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Somatic mutations in cancer genes have been ubiquitously detected in clonal expansions across 

healthy human tissue, including in clonal hematopoiesis. However, mutated and wildtype cells are 

morphologically and phenotypically similar, limiting the ability to link genotypes with cellular 

phenotypes. To overcome this limitation, we leveraged multi-modality single-cell sequencing, 

capturing the mutation with transcriptomes and methylomes in stem and progenitors from 

individuals with DNMT3A R882 mutated clonal hematopoiesis. DNMT3A mutations resulted 

in myeloid over lymphoid bias, and in expansion of immature myeloid progenitors primed toward 

megakaryocytic-erythroid fate. We observed dysregulated expression of lineage and leukemia 

stem cell markers. DNMT3A R882 led to preferential hypomethylation of polycomb repressive 

complex 2 targets and a specific sequence motif. Notably, the hypomethylation motif is enriched 

in binding motifs of key hematopoietic transcription factors, serving as a potential mechanistic 

link between DNMT3A R882 mutations and aberrant transcriptional phenotypes. Thus, single-cell 

multi-omics pave the road to defining the downstream consequences of mutations that drive 

human clonal mosaicism.
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Introduction

Somatic mutations have been recently identified ubiquitously across healthy tissues, 

indicating the presence of acquired clonal mosaicisms1–6. These mutations are pervasive 

across tissues such as the blood7–17, skin5, lung2 and esophagus1,3, and their prevalence 

increases with physiological aging. Importantly, somatic mutations in these clonal 

outgrowths overlap with recurrent drivers of cancer (for example, DNMT3A, TP53, 
PIK3CA, and NOTCH1)1–5,8,18, suggesting that cancer may arise from pre-malignant clonal 

outgrowths. Nevertheless, mutated cells are morphologically and phenotypically similar to 

their wildtype counterparts. This limits the ability to define the downstream transcriptional 

or phenotypic impact that may drive clonal outgrowth, and therefore prior studies in primary 

human tissue have largely focused on genetic characterization of clonal mosaicism.

Clonal mosaicism within the hematopoietic system serves as an informative model for 

this phenomenon, as recurrent drivers of myeloid malignancies (for example, DNMT3A, 

TET2 and ASXL1 mutations) have been detected in individuals without overt hematologic 

abnormalities7–17. This state, termed clonal hematopoiesis (CH), predisposes these 

individuals to an increased risk of developing myeloid malignancies, such as acute 

myeloid leukemias (AML) and myelodysplastic syndromes, and thus represents the earliest 

stages of neoplastic evolution8,19–21. Intriguingly, CH mutations also increase the risk 

of cardiovascular disease11 and progression of non-myeloid malignancies11,22,23, with 

early evidence supporting an aberrant immune microenvironment due to CH8,24–26. CH 

mutations have also been found in stem cell grafts, linked with idiopathic cytopenia in graft 

recipients27. CH mutations in certain genes (e.g. DNMT3A, TP53) endow a particularly 

strong fitness advantage in the context of stem cell transplantation, wherein the variant 

allele frequencies (VAF) markedly increase post-transplant compared to pre-transplant 
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grafts28,29. These data suggest that certain CH mutations confer a particularly robust 

competitive advantage over non-neoplastic hematopoietic cells in stressed settings such as 

transplantation.

DNMT3A, which encodes a de novo DNA methyltransferase that catalyzes the methylation 

of cytosine bases in CpG dinucleotides, is by far the most frequently mutated gene in 

CH7–10. Consistently, DNMT3A mutations are considered an early event in AML7, and 

the hotspot variant at R882 constitute the majority of DNMT3A mutations in AML. The 

frequency of R882 variants is lower in CH, suggesting that these variants are particularly 

prone to progressing to AML through clonal evolution12,30,31. In vitro and murine models 

have suggested that DNMT3A R882 (or the murine R878 homologous residue) mutations 

result in a differentiation block and increased self-renewal in the hematopoietic stem cells 

(HSCs)32–34. Biochemically, DNMT3A R882 variants may exhibit a dominant negative 

effect35,36, resulting in the reduction of methyltransferase activity36. However, the study 

of DNMT3A mutations directly in human samples has been largely limited to MDS or 

AML, where confounding co-occurrence of other genetic alterations is common. Thus, CH 

presents a unique setting to interrogate the molecular consequences of DNMT3A mutations 

in non-malignant human hematopoiesis.

However, in CH as in other contexts of somatic mosaicism, mutated cells are admixed 

with wildtype cells12,31, limiting our ability to link genotype to phenotype using studies 

of bulk populations. Although recent fluidics methods for single-cell genotyping coupled 

with oligo-barcoded antibodies have begun to shed light on the phenotypic consequences 

of CH mutations37, these methods are limited to a small number of pre-defined cell 

surface markers. To overcome this limitation, we applied multi-omics single-cell sequencing 

to capture the mutational status of individual cells together with downstream epigenetic 

and transcriptional information38,39, thus enabling us to compare mutated cells with their 

wildtype counterparts from the same individuals, directly in primary human samples.

Results

Genotyping of DNMT3A mutations in single-cell RNA-seq of CD34+ cells of human clonal 
hematopoiesis

As individuals with CH have normal blood production and thus meet no clinical criteria 

for assessments by bone marrow biopsy, progenitor-enriched samples with CH are scarce. 

However, we recently observed that CH is prevalent in patients with multiple myeloma 

(MM), and thus we interrogated a cohort of 136 MM patients with CH identified in 

hematopoietic progenitor cells collected for autologous stem cell transplant while in 

remission40. Given the known strong phenotypic impact of DNMT3A R882 mutations, 

we focused on four samples with these mutations and sufficiently high VAFs of >0.05 

(range: 0.09–0.34) to enable profiling of large numbers of mutated cells with single-cell 

RNA-sequencing (scRNA-seq; see patient and sample data in Extended Data Fig. 1a; 

Supplementary Table 1). Notably, although CH mutations tend to have low VAFs, CH 

clones with higher VAFs have been frequently observed8,10,41. We further confirmed that no 

morphologic evidence of a myeloid neoplasm was seen in the bone marrow (Supplementary 

Table 1). Screening for additional mutations through a targeted myeloid panel40 showed only 
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one additional mutation (patient CH03), consisting of a clonal (VAF = 0.5) heterozygous 

TET2 nonsense mutation, which therefore likely arose first in the course of clonal evolution 

and is present in both the DNMT3A R882 mutated and wildtype cells.

We isolated viable CD34+ cells from these CH samples and performed Genotyping of 

Transcriptomes (GoT38), capturing scRNA-seq with targeted genotyping of the R882 codon 

(Fig. 1a). A total of 27,324 cells across CH samples were sequenced and included in 

the downstream analysis after quality filters (online methods, Extended Data Fig. 1b). 

Genotyping data were available for 6,430 cells of these 27,324 cells (23.5%) through GoT 

(Extended Data Fig. 1a,c,d). Notably, to overcome the challenge of accurate genotyping of 

the lowly expressed DNMT3A gene, we performed deeper sequencing and further optimized 

the original GoT analysis pipeline (IronThrone38, see online methods). This optimization 

included integrating unique molecule identifier (UMI) consensus assembly42, resulting in 

enhanced precision, with increased number of cells correctly assigned with only mutant 

or wildtype UMIs in a species mixing experiment (P < 10−10, Fisher exact test, Extended 

Data Fig. 1e). We also filtered the GoT UMIs based on their presence in the 10x gene 

expression library to determine the threshold for the number of supporting reads (online 

methods, Extended Data Fig. 1f). Mutated CD34+ cell frequencies ranged from 13% to 50%, 

comparable to the VAFs obtained through bulk sequencing of matched unsorted stem cell 

products (Extended Data Fig. 1a,c). Finally, to exclude detectable large-scale deletions or 

duplications, we performed copy number analysis with scRNA-seq data43 and identified no 

significant chromosomal gains or losses (Extended Data Fig. 2a,b).

To chart the differentiation of CD34+ progenitor cells in CH, we integrated data across 

the samples44 and clustered based on transcriptomic data alone, agnostic to the genotyping 

information (Fig. 1b, Extended Data Fig. 3a, online methods). Consistent with clinical 

data indicating normal hematopoietic production, we identified the expected progenitor 

subtypes, using previously annotated progenitor identity markers (Fig. 1b, Extended Data 

Fig. 3b–d, Supplementary Table 2)45. Furthermore, consistent with the fact that G-CSF 

mobilizes early stem and progenitor cells, we identified a large population of the earliest 

hematopoietic stem progenitor cells (HSPCs), as well as immature myeloid progenitor 

cells (IMPs), previously defined in a landmark scRNA-seq study45 as corresponding to the 

phenotypically-defined common myeloid progenitors (CMPs) and granulocyte-monocyte 

progenitors (GMPs). The high-throughput profiling by digital scRNA-seq enabled a 

higher resolution view of the IMPs, revealing a subcluster that exhibited markers of 

granulocyte-monocyte differentiation (IMP-GM) and a subcluster that exhibited markers 

of megakaryocytic-erythroid differentiation (IMP-ME, Extended Data Fig. 4a,b). Having 

established the progenitor identities, we then projected the genotyping information onto the 

differentiation map (Fig. 1c, Extended Data Fig. 4c). No novel cell identities were formed 

by the DNMT3A mutations, consistent with the fact that patients with CH exhibit no overt 

peripheral blood count or morphologic abnormalities, Instead, we observed that mutated and 

wildtype cells co-mingled throughout (Fig. 1c, Extended Data Fig. 4c), highlighting the need 

for single-cell multi-omics to link genotypes with cellular phenotypes in CH. Importantly, 

the genotyping efficiency was balanced across the progenitor subsets, mitigating potential 

technical biases (Fig. 1d, top), consistent with no significant difference in DNMT3A gene 

expression within the CD34+ cell subsets (Fig. 1d, bottom).
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DNMT3A-mutated cells show lineage biases at key differentiation junctures

As previous data in murine and in vitro models have suggested that DNMT3A mutations 

may lead to a differentiation block46,47, we performed a differentiation pseudo-temporal 

(pseudotime) ordering analysis of the GoT data48–50. We found no significant global 

difference between wildtype and mutated cells (P = 0.70, linear mixed model, Extended 

Data Fig. 4d including per sample analysis, online methods), indicating that DNMT3A 
R882 mutations do not result in a significant global differentiation block in pre-cancerous 

human hematopoietic development. This finding is nonetheless consistent with findings in 

murine models, where even in the setting of homozygous Dnmt3a deletion, mutated cells 

do not exhibit self-renewal advantage in primary transplant experiments47, indicating that 

features of self-renewal advantage may not be overtly obvious in steady-state hematopoiesis. 

Although we did not observe a global differentiation block, we hypothesized that the 

DNMT3A mutated cell frequencies may vary across certain progenitor identities. For 

example, as DNMT3A R882 mutations are more frequently associated with myeloid rather 

than lymphoid neoplasms, we tested whether mutated cells may demonstrate a lineage 

bias toward myeloid versus lymphoid differentiation by examining lympho-myeloid primed 

progenitors (LMPP) and common lymphoid progenitors (CLP). Consistent with frequency 

biases seen in murine models for DNMT3A mutations51, mutated cells were enriched in 

myeloid biased cells versus early lymphoid progenitors (P < 0.001, linear mixed model, Fig. 

2a). Moreover, these data are also consistent with previous results obtained with bulk, sorted 

populations from a DNMT3A I780T CH sample, which showed a lower VAF in mutated cell 

frequency in mature lymphoid cells (e.g. NK cells, B cells), compared to those in myeloid 

progenitor and mature cells52.

To identify differentiation biases more broadly in DNMT3A-mutated CH, we evaluated the 

mutated cell frequencies across the different prevalent progenitor cell types (>200 genotyped 

cells). Of note, as cells may display variable expression of DNMT3A itself, we performed 

amplicon UMI down-sampling to exclude sampling biases given the heterozygosity of 

the mutated allele as a potential confounder for observed differences in mutated cell 

frequencies38. We observed that across samples, mutated cells were enriched in IMPs 

compared to the earliest HSPCs (P < 0.001, linear mixed model, Fig. 2b). Mutated IMPs 

also displayed an ME bias with an increase in the expression of an MkP-EP gene set53 

(P = 8.8 × 10−5, linear mixed model, Fig. 2c, Supplementary Table 2, online methods), 

consistent with an increase in the proportion of IMP-ME to IMP-GM in mutant compared 

to wildtype cells (P = 0.004, proportions test, odds ratio of 1.38 (1.08 – 1.76), Fig. 2d). 

