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Over the past decade, radiomics, or texture analysis, 
has been increasingly investigated for its utility as 

a potential biomarker derived from different radiologic 
images (1,2). There are basically two types of radiomic 
features: first order (statistical features) and second or-
der (gray-level matrix [fine and course features]). They 
are generated as output as either single radiomic fea-
tures (3–5) or multiparametric radiomics features (6). 
Most studies use single handcrafted regions of interest 
(3–5) or full radiomic images based on the tissue of 
interest (6). Several studies have shown some correla-
tion of radiomic features with other important clini-
cal parameters, which one day could make radiomics 
a standard-of-care parameter used in a clinical setting. 
However, radiomics is still an investigative tool, with 
several groups actively pursuing standardization meth-
ods for more accurate radiomic features (7,8).

In this issue of Radiology, the article by Gidwani et al (9) 
brings into focus the careful considerations of data partition-
ing and statistical methods that are needed to ensure repro-
ducible data analysis without resulting in “inflated” measures 
of accuracy and spurious associations when using radiomics 
coupled with machine learning (ML) methods. Moreover, a 
recent publication in Radiology has highlighted these types 
of concerns as well (10). These reports are very timely and 
needed to further progress the interpretation of radiomic 
features as they are related to biology for a more accurate 
prediction of potential clinical association or significance.

The authors (9) report and demonstrate that incorrect 
data partitioning can lead to a very considerable boost, 
at least 1.4-fold, in the performance of the radiomic fea-
tures when using ML to obtain the most significant fac-
tors based on the area under the receiver operating char-
acteristic curve (AUC) and correlation analysis in overall 
survival. The radiomic features were derived from two 
public data sets consisting of low-grade gliomas, head and 
neck cancer, and further testing of radiomic features with 
association of gene array scores. The findings reported 
could have implications for identifying which intrinsic 
features are important, and the authors provide a road-
map to strengthen the testing of radiomic-ML pipelines. 
For example, using a model of data leakage in their simu-
lated radiomic feature set with the different ML models 
resulted in high correlations and AUC metrics. When the 
data leakage was “corrected” in the data set, the results 
become inconclusive with nondiagnostic AUC values. 
Another major implication of the results of this study is 
that Gidwani et al (9) describe significant correlations be-
tween radiomics and gene array data by using simulated 
radiomic features that had no biologic meaning. This is 
clearly demonstrated when mixing high-dimensional 
data sets, which can be problematic due to the sparsity of 
the data points and can lead to the spurious correlations. 
As noted in the article, care needs to be taken to ensure 
that no data leakage can occur and to consider if the re-
sults make practical sense.

The authors present a clear direction on how to avoid 
these potential pitfalls when using the radiomic-ML pipe-
line through a series of questions investigators may ask 
while designing a study. These are summarized as follows: 
(a) Is a sample size estimate performed to determine the 
significance of the result? (b) Is partitioning applied cor-
rectly, and is it consistently observed through the differ-
ent steps of ML application? (c) Have reproducibility and 
multiple hypotheses and correction methods (if applicable) 
been applied; and (d) Is there an external data set available 
for testing the model? Also, some investigators need to test 
if the radiomic results and correlations make sense with 
any quantitative imaging metrics (eg, T1, T2, or apparent 
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diffusion coefficient of water mapping [MRI], standard uptake 
values [PET], or Hounsfield units [CT]). Finally, the model de-
sign introduced by Gidwani et al (9) may be able to reduce bias 
and spurious correlations in radiomic research and help by giv-
ing more insight and reliability to the radiomics-ML pipeline 
when applied to radiologic imaging or data sets.
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