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Artificial intelligence and machine learning (ML) have  
received an outpouring of interest in the medical  

domain in recent years. In the area of image analysis,  
radiomic features, or hand-crafted numeric features calcu-
lated by applying mathematic operations to the intensity 
values within an image (1), have been used to characterize a 
region of interest in terms of intensity, size, shape, and tex-
ture. In the research setting, ML and handcrafted radiomic 
features have been combined for tasks including pathologic 
classification, survival prediction, and characterization of 
underlying biology (2–4) by taking advantage of the abil-
ity of ML models to model data sets with numerous co-
variates, such as radiomic features. Artificial intelligence 
models may also be used to fit radiomic features or may be 

trained directly with the source images (convolutional neu-
ral networks). Yet despite their widespread popularity and 
reported utility, published results of radiomic ML analysis 
are often overly optimistic due to methodologic errors.

This study evaluates the effect of two methodologic 
problem areas that may inflate the reported performance 
of radiomics models: inconsistent data partitioning and 
unproductive feature associations.

Data partitioning refers to the division of available  
data into distinct training, validation, and testing sets.  
Fundamentally, each partition is necessary for ML model 
development because it is used for learning parameters 
(training), assessing the impact of those parameters (vali-
dation), and evaluating the final model (testing) both 
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ing the search years from 2017 to 2021 (Fig S1). We arbitrarily 
identified 10 journals with frequent publications on the topic 
of radiomics, eliminated duplicates, and randomly selected  
50 articles for in-depth assessment. This literature search guided 
the subsequent experiments by highlighting which methodo-
logic flaws occurred most frequently. For studies with multiple 
target tasks, the highest performing task as measured by using 
the area under the receiver operating characteristic curve (AUC) 
was evaluated. If a given flaw was not clearly attributable to the 
methodology, it was recorded as absent. The list of articles ana-
lyzed is available on request from the authors. Experimental code 
is available at: github.com/QTIM-lab/RandomRad.

Random Feature Generation
To create a realistic simulation of the radiomics pipeline, we 
aimed to generate a random radiomics data set representative 
of those seen in the medical imaging literature. Hence, the dis-
tribution of existing radiomics features served as the basis for 
feature generation with use of synthetic minority over-sampling 
technique (14,15).

Two original data sets from The Cancer Imaging Archive 
formed the basis of our random feature generation exercise. 
The first realistic random radiomics data set was derived from 
The Cancer Genome Atlas Low-Grade Glioma (TCGA-LGG) 
data set and comprises 65 samples with 220 features each (8–
10). The second realistic random radiomics data set was derived 
from the HNSCC data set and comprises 125 samples with 
9682 features each (10–13). These random features formed the 
basis of our analysis.

Inconsistent Partitioning Experiments
When implemented correctly, the training, validation, test,  
and external test data partitions are generated before further 
analyses. In the following experiments, we demonstrate the  
impact of disregarding partitioning at each step of the radiomic 
ML pipeline (Fig 1).

Feature normalization and selection with use of the entire data 
set.—Because radiomics features are high dimensional and prone 
to overfitting, feature selection is used to reduce the number of 
features in the final model. However, feature selection strategies 
usually require correlation with the outcome label of interest. 
Hence, using the entire data set to select features causes an infor-
mation leak by guaranteeing that features that are also associated 
with outcome labels from the test set are selected. This experi-
ment measured the change in accuracy when normalizing and 
selecting radiomic features using the entire data set.

Hyperparameter tuning with use of the entire data set.— 
Hyperparameters are model components programmed before 
fitting to the data. They determine the behavior and therefore 
the performance of the model. In the radiomics literature, 
mistakenly tuning hyperparameters on the entire data set fre-
quently materializes (Fig S2) in the form of cross validation 
(CV) without a held-out test set. CV creates temporary par-
titions within available data, iteratively fitting and evaluating 
models on each subsequent partition fold. It is often used in 

internally and externally, respectively. Nevertheless, many ra-
diomics studies eschew the split of primary data, partition inap-
propriately, or forego an external testing set, limiting the qual-
ity and scientific impact of the results. However, inconsistent 
partitioning allows inadvertent data leakage from the test set. 
“Information leak” is the unintentional incorporation of test set 
characteristics when training a prediction model, leading to arti-
ficial inflation of reported performance (5).