These data are in line with evidence of subtle erythroid abnormalities observed in CH via 

routine clinical assays (e.g. elevated red cell distribution width (RDW))21, and with our 

recent demonstration of increased HSC erythroid priming in a Dnmt3a knock-out murine 

model54.

Increased mutated cell frequency in a specific progenitor subtype can result from cell-type 

specific elevated proliferation38. We therefore first compared the expression of cell cycle 

genes55 between mutated and wildtype progenitors and found a modest increase in cell 

cycle gene expression only in mutated IMPs (P = 4.1 × 10−3, linear mixed model, Fig. 2e, 

Extended Data Fig. 5a). Alternatively, increased mutated cell frequency in a given progenitor 
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subtype, may stem from a change in transition rates into this cell state. To explore this 

hypothesis, we measured transition probabilities between progenitor subtypes with RNA 

velocity (online methods)56,57. The overall RNA velocity measurements demonstrated that 

these mobilized CD34+ cells follow the expected differentiation trajectories as described in 

normal human bone marrow hematopoiesis53,58 (Fig. 2f). Consistent with the hypothesis 

that transition rates contribute to the observed differentiation biases, we identified that the 

transition probability of mutated IMPs to become IMP-MEs was higher compared to that of 

wildtype cells (P = 3.7 × 10−7, linear mixed model, Fig. 2g, see Extended Data Fig. 6a for 

per sample comparison), whereas the transition probability of mutated IMPs to IMP-GMs 

was diminished (P = 2.9 × 10−6, linear mixed model, Extended Fig. 6b). These analyses 

thus orthogonally confirmed ME-biased differentiation of DNMT3A-mutated CD34+ human 

progenitors.

Gene expression changes in DNMT3A mutated cells include leukemia stem cell genes, and 
are linked to proinflammatory signatures and putative dysregulated transcription factor 
activity

To identify the transcriptional dysregulation that may underlie the observed differentiation 

biases, we performed differential gene expression analysis between mutated and wildtype 

progenitors within each progenitor cell type. Differential expression (DE) analysis of 

mutated versus wildtype HSPCs revealed 88 dysregulated genes (Fig. 3a, 68–122 

differentially expressed genes in each progenitor subset, see Supplementary Table 3 for 

results for each progenitor subset; batch-aware permutation test where mutated and wildtype 

labels are permuted only within the same sample, see online methods). Of note, to ensure 

that the analysis was not dominated by a single sample, we down-sampled the number 

of mutated and wildtype cells from each sample to maintain equal representation in the 

progenitor subset DE analysis. To test the robustness of our approach further, we also 

determined DE by an alternative linear mixed model framework, in which we explicitly 

modeled samples as a random effect variable, and identified a high degree of concordance 

between the two statistical frameworks (Extended Data Fig. 7a, Supplementary Table 3, 

online methods).

DE genes included, for example, the upregulation of CD9 in the early mutated HSPCs 

(Fig. 3a, Supplementary Table 3). CD9 expression is closely linked with megakaryocytic-

priming59,60 and platelet activation61–63, thus providing further support for the ME bias 

of DNMT3A mutated progenitors. These data are also in line with a lower degree 

of thrombocytopenia observed in patients with DNMT3A mutated versus wildtype 

AML64,65 and thrombocytosis in a murine model of this mutation66. We further observed 

an enrichment of genes previously associated with leukemia stem cells (LSCs)67 in 

mutated HSPCs, including PRSS21, FCER1G, TYROBP, and TNFRSF4, mapping these 

dysregulated genes to the nascent neoplastic process (P = 9.3 × 10−5, hypergeometric test, 

Fig. 3a, Supplementary Table 3). FCER1G, TYROBP and TNFRSF4, are known to be 

involved in proinflammatory signaling68–76, consistent with previous reports suggesting that 

CH clones display enhanced proinflammatory signatures24,26,41,77–81. In another example, 

we identified upregulation of the pro-survival oncogene PIM2, downstream of STAT 
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signaling, in mutated LMPPs, recently implicated as a target for eradicating chemotherapy-

resistant chronic myeloid leukemia stem cells82 (Supplementary Table 3).

Nine genes were upregulated in more than one progenitor subset (Fig. 3b, Supplementary 

Table 3). This analysis highlighted mediators of cell-to-cell interactions, such as a regulator 

of the inflammatory network C1QTNF483,84. We also identified CLEC11A (also known 

as stem cell growth factor (SCGF)), which has been implicated as a hematopoietic 

growth factor85,86, including in the setting of hematopoietic stress such as irradiation 

and transplantation85,87. This finding is consistent with published murine data showing 

a 6.75-fold increase of Clec11a in transplanted Dnmt3a KO cells compared to wildtype 

cells88. Thus, overexpression of CLEC11A by DNMT3A-mutated progenitors may provide 

a potential mechanism for marked expansion of CH clones upon transplantation28,29,89–93. 

Genes upregulated in more than one progenitor subset were associated with putative 

transcription factors94, identifying recurring TFs (highlighted in black, Fig. 3b), including 

MYC and its cofactor MAX, as well as the inflammatory NFKB and STAT transcription 

factors and interferon regulatory factor IRF7, consistent with proinflammatory networks in 

CH clones24,26,77,80,81.

To more broadly identify dysregulated pathways, we performed a gene set enrichment 

analysis of the differentially upregulated genes (Fig. 3c, Supplementary Table 4)95,96. 

The top significantly enriched pathways (FDR < 0.2) included MYC targets in the 

mutated erythroid progenitors (FDR-adjusted P = 0.01, Fig. 3c). Notably, we observed 

the enrichment of two independent MYC target gene sets, including a MYC signature 

that was downregulated with monocytic differentiation in an HSPC differentiation cell line 

model97,98. Consistently, MYC has been demonstrated to be a critical factor specifically 

for erythropoiesis99–101, and may thus contribute to the observed ME bias (Fig. 2c,d,g). Of 

interest, DNMT3A mutation driven MYC target expression increased during differentiation 

along the erythroid lineage (Fig. 3d), despite no increase in MYC gene expression itself 

in the mutated progenitors (Extended Data Fig. 7b), suggesting that its transcriptional 

output as a transcription factor is differentially increased in mutated cells. Other enriched 

pathways included targets of cell cycle regulator E2F in LMPPs (FDR-adjusted P = 0.057, 

Supplementary Table 4). Altogether, these findings suggest a focused dysregulation in TF 

activity that may orchestrate the observed lineage and transcriptional perturbations in the 

premalignant stages of hematopoietic neoplasia.

Single-cell multi-omics integrating somatic genotyping, methylome, and transcriptome 
profiling reveals patterns of DNMT3A mutation hypomethylation

To directly decipher the underlying link between mutated DNMT3A-induced DNA 

hypomethylation and the observed altered transcriptional regulatory networks in CH, 

we profiled CD34+ progenitors from the same individuals (from samples CH02 and 

CH04 where additional material was available) with multi-modality single-cell sequencing 

capturing DNA methylation (DNAme)102, scRNA-seq (Smart-seq2103), and targeted 

DNMT3A genotyping39 (n = 528 cells after quality filtering, Fig. 4a,b, Extended Data Fig. 

8a–c, online methods). As expected, these scRNA-seq data identified the major progenitor 

identities as those demonstrated by the 10x platform, albeit at a lower resolution given 
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fewer cells (Fig. 4b, left, Extended Data Fig. 8b). Of these 528 cells, genotyping data were 

available for 441 cells (Fig. 4b, right, 84% cells genotyped). This multi-modal profiling 

uniquely enabled us to compare the methylation status of mutated and wildtype cells from 

the same individuals, showing a decrease in DNAme in CpG islands even in this relatively 

heterogeneous CD34+ population (CGI, P = 5.72 × 10−3, linear mixed model, Fig. 4c), 

consistent with the finding that DNMT3A mutated AMLs have lower methylation of CGI 

compared to DNMT3A wildtype AMLs104. While enhancers have been demonstrated to be 

particularly impacted by DNMT3A loss in the setting of AML105, these relatively CpG-poor 

regions have lower coverage in standard enzymatic methyl-seq (EM-seq)106 or reduced 

representation bisulfite sequencing (RRBS) with a single restriction enzyme Msp1. We 

therefore increased the capture of enhancer regions through double restriction-enzyme Msp1 

and HaeIII digestion107 and identified marked hypomethylation of enhancer regions108 (P = 

7.29 × 10−8, linear mixed model, Fig. 4d) as well as global hypomethylation in DNMT3A 
R882 cells compared to wildtype cells (P = 2.92 × 10−3, linear mixed model, Extended 

Data Fig. 8c–d, online methods). Thus, we demonstrated that the methylation of regulatory 

regions is affected by DNMT3A R882 mutations in human CH. Interestingly, prior in 

vitro studies suggested that CpH sites (i.e. CpA, CpC or CpT) may be hypermethylated 

in DNMT3A R882H109. Our data revealed no significant difference, and an opposite trend 

(Extended Data Fig. 8e), further highlighting the significance of examining primary human 

cells.

Differentially methylated regions (DMR) analysis identified 269 promoters to be 

significantly hypomethylated considering the observed global hypomethylation (P < 0.05 

and at least 5% loss in methylation, Fig. 4e, Extended Data Fig. 8f, Supplementary Table 

5, see online methods for statistical modeling to identify promoters with preferential 

hypomethylation that explicitly models samples as a variable). Gene set enrichment 

analysis of these genes identified enrichment of targets of the PRC2 (FDR-adjusted P 

< 0.2, GSEA with MSigDB C2: CGP gene set, Fig. 4e, Supplementary Table 6, online 

methods). As an orthogonal approach, we performed differential methylation analysis of 

chromatin immunoprecipitation sequencing (ChIP-seq) peaks (ENCODE database110) that 

overlap with TSS regions. This approach also identified the targets of PRC2 components 

SUZ12 and EZH2 to be differentially hypomethylated (Fig. 4f), as well as that of GATA2, 

involved in ME differentiation. As ENCODE ChIP-seq tracks reflect aggregation across 

several cell types, we validated that preferential hypomethylation specifically impacted 

regions marked by H3K27me3, H3K4me3 bivalency in human hematopoietic progenitors, 

by intersecting the ENCODE ChIP-seq tracks with bivalent peaks in CD34+ cells111 

(Fig. 4g, Supplementary Table 7, for per-sample data see Extended Data Fig. 8g). This 

finding is consistent with previous data showing that germline gain-of-function mutations in 

DNMT3A result in the reciprocal hypermethylation of PRC2 targets, leading to premature 

differentiation programs112. Furthermore, PRC2 targets exhibit significant overlap with 

previously reported methylation canyons, shown to undergo preferential hypomethylation 

upon Dnmt3a loss113 (98% of canyons harbored a PRC2 target compared with 16% of 

canyons harboring peaks of a size-matched set of random genomic intervals, P < 10−10, 

Fisher exact test)114. Notably, while gene expression changes in PRC2 targets were not 

observed between mutated and wildtype cells from the GoT data (P = 0.42, linear mixed 
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model, Extended Data Fig. 8h), this may be expected given that PRC2-repressed genes that 

gain DNA methylation may only switch between different silencing states. Nonetheless, 

DNA methylation of PRC2 targets has been shown to reinforce gene silencing115–117, and 

thus mutated DNMT3A mediated hypomethylation of PRC2 targets may poise mutated 

progenitors to aberrant reactivation of stem cell maintainers, as seen in a PRC2 deficient 

mouse model118.

