results, and significance 

is *P < 0.05. The white arrows indicate SG, including TIAR and eIF4γ.

C. The cells were incubated with 400 ng ml−1 of SubAB or SubAS272AB for 3 h at 

37°C. The fixed cells were reacted with anti-TIAR antibody (red) observed by confocal 

microscopy. The arrows indicate SG formation, including TIAR. Bars represent 20 μm. 

Experiments were repeated three times with similar results.

D. Control (NC) and PERK siRNA-transfected cells were incubated with SubAS272AB (mt) 

or SubAB (wt) for 3 h at 37°C. Cell lysates were subjected to immunoblotting with the 

indicated antibodies. GAPDH served as a loading control. Cells were fixed, immunostained 

with the indicated antibodies and observed by confocal microscopy as described in Fig. 1. 

The rate of SG formation is presented as mean ± SD from four different fields, which 

included at least 20 cells/field (right panel). Bars represent 20 μm. Experiments were 

repeated three times with similar results, and significance is *P < 0.05. The arrows indicate 

SG.
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Fig. 2. 
STEC O113:H21-produced SubAB induces SG formation.

A. Wild-type, ΔsubAB or ΔsubAB/subAB O113:H21 strains were cultured in BHI medium 

for 12 h at 37°C. Bacterial growth was measured by optical density at 600 nm (OD600).

B. The wild, ΔsubAB or ΔsubAB/subAB O113:H21 strains lysates were subjected to 

immunoblotting with anti-SubAB antibody or anti-DnaK antibody as a loading control.

C. Caco2 cells were incubated with purified SubAB (wt), SubAS272AB (mt), culture 

supernatant of wild-type, ΔsubAB or ΔsubAB/subAB O113:H21 strains for 1 h at 37°C. 

Cell lysates were subjected to immunoblotting with anti-BiP antibodies. GAPDH served as a 

loading control.

D. The culture supernatant of wild-type, ΔsubAB or ΔsubAB/subAB O113:H21 strains 

were added to Caco2 cells, which were incubated for 6 h, fixed with 4% PFA, reacted 

with anti-TIAR antibody (red) and anti-G3BP1 antibody (green) and observed by confocal 

microscopy. Cell nuclei were stained by DAPI (cyan). The rate of SG formation is presented 

as mean ± SD from four different fields, which included at least 20 cells/field (bottom 
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panel). Bars represent 20 μm. All experiments were repeated two times with similar results, 

and significance is *P < 0.05.
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Fig. 3. 
Effect of caspase inhibitor and lysosomal inhibitor on SubAB-induced SG formation.

A. HeLa cells were pretreated with 10 μM of caspase inhibitor, Z-VAD-FMK (VAD), for 

30 min and then incubated with SubAS272AB or SubAB for the indicated times at 37°C, 

and cell lysates were subjected to immunoblotting with the indicated antibodies. α-Tubulin 

served as a loading control.

B, C. HeLa cells were pretreated with control, 10 μM of VAD or 20 μM of MG132, 

incubated with SubAS272AB or SubAB for 3 h at 37°C, and then fixed cells were reacted 
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with the anti-TIAR antibody (red) and anti-eIF4γ antibody (green) and observed by 

confocal microscopy. A merged picture shows colocalization in HeLa cells. Cell nuclei 

were stained by DAPI (cyan). The rate of SG formation is presented as mean ± SD from 

three different fields, which included at least 20 cells/field (right panel). Bars represent 20 

μm. Experiments were repeated two times with similar results, and significance is *P < 0.05.

D, E. HeLa or Caco2 cells were pretreated with 10 mM of NH4Cl or 100 nM of CQ for 

30 min and then incubated with SubAS272AB or SubAB for 3 h at 37°C, and the fixed 

cells were reacted with the anti-TIAR antibody (red) and anti-G3BP1 antibody (green) and 

observed by confocal microscopy. A merged picture shows colocalization in HeLa cells. Cell 

nuclei were stained by DAPI (cyan). The rate of SG formation is presented as mean ± SD 

from three different fields, which included at least 20 cells/field (right panel). Bars represent 

20 μm. Experiments were repeated three times with similar results, and significance is *P < 

0.05.

F. HeLa cells were pretreated with the indicated reagents as described earlier and then 

incubated with SubAS272AB (mt) or SubAB (wt) for 1 h at 37°C. Cell lysates were subjected 

to immunoblotting with the indicated antibodies. GAPDH served as a loading control. 

Experiments were repeated three times with similar results.
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Fig. 4. 
Subtilase cytotoxin-induced SG formation is inhibited by PMA and enhanced by PKC 

inhibition.

A. HeLa and Caco2 cells were preincubated with or without 100 nM of PMA for 30 min and 

then incubated with SubAS272AB or SubAB for 3 h at 37°

C. Cells were fixed with 4% PFA and reacted with the anti-TIAR antibody (red) and 

anti-G3BP1 antibody (green), and then observed by confocal microscopy. Cell nuclei were 

stained by DAPI (cyan). The rate of SG formation is presented as mean ± SD from four 

different fields, which included at least 20 cells/field (right panel). Bars represent 20 μm. 

Experiments were repeated three times with similar results, and significance is *P < 0.05.

B. HeLa cells were preincubated with 20 μM of CID755673 (CID) or 4 μM of Gö6976 

for 30 min and then incubated with SubAS272AB or SubAB for 3 h at 37°C. Cells were 

fixed with 4% PFA and reacted with the anti-TIAR antibody (red) and anti-G3BP1 antibody 

(green) and observed by confocal microscopy. Cell nuclei were stained by DAPI (cyan). The 

rate of SG formation is presented as mean ± SD from five different fields, which included at 

least 20 cells/field (right panel). Bars represent 20 μm. Experiments were repeated two times 

with similar results, and significance is *P < 0.05.