The second area of performance inflation is unproductive 
feature associations. This refers to the overestimation of the 
causal relationship between radiomics features and other vari-
ables. Radiomics features are high-dimensional data—some 
feature extraction packages can extract more than 1800 fea-
tures by applying filters (eg, exponential, logarithm, wavelet) to 
image intensities before calculating feature values. Their large 
size makes radiomics data sets incredibly prone to overfitting 
by ML models, especially because most medical data sets con-
tain few samples.

Compounding this problem, studies occasionally associ-
ate radiomics features with other high-dimensional data, such 
as gene ontology pathways, panels of genetic mutations, and 
blood metabolites, predisposing them to the discovery of spuri-
ous correlations (6,7). We hypothesize that these mistakes can 
artificially inflate performance accuracy. In this study, simulated 
features were randomly sampled by interpolation from publicly 
available radiomics data sets extracted from MRI scans of low-
grade gliomas and from CT images of head and neck squamous 
cell carcinomas (HNSCCs) (8–13), uniquely enabling us to 
evaluate the impact of commonly observed methodologic errors 
on performance metrics.

Materials and Methods

Literature Review
To determine methodologic flaws that occurred frequently 
in the radiomics literature, we conducted a limited literature 
search with PubMed using the term “radiomics” and restrict-

Abbreviations
AUC = area under the receiver operating characteristic curve, CV = 
cross validation, HNSCC = head and neck squamous cell carcinoma,  
ML = machine learning, TCGA-LGG = The Cancer Genome Atlas 
Low-Grade Glioma

Summary
By reproducing common methodologic flaws in radiomic machine 
learning publications, randomly generated radiomic features falsely 
inflated model performance by a factor of 1.4.

Key Results
 ■ In radiomics research, data partitioning refers to the division of 

available data into distinct training, validation, and testing sets; in 
simulations, inconsistent partitioning conferred a 1.4-fold  
performance boost to radiomic machine learning models.

 ■ To avoid overestimation of the causal relationship between ra-
diomic features and other variables, computational experiments re-
vealed that at minimum, the data set size should equal the number  
of radiomic features under consideration and, ideally, vastly exceed it.
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the medical domain because of the limited data availability for 
model development. This experiment measured the impact 
of extending hyperparameters chosen through CV to all data 
across all folds.

Model selection with use of the test set.—Even though the test 
set is designed to assess model generalizability on unseen data, 
our review revealed that model selection in the radiomics litera-

ture continues to be based on test set performance (Fig S2). In 
this experiment, eight ML models were fit to the training set of 
the TCGA-LGG random radiomics features and evaluated on 
the test set.

Previewing performance on the test set can also happen by 
partitioning the data multiple times to optimize the samples  
assorted to the training and test sets for the most favorable per-
formance. Additionally, insufficiently small data sets can cause 

Figure 1: Diagrams of inconsistent partitioning. Random features (R) based on published radiomics data form the basis of our experimentation 
(atypical from radiomics machine learning [ML] studies). (A) The upper level (blue and yellow) illustrates consistent partitioning that prevents  
information leak, while the lower level (green) demonstrates how the use of the entire data set for radiomics feature normalization, feature selection, 
hyperparameter selection, model selection, and performance reporting will result in an unrealistically optimistic assessment of the radiomics ML 
model. (B) Diagrams show normalization strategies. Data set normalization (green) is an example of inconsistent partitioning, with use of a mean and 
SD calculated with use of all samples, both the training and test sets, to scale. Train normalization (right) and split normalization (bottom) are different 
approaches to consistent partitioning (more details in Appendix S1).
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misestimation of the population accuracy. To demonstrate this, 
we partitioned increasingly large data sets and measured the 
range of AUC values on the test set in 10 replicates.

Selective class sampling or lack of external test set.—An ex-
ternal test set represents the ability of an ML model to general-
ize to unseen data from a different institution, which may have 
differences in patient demographics, data acquisition, diagnostic 
and treatment paradigms, and disease characteristics. To model 
the performance inflation gained by foregoing an external test 
set, we fit models to varying stratifications of random radiomic 
features from two institutions and measured the AUC.

Unproductive Feature Associations Experiments

Association of features with themselves.—In the medical  
radiomics literature, it is common to see samples clustered  
together to identify associations with known biologic groupings 
(Fig S2). In this experiment, random radiomics features cor-
related with overall survival (16–19) in the TCGA-LGG and  
HNSCC cohorts were selected, and clusters were formed based 

on selected features. Once each sample was assorted to a cluster, 
the difference in survival outcomes between clusters was mea-
sured (Mann-Whitney test).