Finally, to determine whether CH hypomethylation of PRC2 targets persists through 

progression to AML, we compared the methylation status of PRC2 targets (online methods) 

between DNMT3A R882 mutated AML (n = 7) and DNMT3A wildtype AML (n = 6, 

both groups with NPM1 mutations105, Supplementary Table 8). We found that compared 

with DNMT3A wildtype AML, DNMT3A R882 mutated AML demonstrated preferential 

hypomethylation at promoters of PRC2 targets compared to promoters with similar CpG 

content (P = 0.0087, online methods, Fig. 4h, Extended Data Fig. 8i). To determine 

whether the preferential hypomethylation of PRC2 targets may be robust against various 

co-occurring mutations, we compared the methylation rates of PRC2 targets in DNMT3A 
wildtype (n = 122) versus DNMT3A R882 mutated AML (n = 9) with heterogeneous 

mutation status from The Cancer Genome Atlas (TCGA)119 and identified similar results as 

observed in the NPM1-mutated AML (Extended Data Fig. 8j). These results demonstrated 

that mutated DNMT3A-mediated hypomethylation of PRC2 targets is maintained through 

evolution to AML, further supporting it as a potential mechanism for enhanced self-renewal, 

from clonal hematopoiesis to frank malignancy.

DNMT3A R882 displays differential methyltransferase activity as a function of CpG 
flanking sequence

We hypothesized that mutated DNMT3A R882 may further display differential 

methyltransferase activity, depending on the flanking sequence context of the CpG 

dinucleotide109,120. Indeed, CpGs within DMRs defined CpG motifs that are particularly 

hypomethylated (disfavored) in mutated versus wildtype human CD34+ cells (online 

methods, Fig. 5a, Extended Data Fig. 9a). Of note, CpGpT was particularly associated 

with hypomethylation (Fig. 5a, Extended Data Fig. 9a), consistent with in vitro enzymatic 

studies of DNMT3A R882 variants109,120 (Extended Data Fig. 9b,c). Importantly, this 

CpG flanking motif was enriched in the binding motifs of specific TFs expressed in 

hematopoietic progenitors (Fig. 5b, Supplementary Table 9). These included key regulators 

of hematopoiesis such as MYC/MAX, whose activities are known to be negatively impacted 

by DNA methylation of their binding motifs121,122, and were found to have increased target 

expression in mutated cells (Fig. 3c,d). Other key transcription regulators included HIF1A 

(and its cofactor ARNT), whose binding is facilitated by demethylation of the binding 

motif123; HIF1A/ARNT are critical factors for HSC quiescence, through maintenance of 

the anaerobic glycolysis-dependent metabolic activity in the bone marrow niche124–130. 

USF1/2 were also among the highlighted TFs, which have been shown to regulate chromatin 

architecture in erythroid differentiation and the beta-globin locus131,132. In order to highlight 

TFs whose binding motifs have high similarity scores to the hypomethylated motif but are 

enriched only in certain progenitor subsets, we interrogated the expression of these TFs 

in each progenitor groups, and identified high expression of KLF1 in EPs, another critical 
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regulator of erythropoiesis133 (Extended Data Fig. 9d). In further support for a model in 

which preferential hypomethylation of the specific sequence motif underlies transcriptional 

dysregulation, we observed enrichment of the hypomethylated CpG flanking sequence in 

regions surrounding genes upregulated in mutated HSPCs and EPs (Fig. 5c, Extended Data 

Fig. 9e–h).

To validate the impact of mutated DNMT3A on TF activation, we collected Lin-, 

c-Kit+ hematopoietic stem and progenitor cells from mice with and without Dnmt3a 
R878H (the murine R882H equivalent; no. of mice = 3 in each cohort)51. While recent 

progress has been made in single-cell chromatin binding assays134–136, the ability to 

determine the weaker signal of TF binding in single cells remains a challenge. We 

therefore performed a chromatin accessibility assay, shown to be a reliable surrogate for 

determining TF activity137, on single nuclei (n = 46,496 cells, Fig. 5d, Extended Data 

Fig. 10a–d). Confirming our findings in human CH, we found that the accessibility of 

the DNMT3A R882-specific hypomethylated motif was increased in R878H cells, across 

clusters, including in HSPCs, and particularly in EPs (Fig. 5e,f, Extended Data Fig. 10e–g), 

whereas shuffled versions of the hypomethylated motif, with or without a CpG, displayed 

lower difference in accessibility between mutated and wildtype progenitors. Differential 

accessibility analysis of TF motifs identified CREB1 and ATF1 motifs to be the most 

differentially increased in accessibility in mutated HSPCs (FWER Adj. P = 2.42 × 10−27; 

FWER Adj. P = 2.72 × 10−20, respectively, Supplementary Table 10). Notably, CREB1 

and ATF1 motifs also contain the CpGpT but were not initially highlighted in Fig. 5b due 

to low expression of these genes (Supplementary Table 9). Consistently, CREB1 activity 

in the mutated cells was highlighted in the GoT differential expression analysis data (Fig. 

3b), and its ChIP-seq identified binding sites as being differentially hypo-methylated in 

the methylation data (Fig. 4f). This analysis also confirmed that candidate TFs with high 

expression and high similarities scores in their binding motif with the hypomethylated motif, 

including MYC/MAX, HIF1A/ARNT, USF1/2 and KLF1, displayed enhanced accessibility 

in R878H compared with wildtype progenitors, across multiple progenitor subsets (Fig. 

5f, Extended Data Fig. 10g, Supplementary Table 10). The myeloid progenitors were 

particularly impacted, whereas the lymphoid progenitors showed little to no significant 

difference in accessibility for these TF binding motifs (Extended Data Fig. 10g), suggesting 

overactivity of these TFs may play a role in the myeloid differentiation bias. While 

Dnmt3a R878H HSPCs displayed a more modest increase in chromatin accessibility, this 

may be due to the global open chromatin in stem cells reducing the ability to measure 

specific enrichments138,139. Overall, as chromatin accessibility has been demonstrated to 

accurately reflect TF activity137, these data provided further evidence for the model in which 

the DNMT3A mutation enhances the activity of TFs whose binding motifs are prone to 

hypomethylation through enrichment in the hypomethylated sequence motif. In support of 

this model, we observed a strong negative correlation between TF motif similarity to the 

hypomethylated motif and the P-value ranks of the differentially accessible TF motifs in 

mutated versus wildtype cells (Fig. 5g). This model then provides the basis of enhanced 

TF target gene expressions, such as those of MYC/MAX, in the DNMT3A mutated cells 

observed in the GoT data (Fig. 3c,d), despite no increase in the TF gene expressions 

themselves (Extended Data Fig. 7b, Supplementary Table 11). With respect to PRC2 
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targets, although hypomethylation of PRC2 target genes were observed, we observed no 

differential increase in expression in mutated cells (Extended Data Fig. 8h) and no enhanced 

accessibility of PRC2 targets in the mutated cells from mouse snATAC-seq data (Extended 

Data Fig. 10h).

As further confirmation of our proposed model, we found that HIF1A/ARNT and 

MYC/MAX binding motifs were hypomethylated in CH mutated cells compared to 

wildtype progenitors in the single-cell multi-omics data (P = 2.7 × 10−4 and P = 1.7 

× 10−2, respectively, linear mixed model, Fig. 5h,i). Moreover, as MYC targets were 

upregulated in CH mutated cells in the GoT data, we leveraged our single-cell multi-

omics approach to directly link the expression of MYC/MAX targets with the level 

of DNA methylation of MYC/MAX target promoters within the same cells (see online 

methods). Indeed, the expression of MYC/MAX target genes was negatively correlated 

with mean methylation of their binding sites (P = 3.2 × 10−18, generalized linear model, 

Fig. 5j), consistent with prior studies indicating that hypomethylation of binding motifs 

enhances MYC binding121,122,140,141. Thus, our single-cell multi-omics profiling provides a 

potential model for the observed transcriptional aberration in human DNMT3A mutated CH, 

supporting enhanced fitness of DNMT3A mutated cells via selective hypomethylation of key 

hematopoietic TF binding motifs.

DNMT3A-mutated CH bone marrow sample corroborates results from stem cell graft CH 
samples

To confirm that the findings we observed in the CH samples were generalizable to CH 

not exposed to G-CSF or prior chemotherapy, we obtained a bone marrow sample from a 

patient without any underlying hematologic disorders with a DNMT3A R882H mutation 

(CH05). We sorted for CD34+ cells and performed GoT as we had done for CH01-CH04 

samples (n = 5,770 cells). Although a low genotyping efficiency limited the comparisons 

between mutated and wildtype cells within the same sample (n = 687 genotyped cells), 

this sample consisted of mostly mutated cells with a high VAF (0.4), enabling a direct 

comparison to previously published healthy control CD34+ bone marrow cells (n = 39,082 

cells, Supplementary Table 12, online methods)142,143. We batch-corrected and integrated 

across the samples as previously described44 (Fig. 6a,b, Extended Data Fig. 11a–e). We 

first determined whether the bone marrow CH IMPs may display the lineage biases as 

previously observed in the CH01-CH04 samples. Consistent with those results, the IMPs 

from CH05 demonstrated skewing toward the ME versus GM state, compared to the control 

bone marrow CD34+ cells (Fig. 6c, Extended Data Fig. 12a–c). Next, we assessed the 

progenitor-specific differentially expressed genes identified in the CH01-CH04 samples and 

confirmed the expected increased or decreased expression for the differentially upregulated 

or downregulated genes in mutated cells, respectively, in CH05 progenitors, compared to 

control progenitors (data for HSPCs and EPs in Fig. 6d, Extended Data Fig. 12d,e, see other 

progenitors in Extended Data Fig. 12f). Furthermore, we observed an enrichment of the 

MYC/MAX target genes in the CH05 progenitors compared to the control progenitor cells 

(Fig. 6e), again most pronounced within the EPs. Intriguingly, the CH05 cells integrated 

evenly across progenitor subsets with control CD34+ cells except for a subcluster of EPs 

(EP2, Fig. 6a–b, Extended Data Fig. 12g). We suspected that the MYC/MAX target gene 
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expression may be particularly impacted in this aberrant cluster and identified this to be the 

case (Fig. 6e, right). While the low genotyping efficiency limited our ability to make within 

cluster mutated versus wildtype comparisons in this sample, we were able to confirm across 

clusters the increased expression of differentially upregulated genes identified in more 

than one progenitor subset (Extended Data Fig. 12h–j, genes from Fig. 3b). Lastly, to test 

whether CD9 protein expression was impacted by the upregulation of the gene expression 

observed in the mutated HSPCs from CH01-CH04, we incorporated protein expression in 

this sample through CITE-seq144. As CD9 expression has been linked with megakaryocytic 

differentiation priming59,60, we examined CD9 protein expression in the in the early CD34+, 

CD38low hematopoietic stem and progenitor cells along the megakaryocytic differentiation 

trajectory and observed an increased CD9 expression in mutated compared with wildtype 

cells (Extended Data Fig. 12k,l).

To test the chromatin accessibility of TF motifs (as a surrogate for TF activity) that 

bear high similarity to the DNMT3A R882 hypomethylated motif directly in this CH 

sample, we extended GoT to the 10x Multiome (ATAC+RNA) platform and applied it 

to sorted CD34+ nuclei (Fig. 6f, Extended Data Fig. 13a–c, n = 3,824 nuclei, note that 

the transcriptome data failed QC metrics and was not used downstream). As genotyping 

efficiency depends on mRNA abundance, the lower mRNA abundance in nuclei limited 

genotyping. We therefore again took advantage of the high VAF (~80% cells are mutant) 

and showed that across these cells, the accessibility of the hypomethylated motif – as 

well as those of MYC/MAX, HIF1A/ARNT, USF1/2/TFE3 – was increased compared to a 

shuffled motif and that of MYB, which may serve as an additional negative control (Fig. 

6g). The accessibility of the hypomethylated motif increased with erythroid differentiation 

but not with lymphoid differentiation, consistent with the importance of these highlighted 

TFs in erythroid differentiation (Extended Data Fig. 13d,e). Finally, even within the limited 

number of genotyped cells, we observed that the accessibility of the hypomethylated motif 

was increased overall in the mutated cells compared to the wildtype-enriched population 

(Fig. 6h,i). In summary, these findings in a bone marrow DNMT3A-mutated CH sample, 

not complicated by exposure to G-CSF or prior chemotherapy, corroborated the findings in 

samples CH01-CH04, suggesting that the comparisons between mutated and wildtype cells 

within the same individuals are indeed robust to the potentially confounding extrinsic factors 

and are largely generalizable to steady-state DNMT3A R882-mutated CH.