Tsutsuki et al. Page 24

Cell Microbiol. Author manuscript; available in PMC 2023 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. As described earlier, cells were treated with the indicated reagents and then incubated 

with SubAS272AB (mt) or SubAB (wt) for 3 h at 37°C. Cell lysates were subjected to 

immunoblotting with anti-eIF2α, anti-phospho-eIF2α, anti-cPARP and anti-BiP antibodies. 

GAPDH served as a loading control. Experiments were repeated three times with similar 

results.
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Fig. 5. 
Protein kinase D1-knockdown enhances SubAB-induced SG formation.

A, B. Control (NC) and PKD1 siRNA-transfected HeLa cells were incubated with 400 ng 

ml−1 of SubAS272AB (mt) or SubAB (wt) for 3 h at 37°C. Cell lysates were subjected 

to immunoblotting for PKD1 (arrow), phospho-eIF2α (P-eIF2α), eIF2α and BiP. GAPDH 

served as a loading control. Experiments were repeated three times with similar results.

C. As described earlier, NC-transfected and PKD1 siRNA-transfected cells were incubated 

with SubAS272AB (mt) or SubAB (wt) for 3–4 h at 37°C. Cells were fixed with 4% of 

PFA and reacted with the anti-TIAR antibody (red) and anti-G3BP1 antibody (green) and 

observed by confocal microscopy. Cell nuclei were stained by DAPI (cyan). The rate of SG 

formation is presented as mean ± SD from five different fields, which included at least 20 

cells/field (right panel). Bars represent 20 μm. Experiments were repeated three times with 

similar results, and significance is *P < 0.01.

D. Cells were treated with the indicated reagents and then incubated with SubAS272AB 

(mt) or SubAB (wt) for 3 h at 37°C. Cell lysates were subjected to immunoblotting with 

anti-P-PKD1 (S916), anti-P-PKD1(S738/742), anti-P-(S/T) PKD substrates and anti-PKD1 

antibodies. GAPDH served as a loading control. Experiments were repeated three times 

with similar results. Quantification of the level of P-PKD1 (S916)/PKD1 was performed by 
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densitometry (lower panel). Data are means ± SD of values from three experiments, with n = 

3 per experiment. Statistical significance is *P < 0.05.
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Fig. 6. 
Protein kinase Cδ-knockdown enhances SubAB-induced SG formation.

A. Control (NC) or PKCδ siRNA-transfected cells were incubated with SubAS272AB (mt) 

or SubAB (wt) for 3–4 h. Cell lysates were subjected to immunoblotting with anti-PKCδ 
and anti-GAPDH antibodies. Quantification of the level of PKCδ/GAPDH was performed 

by densitometry (right panel). Data are means ± SD of values from three experiments, with 

n = 3 per experiment. Statistical significance is *P < 0.05. The fixed cells were reacted with 

the indicated antibodies and observed by confocal microscopy (lower panel). The rate of SG 

formation is presented as mean ± SD from five different fields, which included at least 20 

cells/field (right panel). Bars represent 20 μm. Experiments were repeated three times with 

similar results, and significance is *P < 0.05.

B. Control (NC) and PKCδ siRNA-transfected cells were incubated with SubAS272AB (mt) 

or SubAB (wt) for 3–4 h. Cell lysates were subjected to immunoblotting with the indicated 

antibodies. GAPDH served as a loading control. Experiments were repeated three times 

with similar results. Quantification of the level of P-PKD1 (S916)/PKD1 was performed by 
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densitometry (bottom panel). Data are means ± SD of values from three experiments, with n 
=3 per experiment. Statistical significance is *P < 0.05.
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Fig. 7. 
Death-associated protein 1 is associated with SubAB-induced SG formation.

A. Control (NC) or DAP1 siRNA-transfected cells were incubated with SubAS272AB (mt) 

or SubAB (wt) in the presence or absence of CID755673 (CID, 20 μM) or Gö6983 (4 μM) 

for 3 h. The fixed cells were reacted with the anti-TIAR antibody (red) and anti-G3BP1 

antibody (green) and observed by confocal microscopy. The rate of SG formation is 

presented as mean ± SD from five different fields, which included at least 20 cells/field 

(bottom panel). Bars represent 20 μm. Experiments were repeated three times with similar 

results, and significance is *P < 0.05.

B. Control (NC) or DAP1 siRNA-transfected cells were incubated with SubAS272AB (mt) 

or SubAB (wt) for 3–4 h at 37°C, and cell lysates were subjected to immunoblotting with 

the indicated antibodies. GAPDH served as a loading control. Experiments were repeated 

three times with similar results. Quantification of the level of P-PKD1 (S916)/PKD1 was 

performed by densitometry (bottom panel). Data are means ± SD of values from three 

experiments, with an n = 3 per experiment. Statistical significance is *P < 0.05.

C. Cells were pretreated with or without 20 μM of CID755637 for 30 min and then 

incubated with SubAS272AB (mt) or SubAB (wt) for 3–4 h at 37°C. Cell lysates were 
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subjected to immunoblotting with anti-cPARP antibodies. GAPDH served as a loading 

control. Experiments were repeated three times with similar results.

D. A possible model for SubAB-induced SG formation. BiP cleavage by SubAB induces 

activation of PERK-eIF2α, which affects downstream DAP1. DAP1 negatively regulates 

PKCδ/PKD1, resulting in SG formation. Treatment cells with PKD1 inhibitor CID755673 

enhance SG formation by SubAB. In contrast, activation of PKC/PKD1 signalling by PMA 

or DAP1 depletion reduces SG formation.
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