Association of features with other high-dimensional vari-
ables (overfitting).—Given the important role radiomics 
features play in medical image analysis, creating avenues of 
explainability for the features is an area of great research in-
terest. Some approaches to explainability found in our litera-
ture review (Fig S2) are the combination of radiomics fea-
tures and clinically predictive variables and the correlation 
of radiomics features with quantitative biologic variables or 
primary outcomes.

Combination of random radiomics features with common  
clinical predictors.—Radiomics features reportedly augment  
clinical variables for the task of outcome prediction (2–4). In this 
experiment, models were trained on tumor volume, histologic 
grade (16–19), or random radiomics features of samples in the 
training set to predict overall survival. The added benefit of each 
variable is measured using the AUC.

Figure 2: Receiver operating characteristic curves illustrate the performance inflation gained from each subsequent radiomics 
machine learning methodologic mistake as demonstrated on random radiomics features. Without mistakes, the area under the re-
ceiver operating characteristic curve (AUC) value (ROC-AUC) approximates 0.5 or random chance and compounding sufficient 
mistakes lead to idealized performance of a 1.0 AUC value.
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Predictive power of a radiomics nomogram in Cox propor-
tional hazards model.—The concordance index, or C index, is 
the ability of a variable to correctly rank survival outcomes (20). 
To determine if the authentic and random radiomics features 
are prognostic of overall survival, we integrated them into a ra-
diomics nomogram, or RadScore, which is a linear combination 
of 10 radiomics features, and calculated the C index.

Random feature association with gene ontology pathways.— 
Forming post hoc correlations between radiomics features 
and gene ontology pathways represents the desire to ground 
medical descriptors in biology. Yet the association of two high-
dimensional matrices is primed for overfitting. To demonstrate 
this, we correlated the TCGA-LGG random radiomics features 
with the corresponding single sample gene set enrichment scores 
for that cohort. Finally, we determined if the most frequently 
associated random feature could prognosticate overall survival.

Results

Literature Review
Upon surveying 50 radiomic ML publications, we observed that 
mistakes in inconsistent partitioning and unproductive feature 
associations rarely occur in isolation (Fig S2). In fact, the median 

number of methodologic mistakes observed in our literature re-
view was six per publication (Fig S3). The average AUC for the 
training set reported was 0.84 and for the test set was 0.80. En-
couragingly, there was high concordance between the frequency 
of the event of interest in the training set and the test set, which 
has been experimentally proven to be a source of performance 
manipulation (Fig S4).

Inconsistent Partitioning Experiments
While each of the following methodologic flaws confers perfor-
mance enhancement in isolation, when compounded they result 
in a 1.4 times magnification in reported AUC (Fig S5). Fur-
thermore, if performance is not reported on an objective test set 
but rather on the data in totality, the model accuracy is wholly 
idealized (Fig 2).

Feature selection with use of full data set.—When comparing 
models built with use of the entire data set (inconsistent parti-
tioning) with those built with use of rigorous training and test 
set separation (consistent partitioning), a precipitous drop in 
accuracy was observed (Fig 3).The corrected performances after 
a thorough training and test split trend toward 0.5 because of 
the randomness of the used radiomics features and outcome 
labels. The performance of the HNSCC random features is 

Figure 3: (A) Strip chart shows mean accuracy loss from changing inconsistent partitioning (data set normalization and feature selection) to consistent partitioning (train 
normalization and feature selection) in 100 replicates. (B) Lollipop plot shows loss of mean model efficiency (LassoCV R2) over 100 iterations after changing from inconsis-
tent to consistent partitioning. (C) Line chart shows effect of sample size on model performance, keeping number of radiomics features (10 features) and method of feature 
selection constant. Wide CIs are seen at low sample sizes because choice of data partition drastically alters the distribution of features in each partition. Performance pla-
teaus at the area under the receiver operating characteristic curve (ROC AUC) value of 0.5 because the features and label are randomly generated. CV = cross validation, 
HNSCC = head and neck squamous cell carcinoma, LGG = low-grade glioma, SE = standard error.
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consistently worse than the TCGA-LGG random features be-
cause of the greater number of samples (125 vs 65), resulting 
in a larger test set.

Hyperparameter tuning with use of entire data set.—The loss 
of mean model efficiency (LassoCV R2) across data sets and nor-
malization strategies when tuning hyperparameters after consis-
tent partitioning (Fig 3) demonstrates that choosing hyperpa-
rameters using the full data set results in models with artificially 
increased performance.