Discussion

We present an unbiased profiling of the downstream effects of somatic driver mutations 

in clonal mosaicism of normal human tissue, focusing on DNMT3A mutations in 

clonal hematopoiesis. Hitherto, extensive genetic profiling across normal tissues has been 

performed to document the striking mosaicism that result from pervasive age-related 

acquisition of somatic mutations1–5. For example, a landmark study of morphologically 

normal skin from the eyelids of four individuals identified ~140 mutations per square 

centimeter5. Importantly, while these studies have demonstrated that mutations in cancer 

drivers are particularly prevalent5, the downstream effects of cancer driver mutations that 

enable clonal outgrowths in normal human tissue are largely unknown.
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Similarly, CH is a prevalent phenomenon in physiological hematopoietic aging fueled by 

driver mutations linked with myeloid neoplasms. However, the downstream consequences 

of these mutations in normal human hematopoietic progenitors are largely unknown. 

Previous studies leveraged rare germline mutations in small cohorts of patients to study 

the downstream perturbations of these mutations104,112. For example, by examining 

mature blood cells from an individual with Tatten-Brown-Rahman Syndrome (TBRS) 

due to a germline DNMT3A R882H mutation, with a sibling control104, the Ley group 

demonstrated focal hypomethylation, including of CpG islands, consistent with our findings. 

More recently, the Goodell group studied the effects of DNMT3A R771Q mutation by 

transforming primary cells into a lymphoblastoid cell line (LCL) from an early embryonal 

mosaic individual145, demonstrating significant overlap in hypomethylated regions in these 

DNMT3A R771Q LCLs and DNMT3A mutated AML.

Nonetheless, we previously lacked the ability to directly compare mutated and wildtype 

progenitors in human CH in their native context. Specifically, two obstacles challenge the 

study of CH mutation impact directly in primary patient samples. First, CH specimens 

with enriched human hematopoietic progenitors are scarce, as individuals with CH have 

no current clinical indication for a bone marrow biopsy. To circumvent this limitation, we 

pursued an alternative approach to profile CH mutated cells in stem cell graft products 

obtained from a cohort of MM patients in remission146 and identified one DNMT3A R882H 

CH bone marrow specimen without G-CSF exposure or a potentially confounding cancer 

diagnosis to validate our findings. Second, mutated cells are admixed with wildtype in 

the hematopoietic progenitor pool and are morphologically and phenotypically indistinct. 

Thus, mutated cells cannot be isolated from wildtype cells for downstream analysis. We 

overcame this challenge by leveraging single-cell multi-omics that enabled us to profile 

the transcriptomes and epigenomes, together with the genotype information, of these single 

cells.

The application of the GoT approach38 enabled high-resolution mapping of DNMT3A R882 

mutated cells to the hematopoietic differentiation tree to reveal differentiation skewing, even 

before clinically observable changes in blood counts. We observed a myeloid over lymphoid 

bias, consistent with prior murine studies51, and the strong association of this genotype with 

myeloid versus lymphoid neoplasms. We further identified expansion of mutated IMPs and 

ME-biased IMPs. Enrichment of mutated cells in IMPs was linked with a specific increase 

in proliferation compared to wildtype cells. Notably, myeloid-bias has been linked with 

proinflammatory signaling64,147, and thus a proinflammatory state in mutated HSPCs (i.e. as 

evidenced by the overexpression of TNFRSF4, TYROBP, FCER1G) may also contribute to 

the enrichment of mutated cells in IMPs. Mutated IMPs further displayed a megakaryocytic-

erythroid lineage bias, with enhanced transition probability of mutated IMPs to differentiate 

into IMP-MEs, consistent with our previous study in Dnmt3a KO mouse model54, as well as 

a Dnmt3a R878H model showing increased platelet counts64.

As DNMT3A R882-induced changes in DNAme are globally distributed across the 

genome, we sought to understand how stochastic DNAme changes can be translated 

into deterministic outputs, especially with respect to differentiation skews. We found that 

the DNMT3A R882 variants displayed a CpG sequence motif specificity, disfavoring 
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CpGs with T at the N+1 position, consistent with deep enzymology assays120. Notably, 

this hypomethylated CpG flanking motif bore high similarity to the binding motifs 

of key hematopoietic TFs, such as MYC/MAX, HIF1A/ARNT, USF1/2, providing a 

mechanistic model for enhanced MYC activity observed in our GoT data. This model 

was supported by mouse Dnmt3a R878H and, critically, human CH bone marrow data 

in which snATAC-seq of hematopoietic progenitors revealed enhanced accessibility of 

the hypomethylated motif and importantly of the MYC/MAX, HIF1A/ARNT, USF1/2 

binding motifs. The accessibility changes associated with the hypomethylated motif were 

specifically pronounced in myeloid versus lymphoid progenitors, suggesting that these 

molecular consequences may play a role in differentiation biases. Furthermore, our single-

cell multi-omics platform further enabled us to identify that cells with hypomethylation 

of MYC/MAX binding motifs showed increased expression of their transcriptional targets 

within the same cells, consistent with previous reports that demonstrated the negative 

impact on MYC activity imparted by the methylation of its binding motif121,122,140,141. 

These data revealed how modest, global, stochastically distributed DNAme changes can be 

translated into phenotypic skews. Through differences in the enrichment of CpG flanking 

sequence density of TF DNA binding motifs, subtle global DNAme changes affecting 

hundreds of binding sites can modulate TF output to result in reshaping of the differentiation 

landscape54. While our data provided several lines of evidence for this model, our ability to 

demonstrate cause-and-effect relationships is limited by the inability of the current state-of-

the-art to precisely methylate or de-methylate CpGs within a specific sequence context, in 

this case, the R882-specific hypomethylated motif.

We further identified preferential hypomethylation of PRC2 targets. While the relationship 

between PRC2-mediated histone methylation and DNA methylation is not fully understood, 

DNA methylation may serve to “lock in” gene silencing with a mechanism with more 

robust mitotic inheritance148. PRC2 targets in stem cells include pluripotency/stemness 

genes149–151, and are enriched for bivalent H3K27me3/H3K4me3 marks152,153, suggesting 

that PRC2 results in “poising” rather than in complete silencing at those sites. In 

contrast, more differentiated cells reinforce gene silencing by increasing the length of 

H3K27me3 domains, or through complementary silencing mechanisms including DNA 

methylation115–117. Thus, while PRC2 targets are broadly suppressed in stem cells, some 

leaky transcription may still occur, compared to PRC2 targets that have also underwent 

DNA methylation. This nuanced model posits that PRC2 targets DNA hypomethylation in 

DNMT3A mutated progenitors, may allow for their reactivation in response to stimuli, as 

another candidate mechanism for enhanced self-renewal through de-repression of stem cell 

programs. As activation of stem cell markers such as those repressed by the polycomb 

group proteins have been implicated in endowing cancer with stem-like properties154, our 

data points to poising of PRC2 targets as a potential mechanism for enhanced stem cell 

renewal upon malignant transformation. While PRC2 deficiency has been reported to lead to 

overexpression of stem cell maintainers such as HoxC4 and inhibitors of differentiation such 

as Sox7 and Id2 in a murine model (Eed KO), as well as relative expansion of LT-HSC118, 

Eed KO cells also showed reduced competitive repopulating capacities with pro-apoptotic 

predisposition118. These data suggest that PRC2 target activation of self-renewal requires 

cooperation of an oncogenic TF such as MYC to counterbalance the proapoptotic effects 
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and support clonal expansion in DNMT3A R882 cells. In support of this model, a recent 

work in mice demonstrated that while Ezh2 KO itself had little impact on hematopoiesis 

(likely due to redundant homologs), Ezh2 KO together with a compounding oncogenic 

driver (Nras G12D) promoted myeloid malignancy with activation of stemness genes155. 

Interestingly, Nras G12D alone promoted GM over ME bias, but in the double Ezh2 KO, 

Nras G12D mutated model, hematopoiesis was shifted toward ME over GM, suggesting 

that the PRC2 aberrations may indeed play a role in the observed ME bias (in addition to 

the better-established role of MYC in ME differentiation)155. Future studies are needed to 

decipher the cell extrinsic and intrinsic cues that may re-activate the expression of PRC2 

target genes in DNMT3A-mutated stem cells.

A potential limitation of our study of stem cell grafts is the exposure to G-CSF used in 

stem cell mobilization from patients with MM (of note, patients were not subject to other 

mobilization agents, such as CXCR4 antagonists or cyclophosphamide). Nonetheless, our 

analyses uniquely compared mutated and wildtype cells within the same sample, which 

were equally subjected to G-CSF. Indeed, our CH05 bone marrow aspirate sample from 

an individual with CH and no cancer diagnosis confirmed the major findings of the study, 

showing that comparing mutated versus wildtype cells from the same individuals is robust 

to the potential extrinsic confounders. For example, although G-CSF stimulates granulocytic 

differentiation and proliferation156, we were still able to capture the megakaryocytic-

erythroid bias in the early mutated progenitors. Importantly, G-CSF is especially effective 

in mobilizing quiescent murine HSCs, without inducing proliferation157. Interestingly, in 

the context of cell line models of DNMT3A R882, G-CSF induced a differentiation block 

in vitro in one study34 and GM-CSF masked the proliferative effects of the mutation in 

another158. Although these results were observed in cell lines, and thus the applicability to 

human CH is less clear, these data suggest that G-CSF may serve as a confounder. In this 

context, our validation of the major findings in a CH sample without exposure to G-CSF is 

of particular importance.

Another limitation results from the incomplete capture of the heterozygous allele in our GoT 

cDNA amplicon method due to low expression (median of 1 amplicon per genotyped cell, 

range 1–4 UMIs per cell). This is likely to result in misclassification of some mutated cells 

as wildtype cells. Nonetheless, as this is expected to diminish mutation-specific signals, the 

mutation-specific aberrations reported herein may likely have an even stronger effect size. 

Another limitation of the study is the sample size, due to the rarity of available samples. 

In this context, it is important to note that intensive profiling of a small number of samples 

(e.g. mutational profiling of normal eyelid samples from four individuals5 or epigenetic 

profiling of one TBRS patient with germline DNMT3A R882H mutation104) have shown 

that fundamental insights can be gained from these cases, directly in human samples. Our 

data further highlighted that the gene expression and epigenetic changes associated with 

clonal growth over decades are relatively subtle, consistent with the fact CH cells do not 

overtly display morphologic or immunophenotypic changes. This observation emphasizes 

the need for single-cell multi-omics approaches for the study of clonal mosaicisms, as it 

enables a direct comparison of the mutated and wildtype cells within the same individuals. 

This approach enabled us to highlight reproducible gene expression perturbations and their 

epigenetic underpinnings, supported by evidence from published reports and murine data.
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Altogether, we report the first direct examination of the molecular consequences of 

DNMT3A R882 mutations in primary CD34+ cells in human CH. These studies allowed 

us to directly superimpose the differentiation topographies of mutated and wildtype 

hematopoietic progenitors, co-existing within the same individuals. We identified key 

epigenetic and transcriptional aberrations that reshape the differentiation topography and 

contribute to clonal expansion in the most nascent stage of neoplasia. These data also 

demonstrate the power of emerging single-cell multi-omics methods159–162 to pave the road 

towards defining how mutations drive normal tissue mosaicism in human somatic evolution.

ONLINE METHODS

Patient samples

The study was approved by the local ethics committee and by the Institutional Review Board 

(IRB) of Weill Cornell Medicine, University of Chicago and Dana Farber Cancer Institute 

conducted in accordance to the Declaration of Helsinki protocol. All patients provided 

informed consent. Cryopreserved G-CSF mobilized stem cell grafts (without additional 

mobilizing agents such as plerixafor or cyclophosphamide) from patients in remission 

for multiple myeloma, with documented DNMT3A R882 mutations were retrieved after 

interrogating a cohort of 136 patients with CH40. See Supplementary Table 1 for clinical 

information. Cryopreserved grafts were thawed and stained using standard procedures (10 

min, 4°C) with the surface antibody CD34-PE-Vio770 (clone AC136, lot# 5180718070, 

dilution 1:50, Miltenyi Biotec) and DAPI (Sigma-Aldrich). Cells were then sorted for DAPI-

negative, CD34+ cells using BD Influx at the Weill Cornell Medicine flow cytometry core.

Mouse Models

All animals were housed at Memorial Sloan Kettering Cancer Center (MSKCC). All 

animal procedures were completed in accordance with the Guidelines for the Care and 

Use of Laboratory Animals and were approved by the Institutional Animal Care and Use 

Committees at MSKCC. The Dnmt3a R878H mouse model has been described previously51, 

and was crossed to the Tal1-creERT2 transgenic model to allow for inducible control of 

the R878H mutation within the hematopoietic system166. To induce recombination of the 

conditional alleles, age and gender-matched 10–16 week old Tal1-creERT2 control mice and 

Dnmt3a R878H Tal1-creERT2 mice were treated with tamoxifen (4 mg/kg/day; Cayman 

Chemical, Ann Arbor, Michigan) for 2 doses, separated 2 days apart. The mice were 

sacrificed 4–8 weeks after tamoxifen-induction. Primary mouse bone marrow (BM) cells 

were isolated into cold phosphate-buffered saline (PBS), without Ca2+ and Mg2+, and 

supplemented with 2% bovine serum albumin (BSA) to generate single cell suspensions. 

Red blood cells (RBCs) were removed using ammonium chloride-potassium bicarbonate 

(ACK) lysis buffer, resuspended in PBS/2% BSA, and filtered through a 40μm cell strainer. 

Total nucleated cells were quantified by Vi-Cell XR cell counter (Beckman Coulter, Brea, 

CA) and used for downstream data production.

Genotyping of Transcriptomes (GoT)

Genotyping of Transcriptomes was performed as previously described38. The standard 

10x Genomics Chromium 3’ (v.3 chemistry) libraries were carried out according 
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to manufacturer’s recommendations for the generation of scRNA-seq libraries (Fig. 

1a). At the cDNA amplification step, 1 μL of 1 μM spike-in primer (5’ – 

GAGGTCAAACTCCATAAAGCAGGGC– 3’) was added to increase the yield of 

DNMT3A cDNA. After cDNA amplification and cleanup with SPRI beads, 25% of 

the cDNA underwent the standard 10x protocol per manufacturer recommendations. The 

unused cDNA was stored and 10% was subsequently used for targeted genotyping. 

For locus-specific amplification (GoT), two serial PCRs were performed with nested 

reverse primers (5’ – CTTATGGTGCACTGAAATGGAAAGGG – 3’ and 5’ – 

CCTTGGCACCCGAGAATTCCAGGTTTCCCAGTCCACTATACTGACG – 3’) and the 

generic forward SI-PCR were used to amplify the site of interest from the cDNA 

template (10 PCR cycles each). The second locus-specific reverse primer contains a partial 

Illumina TruSeq Small RNA read 2 handle and a locus-specific region to allow specific 

priming. The SI-PCR oligo (10x Genomics) anneals to the partial Illumina TruSeq read 1 

sequence, preserving the cell barcode (CB) and unique molecule identifier (UMI). After 

these rounds of amplification and SPRI purification to remove unincorporated primers, 

a third PCR was performed with a generic forward PCR primer (P5_generic, 5’ – 

AATGATACGGCGACCACCGAGATCTACAC – 3’) to retain the CB and UMI together 

with an RPI-x primer (Illumina) to complete the P7 end of the library and add a sample 

index (6 cycles). The targeted amplicon library was subsequently spiked into the remainder 

of the 10x library to be sequenced together on a NovaSeq (Illumina). The cycle settings were 

as follows: 28 cycles for read 1, 98 cycles for read 2, 8 cycles for i7 and 8 cycles for i5 

sample index.

10x scRNA-seq data processing, alignment, cell-type classification and clustering

10x data were processed using Cell Ranger (v3.0.1) with default parameters. Reads 

were aligned to the human reference sequence hg19. The genomic region of interest 

for genotyping was examined to determine how many UMIs with the targeted sequence 

were present in the conventional 10x data. The Seurat package (v.3.1) was used to 

perform unbiased clustering of the CD34+ sorted cells from patient samples167. In brief, 

for individual datasets, cells with UMI < 200 or UMI > 3 median absolute deviations 

from the median UMI, or mitochondrial gene percentage > 20%, were filtered. The data 

were log-normalized using a scale factor of 10,000. Before clustering, the individual 

datasets (CH01-CH04) were integrated and underwent batch-correction within Seurat, which 

implements canonical correlation analysis and the principles of mutual nearest neighbor44. 

Recommended settings were used for the integration (30 canonical correlation vectors for 

canonical correlation analysis in the FindIntegrationAnchors function and 30 principal 

components for the anchor weighting procedure in IntegrateData function). Following 

integration, potential confounders (specifically, number of UMIs per cell, proportion of 

mitochondrial genes, and patient sex) were regressed out of the data before principal 

component analysis was performed using variable genes using recommended settings (i.e. 

top 2000 variable genes using variance stabilizing transformation)44. The first statistically 

significant 30 principal components were used as inputs to the UMAP algorithm for cluster 

visualization168. Clusters were manually assigned on the basis of differentially expressed 

genes using the FindAllMarkers function using default settings (using all genes that are 

detected in a minimum of 25% of cells in either of the two comparison sets as input, 
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and log-transformed fold change of 0.25 as the threshold). We identified 20 clusters in the 

integrated data, which were annotated according to canonical lineage markers identified 

previously in single-cell RNA-seq data of normal hematopoietic progenitor cells53. These 

clusters were collapsed into 11 main progenitor subsets based on expression of levels of 

these canonical markers (Extended Data Fig. 3b,c). Pseudotime analysis was performed 

using the Monocle3 R package using recommended parameters (v.0.2.1, Extended Data Fig. 

4d) 50. In order to specify the initial cluster of the pseudotime trajectory, we identified the 

cluster with the highest expression level of the HSPC gene module (Fig. 1b, Supplementary 

Table 2). The Slingshot R package (v.1.6.1) was used to isolate the minimum spanning tree 

for the LMPP and CLP subset of cells (Fig. 2a) with default parameters.

IronThrone GoT for processing targeted amplicon sequences and mutation calling

Analysis of the GoT library was carried out as described previously38. Briefly, amplicon 

reads were assessed for presence of the primer sequence and the expected sequence between 

the primer and the mutation site. Reads were also assessed for matching to the cell barcode 

list of the 10x dataset. A mismatch of 20% was allowed for all sequence matching steps. 

Only UMIs with at least 2 or more supporting reads were retained for final genotyping 

assignments. A few key improvements to our IronThrone pipeline (v.2.1) are detailed below.

First, parallelization was implemented to increase runtime efficiency for larger sequencing 

libraries169. The amplicon library of paired reads was shuffled and subsetted into smaller 

groups of reads (default 125,000 reads/group). Then, the original IronThrone algorithm was 

run on each one of these groups. This step has been parallelized using both GNU Parallel 

tools for local interactive operation, as well as options for Slurm-managed high-performance 

compute clusters. Output tables from these runs are finally concatenated by cell barcode.

Second, we improved the UMI counting of the amplicon reads by removing ‘pseudo’-UMIs 

introduced by PCR and sequencing errors (that would result in a false increase in the number 

of UMIs). Based on previously published work42, we implemented a network-based UMI 

collapsing algorithm to aggregate amplicon reads that likely originated from the same UMI 

in the original 10x library. Briefly, pairwise Levenshtein distances were calculated between 

all UMIs paired within a single cell barcode, and “matches” between UMIs were identified 

as UMI pairs with a Levenshtein distance below a predetermined threshold (default = 

ceiling(0.1 * UMI length), or 2 bases for a 12 base UMI). The UMI with the greatest 

number of matched UMIs was determined to be the initial UMI. The number of supporting 

reads for these UMI groups was summed together and attributed to that initial UMI with 

the most matches. This process was then repeated for the UMI with the next highest 

number of matches until no additional collapsing was possible. This improved pipeline was 

applied to the previously-described species mixing experiment38, demonstrating a significant 

improvement in the removal of aberrant genotyping UMIs (see Results, Extended Data Fig. 

1e).

Following UMI collapse, genotype assignment of individual UMIs was conducted as 

described previously with majority rule of supporting reads for wildtype or mutant 

status. Rare UMIs with an equal number of mutant and wildtype reads were removed as 

ambiguous. Additionally, to remove reads that result from PCR recombination38, UMIs in 
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the amplicon library that match UMIs of non-DNMT3A genes in the gene expression library 

were discarded. Of note, the latter likely PCR-recombination events were associated with 

lower number of read per UMI compared with UMIs in the amplicon library that matched 

DNMT3A UMI in the gene expression library (Extended Data Fig. 1f). We leveraged 

this observation, and retained UMIs without a corresponding associated gene in the gene 

expression library, so long as their read count was above the 80th percentile of read counts 

for non-DNMT3A genes. Finally, single cells were assigned mutant or wildtype genotype 

status as follows: cells with one or more mutant UMIs were assigned as mutant cells, and 

cells with 0 mutant UMIs and at least one wildtype UMI were assigned as wildtype. While 

the genotyping information is derived from transcribed molecules and may be affected by 

the capture of transcripts from wildtype versus mutant alleles of heterozygous mutations, the 

frequency of mutant cells as determined by GoT using all cells that harbor at least one UMI 

yielded values that were similar to that determined by bulk DNA exon sequencing (Extended 

Data Fig. 1c).

Mutant cell frequency analysis

To exclude the possibility that variable DNMT3A expression may impact the ability to 

detect mutant alleles and thereby impact mutated cell frequency in distinct progenitor 

subsets, we down-sampled all cells to a single amplicon UMI prior to mutation calling 

for calculating mutant cell frequencies (Fig. 2a,b). An equal number of cells from each 

sample CH01-CH04 (n = 83 cells for LMPP + CLP (Fig. 2a) and n = 978 cells for 

analysis of all cell types (Fig. 2b)), were subsampled randomly for the integrated data. 

Genotyping amplicon UMIs were downsampled (x100 iterations) to one per cell and mutant 

cell frequency was determined for each cluster for either the integrated dataset or individual 

samples. This frequency was then divided by the total mutant cell frequency across all 

progenitor subsets for each of the iterations. Linear mixed effects analysis was performed 

using the lme4 package (v.1.2–1). Progenitor identity was defined as the fixed effect, 

and for random effects, we used intercepts for individual patients (subjects) and iterative 

downsampling. P-values were obtained by likelihood ratio tests of the full model with the 

fixed effect against the model without the fixed effect170.

RNA velocity

RNA velocity was calculated using scVelo (v0.2.2)57. For generating the loom file, the 

Python (v3.7) version of Velocyto (v0.17) 56 was ran using the velocyto run command. The 

cell barcode and bam files were obtained using Cell Ranger. In addition to the cell barcode 

and bam files, a GTF file corresponding to the reference used for alignment (hg19; Ensembl 

187) was supplied. Repetitive regions were masked using a GTF file downloaded from 

UCSC selecting for repetitive regions in GRCh37 (hg19). QC was assessed by the percent of 

unspliced reads per sample, requiring a minimum of 25% total unspliced reads. If duplicated 

gene names were present in the spliced and unspliced tables the counts were summed to 

leave only unique genes. Next, gene velocity for each patient and genotype was estimated 

separately using scVelo (v0.2.2). In order to avoid a potential confounder of unequal number 

of cells for each genotype, random sampling of the same number of mutant and wildtype 

cells to the minimum number in either group was performed for each patient sample for 

downstream analysis. Gene selection for RNA velocity estimation was performed requiring a 

Nam et al. Page 19

Nat Genet. Author manuscript; available in PMC 2023 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minimum of 20 counts. After log-normalization by cell depth, the top 2,000 genes with the 

highest dispersion were selected for downstream calculations. Next, first and second order 

moments were computed among nearest neighbors in principal component space, using the 

pp.moments function with parameters n_pcs = 30 and n_neighbors = 30. RNA velocity 

was estimated using the dynamical model option of the tl.velocity function. The cell-to-cell 

transition probability matrices were retrieved for either wild type or mutant cells. For a 

given cell, we averaged the probabilities of transitioning to transcriptional states within a 

cluster of interest. This resulted in a mean probability of transition for the cell of interest 

to a given cluster. Statistical significance of the mean single cell differentiation probabilities 

between genotypes was estimated by linear mixed models. Sample was added as the random 

effect and genotype as the fixed effect. P-values were obtained by likelihood ratio tests of 

the full model with the fixed effect against the model without the fixed effect. To further 

compare wildtype to mutant probabilities for a given transition, we calculated the median 

of the distribution of single-cell mean transition probabilities toward other cell clusters, and 

calculated the mutant-to-wildtype odds ratio of the median probabilities.