Method selection with use of test set.—Among the eight ML 
methods evaluated, the method that had the best performance 
on the training set was not the same as the one with the best 
performance on the test set (Table 1). Selecting an ML model 
and its parameters based on the test set negates the objective as-
sessment of the generalizability of the model, necessitating more 
data to serve as a true test set. Cherry-picking the best perform-
ing CV folds and reporting their cumulative accuracy is yet an-
other way this mistake manifests (Fig S5). CV methods, such as 
leave-one-out CV and the Jackknife procedure, are useful meth-
ods to ration data sets with few observations while quantifying 
the performance error of radiomics ML models (leave-one-out 

CV) or standard error (Jackknife) (21). Yet both these methods 
still require an independent test set so that a singular model is 
objectively evaluated for all data, rather than an average across 
CV folds.

The range of AUC values generated from partitioning an 
increasing number of samples demonstrates that the minimum 
size of the data must approximate the feature dimension to con-
fidently estimate the population accuracy (Fig 3). The widened 
uncertainty observed at lower sample sizes reflects that the train-
ing, validation, and test split can be manipulated to enhance 
statistical performance, taking advantage of the variability intro-
duced by the partitioning procedure (Fig 3).

Selective class sampling or lack of external test set.—When se-
lectively training on one pathologic label from each institution 
(eg, benign from one institution and malignant from another), 
the performance of the support vector machine model was en-
hanced (Table 2). When treating either institution as the test 
set (Table 2), the performance was below average because the 
support vector machine model learned the feature distributions 
of a single institution and was brittle to the nominal distribu-
tion, skewing the second institution. Because of the unique chal-
lenges of data privacy concerns when dealing with medical data, 

Table 1: Model Selection with Use of the Test Set

Machine Learning Method
Data Set Norm  
Test AUC

Train Norm and/
or Split Norm Train 
AUC

Train Norm  
Test AUC

Split Norm Test 
AUC

Random forest 0.646 0.945 0.606 0.646
Support vector machine: RBF 0.646 0.874 0.556 0.566
Support vector machine: linear 0.869 0.860 0.455 0.566
Support vector machine: third degree polynomial 0.606 0.887 0.556 0.606
Support vector machine: sigmoid 0.758 0.753 0.566 0.566
Support vector machine: fourth degree polynomial 0.455 0.907 0.687 0.667
Gaussian naive Bayes 0.616 0.757 0.556 0.556
Shallow neural network 0.545 0.806 0.455 0.424

Note.—All models were developed on randomly interpolated radiomics features and random binary labels. The best performing model on 
the training set, random forest, is not the same as that on the test set, linear support vector machine. This reveals how choosing a method 
based on test set performance corrupts the independence of the test set. Even when partitioning the data before feature normalization and 
selection, random forest is not the same as that on the test set for either normalization strategy or the fourth degree polynomial support 
vector machine. AUC = area under the receiver operating characteristic curve, Norm = normalization, RBF = radial basis function.

Table 2: Proper and Improper Use of Multiple Institutions

Training Set Testing Set Test Set AUC
Positives from I1 and negatives from I2 Negatives from I1 and positives from I2 0.801
Negatives from I1 and positives from I2 Positives from I1 and negatives from I2 0.853
I1 I2 0.371
I2 I1 0.436
75% of I1 and I2 25% of I1 and I2 0.582

Note.—Radiomics features for institution 1 (I1) and institution 2 (I2) were randomly interpolated from published low-grade glioma 
features, and a nominal normal distribution was added to institution 2 features to represent site-specific differences. Rows 1 and 2 
demonstrate performance inflation from selective class sampling. Rows 3 and 4 represent the substitution of an external testing set as 
the test set. Row 5 demonstrates the benchmark of a generalizable performance by pooling the entire data sets of institutions 1 and 2 for 
training and testing (ventrally hosted data). AUC = area under the receiver operating characteristic curve.
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distributed learning strategies have been developed to expose an 
ML model to multiple institutions without requiring the data to 
be centrally hosted (Table 2) (22). Importantly, even when an 
external test set is included, it is often used for feature selection 
or model development, corrupting its independence.