Gene module scoring, differential expression and gene set enrichment analysis

For examining gene and gene module expression (see Supplementary Table 2), the function 

AddModuleScore was used to calculate the relative expression of the genes for each cell 

within the Seurat package (e.g. Fig. 2c; MkP-EP module score (union of the MkP and 

EP module genes in Supplementary Table 2) was calculated using the AddModuleScore 

function)44. Briefly, control gene module expressions were calculated and subtracted from 

the average gene module expression of interest, as previously described55. All analyzed 

genes were classified based on average expression into 24 bins, and for each gene in the 

module, 100 control genes are randomly selected from the same expression bin as the gene 

of interest55. For statistical analysis, genotype status was entered as the fixed effect and 

subjects as random effects in a linear mixed model. P-values were obtained by likelihood 

ratio tests of the full model with the fixed effect against the model without the fixed effect.

Differential expression analysis comparing wildtype and mutant cells was conducted using 

a within-sample permutation test for each progenitor cell subtype. Briefly, to ensure equal 

representation from each patient, the numbers of mutated and wildtype cells from each 

patient were downsampled to the same number, respectively. Observed log2 fold change 

values were calculated with original genotyping assignments (MUT versus WT) for the 

tested genes. The tested genes included the top 2,500 most variable genes which were 

filtered for those expressed in at least 5% of either group (mutated versus wildtype), for 

each progenitor subtype. Ribosomal and mitochondrial genes were excluded. Next, over 

100,000 iterations, WT and MUT labels were shuffled within each patient, and fold change 

values were re-calculated to create a background distribution. P-values were calculated per 

gene as a percent of permutations whose absolute fold change values were more extreme 

than the absolute value of the observed fold change (Supplementary Table 3). As an 

orthogonal approach, we also performed differential expression analysis comparing wildtype 

and mutant cells via the linear mixed model framework. For each gene, genotype status 

was entered as the fixed effect and subjects as random effects. P-values were obtained by 
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likelihood ratio tests of the full model with the fixed effect against the model without the 

fixed effect (Supplementary Table 3).

Hypergeometric test for gene set enrichment analysis of the integrated differentially 

expressed genes (P-value < 0.05, log2(fold change) > 0.25) was performed using the Cluster 

Profile package (v. 0.1.9)171. FDR multiple hypothesis testing correction was performed. 

MSigDB C2: Chemical and genetic perturbations (CGP) sources were included in the 

analyses (Supplementary Table 4).

Copy number variation analysis

The InferCNV package (v.1.4.0)43 was used to analyze the single cell dataset for any 

duplications or deletions of entire chromosomes or large chromosome fragments. Briefly, 

by comparing expression levels of genes annotated by chromosomal position (using the 

CONICSmat package, v0.0.0.1172) to a set of reference cells (in this case, a one-versus-rest 

comparison of cells by patient of origin), a heatmap of relative expression can be generated 

and used to identify regions with significantly increased or decreased expression. We 

removed the few genes for which alternative positions have been reported (<2% of genes). 

We downsampled our dataset to 978 genotyped cells from each patient (the minimum 

number of genotyped cells from any given individual patient). We then ran the InferCNV 

workflow with recommended parameters, using the i6 6-state Hidden Markov model 

(Extended Data Fig. 2a). As a positive control, we specifically analyzed relative expression 

of Y-chromosome genes to ensure sex-differences between patients were appropriately 

reflected in our data (Extended Data Fig. 2b).

Hypomethylated motif enrichment analysis in differentially expressed genes

The HOMER (v4.9) scanMotifGenomeWide function was used to search for occurrences 

of the DNMT3A R882 hypomethylated motif and a control motif containing a CpG. For 

each gene in the scRNA-seq dataset, TSS coordinates were identified and a .bed file was 

created with intervals of ±10 kb, 30 kb or 50 kb surrounding each TSS. These two sets of 

coordinates were intersected using bedtools (v2.30.0), and the number of hypomethylated 

motif or control motif sites were counted per gene. Differentially expressed genes were 

classified as upregulated (P < 0.05, log2(fold change) > 0.25) or downregulated (P < 0.05, 

log2(fold change) < −0.25), and counts of hypomethylated motif sites were compared, 

with P-values obtained by Wilcoxon rank sum test. To ensure that the results were not 

driven simply by the presence of a CpG, we also determined the ratio of the counts of the 

hypomethylated motif to that of the control shuffled motif with CpG per gene.

Joint multiplexed single-cell methylome and single-cell RNA-seq library construction

DNA methylation data was processed produced as previously described by Gaiti et al.39 

Briefly, genomic DNA (gDNA) and mRNA were separated as follows. A modified oligo-dT 

primer (5′-biotin-triethyleneglycol-AAGCAGTGGTATCAACGCAGAGTACT30VN-3′, 

where V is either A, C or G, and N is any base; IDT) was conjugated to streptavidin-coupled 

magnetic beads (Dynabeads, Life Technologies) according to the manufacturer’s 

instructions. To capture polyadenylated mRNA, we added the conjugated beads (10 μl) 

directly to the cell lysate and incubated them for 20 min at room temperature with mixing to 
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prevent the beads from settling. The mRNA was then collected to the side of the well using a 

magnet, and the supernatant, containing the gDNA, was transferred to a fresh plate. Single-

cell complementary DNA was amplified from the tubes containing the captured mRNA 

according to a variation of the Smart-Seq2 protocol 107 using molecular crowding to 

increase sensitivity173. After amplification and purification using 0.8X SPRI beads, 0.5 ng 

cDNA was used for Nextera Tagmentation and library construction. At the cDNA 

amplification step, the following primers were spiked-in (0.5 μM final) to specifically 

increase capture of the locus around DNMT3A R882 mutation (Fw: 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTTTCCCAGTCCACTATACTGA

CG-3’ ; Rv: 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGACCGGCCCAGCAGTCTC 

−3’). The same primers were used to specifically amplify the target locus separately in a 

portion of the cDNA. Library quality and quantity were assessed using Agilent Bioanalyzer 

2100 and Qubit, respectively. Libraries were then sequenced with paired-end, 50-base reads, 

using a NovaSeq sequencer (Illumina).

Genomic DNA present in the pooled supernatant and wash buffer from the mRNA isolation 

step was concentrated on 0.8X SPRI beads and eluted directly into the reaction mixtures for 

single digest or Msp1 + HaeIII (Fermentas) for double restriction enzyme digest reaction 

(10μL final reaction) for 90 min at 37°C. Heat-inactivation was performed for 10 min 

at 70°C. Digested DNA was filled-in and A-tailed at the 3’ sticky ends in 8.5 μL final 

volume of 1X CutSmart with 2.5 units of Klenow fragment (Exo-, Fermentas). Reaction 

was supplemented with 1 mM dATP and 0.1 mM dCTP and 0.1 mM dGTP (NEB) and 

performed as follows in a thermocycler: 30°C for 25 min, 37°C for 25 min, and 70°C for 

10 min (heat-inactivation). Custom barcoded methylated adaptors (0.1 μM) were then ligated 

overnight at 16°C with the dA-tailed DNA fragments in the presence of 800 units of T4 

DNA ligase (NEB) and 1 mM ATP (Roche) in a final volume of 11.5 μL of 1X CutSmart 

buffer. T4 DNA ligase heat-inactivation was performed at 70°C for 15 min the next day. 

Genomic DNA from 24 individual cells were pooled together according to their barcodes, 

giving 4 pools of 24 cells for a 96-well plate. Pooled genomic DNA was cleaned-up and 

concentrated using 1.8X SPRI beads (Agencourt AMPure XP, Beckman Coulter). Each pool 

was then converted using an enzyme-based conversion to increase the recovery of single cell 

gDNA compared to standard bisulfite conversion (NEBNext Enzymatic Methyl-seq, New 

England Biolabs)102. Standard bisulfite conversion was implemented for double restriction 

enzyme digest reactions, as previously described107. Converted DNA was then amplified 

using primers containing Illumina i7 and i5 index. Following Illumina pooling guidelines, a 

different i7 and i5 index was used for every 24-cell pool, allowing multiplexing of several 

samples for sequencing on Illumina NovaSeq6000. Library enrichment was done using 

KAPA HiFi Uracil+ master mix (Kapa Biosystems) and the following PCR condition was 

used: 98°C for 45 secs; 6 cycles of: 98°C for 20 secs, 58°C for 30 secs, 72°C for 1 min; 

followed by 12 cycles of: 98°C for 20 secs, 65°C for 30 secs, 72°C for 1 min. PCR was 

terminated by an incubation at 72°C for 5 min. Enriched libraries were cleaned-up and 

concentrated using 1.3X SPRI beads. DNA fragments between 200 bp and 1 Kb were 

size-selected and recovered after resolving on an E-Gel EX Precast Agarose Gels (Thermo 

Fisher Scientific). Library molarity concentration calculation was obtained by measuring 
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concentration of double stranded DNA (Qubit) and quantifying the average library size 

(bp) using an Agilent Bioanalyzer. Every 24-cell pool was mixed with the other pools in 

an equimolar ratio. Negative controls (empty wells with no cells) were used to control for 

non-specific amplification of the libraries.

Multimodal single cell methylome and RNA sequencing data processing

Methylation analysis pipeline.—DNA methylation data was processed as previously 

described39. Pools of 24 cells were demultiplexed based on a supplied list of cell barcodes. 

Adapter sequences were trimmed by the first 3 bp on each 3’ end of R1 and R2. Bismark 

(v0.14.5) was used to create bisulfite-converted genomes of GRCh38 (hg38 Ensembl 

version 93). Reads were mapped using Bismark with Bowtie (v2.2.8) and default alignment 

parameters. BAM files were then used to run Bismark methylation extractor ignoring 6 

bp from the end of R1 and 5 bp from R2. This was done to remove technical variability 

introduced at the ends of the reads during end repair with unmethylated nucleotides. These 

settings were determined from the M-bias reports, which contain the methylation proportion 

at each read position. Bismark methylation extractor (-bedgraph comprehensive) was used 

to determine the methylation state of each individual CpG. Cells with > 99% conversion 

efficiency as determined by Bismark were retained for downstream analysis. Reads mapping 

to ChrY and the mitochondrial genome were removed from the resulting .cov files. For all 

downstream analysis, the methylation status of CpGs per cell was binarized. CpGs with 10–

90% methylation values were removed (< 2% of total CpGs) and those with values <10% 

were encoded as 0, while those with values >90% are encoded as 1. On average, 209,519 ± 

15,200 (± SEM) unique CpGs per cell were covered in the DNA methylome.

RNA analysis pipeline.—scRNA-seq data was aligned using STAR (v2.5.2a). Default 

parameters were used, other than twopassMode Basic. Reads were aligned to GRCh38 

(hg38 Ensembl version 93). Gene counts were determined using featureCounts from 

Subread (v1.5.2) using default parameters. Ensembl gene IDs were converted to hgnc 

symbols using the R package biomaRt (v2.40.5). In cases where there were duplicated gene 

symbols the counts were summed. Seurat (v3.1.1) was then used to analyze gene expression 

data. Cells were filtered for mitochondrial reads of less than 25% and a minimum of 200 

detected genes. Genes were filtered for coverage across at least three cells. The mean (± 

standard deviation) number of detected genes was 5,763 ± 2075 genes/cell (range 3,117 ± 

678 – 8,715 ± 1,449 genes/cell across the plates). The mean number of reads was 511,840 

± 315,941 reads/cell (range 170,383 ± 63,951 – 779,771 ± 361,887 reads/cell across the 

plates). Normalization and variable feature detection were performed for each batch (i.e. 

plate). Batch correction and integration was performed via the Seurat integration pipeline44 

using recommended parameters for SelectIntegrationFeatures, FindIntegrationAnchors, and 

IntegrateData. Dimensionality reduction was performed by principal component analysis 

using the RunPCA function, and the first 12 principal components were retained for 

downstream analysis. For visualization, UMAP168 was performed using the RunUMAP 

function. Cell type assignment was performed as described for the 10x Genomics scRNA-

seq data.
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Genotyping.—To process genotyping data, genotyping FASTQs were aligned the same 

manner as RNA library FASTQs. Pysam (v0.8.2.1) was used to select reads overlapping the 

target allele by using the pileup function. Reads were filtered by a minimum read mapping 

quality (MAPQ) of 40 and a minimum base quality (Phred score) of 20. Each remaining 

read was classified as either mutant or wildtype based on the nucleotide detected at the 

mutation site based on bulk sequencing data40. Cells were classified as mutant if there 

were at least two mutant reads, and wildtype if there were at least three wildtype reads 

(increased stringency given mutation heterozygosity) and no mutant reads. For genotyping 

libraries with increased sequencing depth (7,712 ± 319 versus 20 ± 2.75 reads; mean ± 

SEM), the base quality thresholds were increased to 40. For genotype classification, a 

bootstrapping approach was implemented by randomly sampling 50 reads for 100 iterations. 

For each iteration, a mutant fraction cutoff of 0.10 was applied. The final genotyping call 

was performed in cells with above 80% bootstrap support.

Average Single Cell Methylation

We compared single cell methylation at selected genomic regions (i.e. enhancers, CpG 

islands, ChIP-seq peaks) between mutant and wildtype cells from each patient. To achieve 

this, we first filtered for CpG sites with coverage in at least three cells in each patient, in 

order to reduce interpatient variability. The genomic region of interest was then intersected 

with the CpG sites using the R package GenomicRanges (v1.36.1). Finally, the average 

methylation for a given region across the covered CpG sites was calculated for each cell. 

Statistical significance between genotypes was estimated by linear mixed models. Sample 

was added as the random effect and genotype as the fixed effect. P-values were obtained 

by likelihood ratio tests of the full model with the fixed effect against the model without 

the fixed effect. Due to potential differences between single versus double digest data, we 

display single digest datasets as representatives (unless otherwise indicated for analysis that 

specifically relies on the enhanced coverage of double digest).

Single-cell differentially methylated region (DMR) analysis to identify preferential 
hypomethylation

For each cell, Bismark methylation extractor output files (containing information on 

methylation state of each individual CpG) were intersected with the genomic regions of 

interest (e.g., promoters) using BEDTools (v2.27.1). A generalized linear model (GLM) was 

then built to predict the DNAme for a given genomic region between genotypes, accounting 

for global methylation changes. For each cell, the global DNAme value was defined as the 

average DNAme across all genomic regions investigated. The model used was as follows:

GLM = mi,j ∼ gi + ti

Where mi,j represents the average DNAme of the genomic region j (e.g., promoter of 

FOXA2) for cell i; gi represents the genotype of cell i and ti represents the average 

methylation for all CpGs detected in cell i. Only genomic regions with sufficient DNAme 

information (>5 CpGs per region for promoters and >50 CpGs for ChIP-Seq peaks) in 

at least 15 cells per group (mutated or wildtype) were used in the analysis. To test the 

impact of genotype on DNAme for a given genomic region (e.g. promoter of FOXA2), 
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P-values were derived from the GLM (calculated from the t-statistic computed by dividing 

the genotype (g) regression coefficient by the residual standard error, Supplementary Table 

5). To calculate the percentage methylation difference in mutant cells for a given genomic 

region of interest, the average across mutant and wildtype cells was taken within plate to 

control for batch effects. Next, the DNAme difference between mutant and wildtype was 

computed within plate and a weighted average of the difference was calculated, using the 

number of cells from each plate as weights. In order to be consistent across genes, promoters 

were defined as 1 kb upstream and 1 kb downstream of transcription start sites (hg38 

RefSeqGene)110. ChIP-seq peaks were obtained from ENCODE (hg38 Tfbs clustered)110. 

When directly examining the methylation status of SUZ12 and EZH2 targets, we intersected 

the ENCODE ChIP-seq peaks with bivalent peaks (H3K27me3, H3K4me3) from human 

CD34+ hematopoietic progenitor cells111.

Gene set enrichment analysis.—To define the pathways enriched at hypo- or 

hypermethylated TSS, genes were ranked based on methylation difference, and differentially 

hypomethylated genes (P < 0.05) were selected as inquiry for pathway analysis. We note that 

gene set enrichment analysis of RRBS data may be confounded by the fact that the use of 

restriction enzymes enriches for CpG rich genomic regions as well as CpG rich promoters. 

Thus, pathway enrichment was performed via a pre-ranked gene set enrichment approach 

(and thus including only genes covered in our data) using the msigdbr (v7.2.1) and fgsea 

(v1.12.0) R packages, with the MSigDB C2 CGP collection of curated gene sets.

DNMT3A R882 motif analysis

CpG flanking motif analysis.—To identify the sequences surrounding hypo or 

hypermethylated CpG sites in wildtype versus DNMT3A mutant hematopoietic progenitors, 

we first performed differentially methylated regions (DMR) analysis in CpG islands as 

described above in the “Single-cell differentially methylated region (DMR) analysis” 

section. CpGs within hypo or hypermethylated regions (P < 0.05) were selected, and the 

surrounding ± 6 bp sequences were extracted using bedtools (v2.25.0). The frequency of 

each base pair at each position relative to the CpG site was calculated, and statistical 

significance was assessed by Fisher exact test. Odds ratio logo was generated by calculating 

the frequency for each base at each position for either hypomethylated or hypermethylated 

CpG sites. To identify differentially enriched bases surrounding the CpG site, we applied 

increasingly stringent thresholds on the absolute methylation difference required between 

wildtype and mutated cells to consider the sites, and estimated the odds ratio of base 

frequency of hypo- over hyper-methylated sites at a given position relative to the CpG site. 

Next, we calculated the correlation between the methylation difference required and the odds 

ratio of base frequency. We define bases differentially enriched or depleted in hypo-versus 

hyper-methylated based on the correlation significance (P < 0.05). For CpG sites with 

greater than absolute methylation difference of 0.5, the odds ratios were computed and used 

as input to generate the logo using the ggseqlogo (v0.1) package. To identify transcription 

factors with the motif pattern of interest, we used the HOCOMOCO v11 human motif 

position weight matrix (PWM) collection in HOMER format with P < 0.001. For each of 

the PWMs, we selected the position containing the highest CpG probability and calculated 

the similarity score of the flanking −2 and +2 positions relative to the CpG site against the 
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hypo-methylated flanking sequences, based on the correlation of the base frequencies along 

each of the motifs.

Average methylation at MYC motifs and modeling regulon expression

The MYC and ARNT motif PWM was downloaded from the HOCOMOCO (v11) human 

TF database and used as input to HOMER (v4.9). The scanMotifGenomeWide function 

was used to search for occurrences of motifs throughout the genome. The R package 

GenomicRanges (v1.36.1) was used to intersect CpG sites with motifs and respective 

ChIP-seq peaks (ENCODE database)110. Methylation per cell was then averaged across 

the covered CpG sites. Positively regulated downstream MYC targets were determined using 

pySCENIC (v0.10.0). Counts were converted to transcripts per million (TPM) and genes in 

the count matrices were filtered for those in the cisTarget database (all available hg38 files 

were used). The hgnc (v9) motif file from the cisTarget database was used to generate a list 

of input motifs. Regulons were determined from each patient sample separately with default 

parameters as described174. To analyze expression of the regulons, per-cell AUC scoring 

was done using the aucell function. The relationship between MYC motif methylation and 

regulon expression was modeled with a generalized linear model (GLM) using a Gamma 

distribution with the following model:

GLM = ri ∼ mi

Where ri represents the AUC score to MYC downstream targets for cell i; mi represents 

the DNAme of MYC motifs for cell i. Due to batch effects between methylome sequencing 

methods, only samples that were prepared using the enzymatic method were included. Rare 

outliers were excluded that had a Cook’s distance greater than 2 * mean Cook’s distance. To 

test the impact of MYC motif methylation on regulon expression, the P-value was derived 

from GLM output (calculated from the t-statistic computed by dividing the MYC motif 

methylation (m) regression coefficient by the residual standard error).

AML PRC2 target methylation analysis

Methylated base call files of DNMT3A-mutated AML samples were downloaded from 

Glass et al.105 PRC2 targets were obtained from the union of EZH2 and SUZ12 ChIP-seq 

peaks (see “single-cell differential methylation analysis”), as approximately 50% of SUZ12 

ChIP-seq peaks overlapped with EZH2 peaks. PRC2 targets were further intersected with 

promoters using the GenomicRanges (v1.38.0) findOverlaps function, requiring at least 

30 bp to be overlapping. We note that PRC2 targets are known to have a higher CpG 

content175,176, potentially biasing the result given the higher coverage of RRBS of high 

CpG content promoters. We therefore also compared PRC2 target methylation only with 

high CpG content promoters as annotated by Saxonov et al164 and ± 1 KB surrounding the 

TSS. For each sample 270,000 CpG sites were randomly sampled from either promoters 

overlapping with PRC2 peaks, or non-overlapping promoters as a control. The number 

of randomly sampled CpG sites was selected based on the minimum coverage among 

replicates. The ratio of methylation between DNMT3A mutant and wildtype AML (Fig. 4h), 

required to pair each mutated AML with a wildtype sample. As this pairing is arbitrary (i.e., 

samples are not explicitly matched), to safeguard against a non-representative pairing, we 
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permutated all possible pairing and P-values were obtained by Wilcoxon rank sum test. The 

example shown represents the median P-value among the permutations. Methylated base call 

files of DNMT3A-mutated and wildtype AML samples were downloaded from TCGA119. 

Overlap of PRC2 ChIP-seq peaks and promoter regions was carried out as described above. 

The average methylation at high CpG promoters that overlap with PRC2 peaks and high 

CpG promoters that do not overlap with PRC2 peaks was calculated per sample and 

compared between DNMT3A R882 mutant and DNMT3A wildtype AML (Wilcoxon rank 

sum test).

Single nucleus ATAC-sequencing of Dnmt3a R878 and wildtype HSPCs

Hematopoietic progenitors (Lin-1−, c-Kit+) were sorted from wildtype (n = 3 mice) or 

Dnmt3a R878H (n = 3 mice) via c-Kit enrichment as directed by the manufacturer (CD117 

Microbeads, clone 3C1, Miltenyi, Auburn, CA; LS Columns (Cat. No. #130–042-401), 

Miltenyi) followed by FACS (Lin-1 BV421 (Cat. No. #133311), Biolegend, San Diego, 

CA; CD117 APC (clone 2B8, Invitrogen, Waltham, MA). Nuclei isolation was performed 

as suggested by the manufacturer (10x Genomics, Pleasanton, CA). Briefly, single cell 

suspensions were centrifuged at 300 rcf for 5 minutes and cell pellets were resuspended 

in 100 μl of lysis buffer (Tris-HCl pH 7.4, 10mM; NaCl 10mM; MgCl2 3mM; Tween-20 

0.1%; Nonidet P40 substitute (Sigma-Aldrich, St. Louis, MO) 0.1%; Digitonin 0.01%; BSA 

1%; DTT 1 mM; RNase inhibitor 1 U/μL (Sigma-Aldrich, St. Louis, MO)) and kept on ice 

for 3 minutes. Then, 1 ml of wash buffer (Tris-HCl pH 7.4, 10mM; NaCl 10mM; MgCl2 

3mM; BSA 1%; Tween-20 0.1%; DTT 1 mM; Sigma Protector RNase inhibitor 1 U/μL) 

was added. The isolated nuclei were centrifuged for 5 min at 500 rcf, and pellets were 

resuspended in Diluted Nuclei Buffer (10x Genomics Nuclei Buffer 1X; DTT 1 mM; Sigma 

Protector RNase inhibitor 1 U/μL). Nuclei concentration was determined by hemocytometer 

and processed as indicated by the manufacturer (10x Genomics User Guide: Chromium Next 

GEM Single Cell Multiome ATAC + Gene Expression, CG000338). Single nucleus ATAC 

and Gene Expression (GEX) libraries were constructed in parallel and assessed for quality 

control metrics using Agilent Bioanalyzer 2100 and Qubit respectively. ATAC libraries were 

sequenced to a depth of 25,000 read pairs per nucleus (paired-end, dual indexing: Read 1N 

50 cycles, i7 Index 8 cycles, i5 Index 24 cycles, Read 2N 49 cycles) and GEX libraries were 

sequenced to a depth of 20,000 read pairs per nucleus (paired-end, dual indexing: 28 cycles 

for Read 1, 10 cycles for i7 Index, 10 cycles for i5 Index, 90 cycles for Read 2).