Unproductive Feature Associations
Association of features with themselves.—For the TCGA-
LGG and HNSCC random radiomics features associated with 
overall survival, the number of clusters determined to be op-
timal is two, the same as the number of classes of the label 
(Fig 4). However, this does not imply a causal relationship be-
tween the prognosis and the clusters, most obviously because 
the features are random but also because the clusters have been 
formed based on features correlated with overall survival. The 
significant difference in overall survival between clusters in the 
TCGA-LGG (Mann-Whitney test, P = .044) and HNSCC 
(Mann-Whitney test, P = .041) cohorts demonstrates how 
overfitting to select features can render clustering a tautologic 
exercise. Variability between clustering algorithms and between 
clusters formed with use of varying initialization parameters 
emphasizes the limited utility in pairing clusters with biologic 
phenotypes without functional validation.

Association of features with other high-dimensional variables 
(overfitting).—In the Cox proportional hazards model consider-
ing RadScore, tumor grade, and volume, the log of hazard ratios 

for both real and fake RadScore has a CI that intersects 0, im-
plying that the hazard ratio may be greater than or less than 1 
(Fig 5). Because a hazard ratio less than 1 implies a protective 
effect and a hazard ratio greater than 1 implies added risk, this 
uncertainty demonstrates the unreliable nature of the RadScore.

As a succinct demonstration of overfitting, the 61160 correla-
tions between fake radiomics features and gene ontology path-
ways resulted in eight significant associations, despite multiple 
hypothesis corrections (Fig 5). The high number of association 
of features with the glycosphingolipid biosynthesis pathway 
could otherwise suggest that imaging may reveal changes in this 
pathway, except that the radiomics features are randomly gen-
erated. Furthermore, a single simulated radiomics feature cor-
related with this gene ontology pathway results in significantly 
different survival functions when split across the median value. 
Thus, even random features can produce the supposedly mean-
ingful survival predictions that pervade the radiomics literature.

Discussion
In this study we conducted a limited literature review of ra-
diomics machine learning (ML) publications that identified 
two methodologic problem areas: inconsistent data partition-
ing and unproductive feature associations. We reproduced these 
flaws using randomly generated features based on authentic 
radiomics data sets. With facsimile features, we achieved state-
of-the-art performance competitive with published studies 
(area under the receiver operating characteristic curve [AUC], 

Figure 4: Case-based consensus clustering of random radiomics features associated with overall survival (OS) in The Cancer Genome Atlas Low-Grade Glioma (left) 
and head and neck squamous cell carcinoma (HNSCC) (right) data sets. Despite sharp feature distribution differences, as seen in the heat maps, no statistically  
significant difference in outcome distribution exists between the assigned clusters. LGG = low-grade glioma.
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0.8–0.9). We experimentally demonstrated that 
correcting flawed methodology reduces AUCs on 
average by 1.4-fold to values approaching 0.5 or 
random chance. Inconsistent partitioning is haz-
ardous to the objectivity of results because feature 
selection and normalization before partitioning, or 
selection of a ML model based on the test set, uses 
information about the entire feature distribution, 
inadvertently causing information leak. It is better 
to evaluate performance on a separate validation 
set as an early indication of the generalizability of 
the model, rather than extending all models to the 
test set before making a choice. Even with unbi-
ased methodology, studies with too small a sample 
size can overestimate performance, and when a suf-
ficiently large sample is taken, performance again 
approximates 0.5 (23). Our computational experi-
ments revealed that at minimum, the data set size 
should equal the number of radiomics features 
under consideration and, ideally, vastly exceed it.

Previous studies also observed inconsistent par-
titioning: CV without a held-out test set or patient-
level partitioning results in a 40%–55% boost to 
reported performance when classifying neurologic 
disorders from MRI (24). A meta-analysis of gut 
microbiome ML studies uncovered widespread test 
set omission (25). A seminal case study by Kapoor 
and Narayan (26) found that performance for ML 
models predicting civil war outbreak could not 
be reproduced when methodologic mistakes, spe-
cifically data leakage, were rectified. Their review is 
complementary to our study: imputation of data 
using the entire data set, information leakage from 
proxy variables, and CV using paired (noninde-
pendent) samples are all manifestations of incon-
sistent partitioning.

Although the prevailing hope for ML in medicine 
is increased efficiency and precision in delivering 
care, many problems have been identified, including 
generalizability, explainability, and reinforcement 
of existing biases (27–29). While radiomics features 
also suffer from these limitations, they are often  

Figure 5: Combination of radiomics and biologic variables. 
(A) Receiver operating characteristic curves show support vector 
machine models fit to combinations of radiomics and biologic vari-
ables. (B) Dot plot with error bars show concordance index for ra-
diomics score (RadScore) in Cox proportional hazards models. A 
concordance index of 0.5 represents random chance. The random 
radiomics features have higher concordance with true outcome 
(overall survival) than the authentic features. (C) Bar chart shows 
significant associations (Pearson) between random radiomics 
features and authentic gene ontology pathways in The Cancer 
Genome Atlas Low-Grade Glioma data set. (D) Kaplan-Meier 
curves show overall survival split by median feature value of a ran-
dom feature observed to be spuriously yet significantly correlated 
with glycosphingolipid biosynthesis gene ontology pathway. Fts 
= features, HNSCC = head and neck squamous cell carcinoma, 
LGG = low-grade glioma.
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regarded as more explainable than convolutional neural net-
works because the mathematic basis of each feature is known, 
and they are associated either with the shape, intensity distri-
bution, or texture of the region of interest. However, this is a 
fallacy of thought that contrasts engineering explainability, or 
the quantitative method in which a variable was derived, with 
biologic or human explainability (30). Even the most experi-
enced radiologist does not understand the anatomic or molecu-
lar function driving “gray level co-occurrence matrix inverse dif-
ference moment,” just as they would not for a feature learned by 
a “black-box” neural network.

As with any disruptive innovation, investigation of ra-
diomics ML was followed by guidelines and caution (31,32,33). 
The 2017 Radiomics Quality Score recommends best practices 
throughout the radiomics workflow but does not delve into 
granular details of model construction, such as consistent par-
titioning (34). It also encourages the combination of labora-
tory and biologic predictors with radiomics features. While 
these variables are paradigm shifting in medical evaluation, 
combining them with radiomics features presents the risk of 
overfitting (35). Similarly, the image biomarker standardiza-
tion initiative that details best practices for radiomics feature 
extraction is upstream and complementary to our study, which 
begins with features already collected (36). Other guidelines 
provide useful considerations for data reporting, feature defi-
nition, extraction parameter standardization, the incremental 
value of radiomics features over common clinical variables, and 
broader application of ML algorithms (28,37–40). Of note, 
none of these works analyzed the vital importance of consistent 
data partitioning and tempered pairing of radiomics features 
with other high-dimensional variables as this study does. In 
addition, previous studies reported the influence of image ac-
quisition protocols and instrumentation, image reconstruction 
and preprocessing, lesion segmentation, and feature extraction 
software on radiomics feature analysis. Here, we exclusively fo-
cus on methodologies downstream of feature extraction.

By deconstructing these two problem areas into their con-
stitutive components, we suggest a template for independent 
researchers and reviewers alike (Fig 6). The following checklist 
summarizes the mistakes observed and modeled in this study: 
First, is the data set large enough to be partitioned in a way 

that does not produce high variability in results due to selection 
of the best partition? If so, is it partitioned? Is it partitioned 
randomly? Second, is the partitioning initiated before feature 
analysis and consistently observed throughout feature normal-
ization, feature selection, hyperparameter tuning, model selec-
tion, and performance reporting? Third, has feature reproduc-
ibility been assessed? Fourth, have multiple hypotheses been 
tested and, if so, has a correction for multiple hypotheses been 
implemented? Fifth, is there an external test set and, if so, has 
model performance on an internal test set also been reported? 
Finally, is the importance of feature-feature, sample-sample, or 
feature-biologic variable correlations cautiously reported (mul-
tiple hypothesis correction) as merely correlative and likely over-
fit? If not, have the correlations been functionally validated on 
external test sets?

Random simulated features are uniquely illustrative for our 
purpose of estimating the impact of methodologic flaws on 
radiomic ML model performance. However, our study is limited 
in its narrow focus on model development and evaluation, when 
in fact performance inflation can occur further upstream of this 
step—for example, through homogeneous cohort selection and 
feature extraction parameter manipulation. Our simulation of 
a second institution is likewise limited by the naive addition of 
a nominal distribution rather than replicating true patient de-
mographic or scanner differences. Finally, our study does not 
exhaustively consider the ways in which radiomics features can 
be overfit but rather provides an example in the form of gene 
ontology pathways. We encourage reviewers of radiomics stud-
ies to be open-minded when applying our recommendations to 
identify other sources of overfitting.

We conclude that radiomics machine learning studies require 
a rigorous analysis and review. Employing consistent data parti-
tioning and appropriate feature associations will ensure the de-
velopment of adaptive statistical models.
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Figure 6: Flow diagram shows reviewer questions when auditing radiomics machine learning studies for problem areas highlighted in this study: inconsistent partitioning 
and unproductive feature associations.
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