Single nucleus ATAC-sequencing data processing

Pre-processing was performed using 10x Genomics Cell Ranger ARC (v1.0.1). Reads were 

demultiplexed using the cellranger-arc mkfastq function. Single cell feature counts for each 

sample were then generated using the cellranger-arc count function. The gene expression 

information for these libraries exhibited exceedingly low UMI and genes per cell consistent 

with lower quality RNA in single-cell nuclei Multiome data; as such, we moved forward 

utilizing only the ATAC data for analysis. ATAC data was processed using the ArchR 

package (v1.0.1) 177 using the atac_fragments.tsv.gz file generated by the cellranger-arc 

count function as input. Arrow files were created using a minimum TSS enrichment score 

of 5 and a minimum number of unique nuclear fragments of 1,000. Doublet scores were 

calculated using the addDoubletScores function with k = 10, knnMethod = “umap” and 
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LSImethod = 1. Doublets were removed using the filterDoublets function with default 

parameters. Dimensionality reduction was performed through iterative semantic index (LSI) 

using the cell by genomic window (500 bp) matrix as input, using the addIterativeLSI 

function with the following parameters: iterations = 3, resolution = 0.2, sampleCells = 

1,000, var.features = 25,000 and dimsToUse = 1:30. Cell clusters were identified using the 

addClusters function using the iterative latent semantic index (LSI) dimensions as input, 

with method = “Seurat”, resolution = 0.8. For visualization, UMAP dimensionality reduction 

was performed using the LSI dimensions as input, using the addUMAP function with: 

nNeighbors = 30, minDist = 0.5 and metric = “cosine”. Cell identities were assigned 

based on gene accessibility scores of known marker genes. Custom motif accessibility 

deviations were calculated as follows: position weight matrices in HOMER format (P < 

0.001) were downloaded from the HOCOMOCO v11 mouse database. Motif occurrences 

were identified using the scanGenomeWide function of the HOMER package. To include 

only high confidence motif sites, we applied a minimum odds ratio score threshold of 6. We 

next created custom peakAnnotations using ArchR and performed ChromaVar analysis using 

the addDeviationsMatrix function with default parameters.

CH05 sample processing and analysis

Single cell RNA-seq processing and downstream analysis—CH05 bone marrow 

underwent sorting, scRNA-sequencing and genotyping with GoT as described above for 

samples CH01–04, with the exception of the addition of the CITE-seq integration. Briefly, 

the Total-seqA antibodies (Biolegend: CD38, CD9, CD49f, CD45RA, CD41, CD36, CD69, 

CD42, CD14, CD71, CD45RB, CD45RO, CD37, CD7, CD279, CD47, CD90, CD99, 

CD84, CD274, FLT3, CD79B, CD45, CD81) were used according to manufacturer’s 

recommendations. The CD34+ sorted cells were incubated with the antibodies for 30 

minutes and underwent washes 3X. 10x data were processed using Cell Ranger (v3.0.1) 

with default parameters. Reads were aligned to the human reference sequence hg19. Control 

bone marrow samples (BM01–05) were identified from previously published reports142,143 

with raw count matrices available for download. The Seurat package (v.3.1) was used to 

perform integration and unbiased clustering of the CD34+ sorted cells from patient samples 

as described previously with the following notable exceptions167. The publicly available 

archived count matrices for samples BM04 and BM05 had the following QC filtering: the 

mitochondrial and ribosomal genes were removed, and only cells with > 400 unique genes 

and between 1,000 and 10,000 UMIs were kept. Consequently, these two patients were 

not filtered with the aforementioned criteria. CH05 and BM01–03 were filtered identically 

as samples CH01–04, following which mitochondrial and ribosomal genes were removed 

from the gene expression matrix. All samples were then normalized and integrated as 

described previously, with the exception of proportion of mitochondrial genes no longer 

being regressed out as a potential confounder. We identified 26 clusters in the integrated 

data, which were annotated as above using lineage markers previously identified for normal 

hematopoietic progenitors53,178.

Following cell-type assignment, we down-sampled the count matrices using the 

downsampleBatches function from the scuttle package (v1.0.4) to ensure that the average 

per-cell geometric mean of raw counts was consistent across all 6 patient samples179.

Nam et al. Page 28

Nat Genet. Author manuscript; available in PMC 2023 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Module scores were calculated as described above. The performance of the CITE-seq 

antibodies was assessed based on expected expression patterns across the progenitor subsets.

Single nucleus ATAC-seq and downstream analysis—snATAC-seq data for CH05 

was generated as described above using the Multiome platform (10x Genomics) and GoT 

performed as described above using the cDNA generated from the Multiome workflow. 

The gene expression information for these libraries exhibited very low UMI and genes per 

cell consistent with lower quality RNA in single-cell nuclei Multiome data; as such, we 

moved forward utilizing only the ATAC data for analysis. For the analysis, fragment files 

were generated by processing the fastq files using cell-ranger-ARC (v.1.0.0). Downstream 

analysis was performed using the ArchR (v1.0.1) pipeline177. Based on the distribution of 

total fragments and TSS enrichment per cell, empty droplets were filtered out by requiring 

a minimum of 3,000 fragments per cell and a TSS enrichment score of 7.5. Potential 

doublets were detected using the addDoubletScores function, using KNN on the UMAP 

dimensionality reduction with k = 10. Cell barcodes with high enrichment for doublet scores 

were removed using the filterDoublets function with default parameters. Next, we performed 

dimensionality reduction through iterative latent semantic indexing (LSI) using the top 

25,000 variable features. Cell clustering was performed using the addClusters function, 

with the following parameters: reduceDims = “IterativeLSI”; method = “Seurat”; resolution 

=1. For visualization, further dimensionality reduction was performed by applying UMAP 

to the iterative LSI space using the addUMAP function with the following parameters: 

nNeighbors = 30; minDist = 0.5; metric = “cosine”. Cell type identification was performed 

by manually inspecting the genes showing upregulated gene accessibility scores (FDR < 

0.01 and log2(fold change) > 1.25) for each of the defined clusters (Extended Data Fig. 

13c). Motif occurrences were defined using the position weight matrices (PWMs) obtained 

from the Hocomoco (v.11.0) motif database or our custom PWMs for hypo-methylated 

and shuffled motifs using HOMER (v4.9), requiring a minimum enrichment score above 6. 

Transcription factor, hypo-methylated and shuffled motif accessibility was calculated using 

ChromVAR180 within the ArchR (v1.0.1) pipeline177. Supervised pseudotime trajectories 

for either erythroid or lymphoid fates were defined within the ArchR (v1.0.1) pipeline177 

applying the addTrajectory function.
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Extended Data

Extended Data Figure 1. GoT captures genotyping information of thousands of CD34+ cells in 
scRNA-seq.
a, Summary of GoT data from CH patient samples with DNMT3A R882 mutations. 

b, Number of genes per cell (left) and number of UMIs per cell (right) from CD34+ 

sorted hematopoietic progenitors by patient sample after QC filters. c, DNMT3A R882 

mutant fraction of single cells determined by GoT versus DNMT3A R882 mutation variant 

allele frequencies (VAF) in bulk sequencing of matched unsorted stem cell product40. d, 
Fraction of cells by number of DNMT3A UMIs in standard 10x Genomics data without 

genotyping information (left), DNMT3A UMIs with R882 locus coverage in standard 10x 

data (middle), and DNMT3A UMIs with R882 locus coverage in GoT amplicon library 

(right). e, Species-mixing experiment data in which mouse cells (Ba/F3) with a human 

mutant CALR transgene were mixed with human cells (UT-7) with a human wildtype 
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CALR transgene38. Mouse and human genome alignment of 10x data with genotyping data 

from GoT pre (top) and post (bottom) implementation of UMI consensus assembly based 

on Levenshtein distance (online methods). f, Number of duplicate reads supporting cell 

barcode-UMI pair in the GoT library that is identified in the 10x gene expression (GEX) 

library as a DNMT3A gene (left), no gene (middle), or a non-DNMT3A gene (right).

Extended Data Figure 2. Copy number analysis of wildtype and mutant single cells from clonal 
hematopoiesis patient samples with DNMT3A R882 mutations.
a, Heatmap of relative expression of genes ordered by chromosome/chromosomal position 

following copy number variation analysis using the InferCNV package43. Cells (y-axis) are 

stratified by patient and DNMT3A R882 genotype status. b, Heatmap of relative expression 

of Y-chromosome genes following copy number variation analysis and cell stratification as 

in a.
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Extended Data Figure 3. Integration of DNMT3A R882 mutation and assignment of progenitor 
subsets in clonal hematopoiesis patient samples.
a, UMAP of CD34+ progenitor cells from samples CH01-CH04 after integration using the 

Seurat package (online methods). b, Heatmap of top 10 differentially expressed genes for 

progenitor subsets. c, Lineage-specific genes (left) and modules from Velten et al.53 (right, 

Supplementary Table 2) are scored and projected onto the UMAP representation of CD34+ 

cells. d, UMAP of CD34+ cells overlaid with cluster assignments, split by patient sample.
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Extended Data Figure 4. Classification of IMPs showing lineage biases and pseudotime analysis 
between mutated and wildtype cells.
a, UMAP of CD34+ cells, overlaid with cluster assignment of all IMP subsets in the 

dataset. b, Neutrophil and Megakaryocytic-Erythroid lineage specific gene module scores 

from Velten et al.53 compared across the three IMP clusters. P-value was calculated from 

Wilcoxon rank sum test. c, UMAP of CD34+ cells overlaid with mutation status for WT, 

DNMT3A R882 mutant (MUT), or unassigned (NA), split by genotype for all samples 

(top) and by patient sample (bottom). d, UMAP with projected pseudotime values (top 

left). Pseudotime comparison between WT and MUT cells for all samples (top right) 

and for individual samples (bottom) as estimated by Monocle50. P-value was calculated 

from likelihood ratio test of linear mixed model with/without mutation status for aggregate 

analysis (online methods, top) and Wilcoxon rank sum test for individual samples (bottom).
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Extended Data Figure 5. Cell cycle module expression comparison between mutated and 
wildtype progenitor cells.
a, Cell cycle module score represents the union of S-phase and G2M-phase gene-module 

expression (Supplementary Table 2)55. P-value was calculated from likelihood ratio test of 

linear mixed model with/without mutation status (online methods). Analysis was performed 

for clusters with at least 200 genotyped cells across all patient samples.
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Extended Data Figure 6. Transition probabilities via RNA velocity reveals a megakaryocytic-
erythroid bias of IMPs.
a, Single cell mean IMP → IMP-ME and b, IMP → IMP-GM transition probabilities, as 

measured via RNA velocity56, between wildtype or DNMT3A R882 mutant IMPs for each 

sample. P-values from Wilcoxon rank-sum test.
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Extended Data Figure 7. Comparison of differential expression analysis between permutation 
test and linear mixed model and MYC gene expression.
a, P-values from permutation test and linear mixed model (online methods) are plotted 

per gene. Correlation coefficient R calculated using Pearson’s Correlation. P-values derived 

from Student’s t-distribution. b, Normalized MYC gene expression between mutated and 

wildtype cells in MEP and EP. P-value was calculated from likelihood ratio test of linear 

mixed model with/without mutation status (online methods).
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Extended Data Figure 8. Multi-omics single cell methylome, transcriptomic, and somatic 
genotyping reveals hypomethylation of PRC2 targets in DNMT3A R882 CH.
a, UMAP dimensionality reduction (n = 528 cells) based on scRNA-seq data (Smart-

seq2) after integration and batch correction of six plates (online methods). b, UMAP 

dimensionality reduction showing cluster gene markers for the transcriptome data. c, 
Number of CpG sites captured per cell after quality filtering (online methods). The metrics 

for each sample according to enzymatic digestion with Msp1 (Single) or Msp1 plus HaeIII 

(Double) are shown. d, Average single cell methylation at all regions (global, double digest), 

promoters, introns or exons. P-values from likelihood ratio test of LMM with/without 

mutation status (online methods). e, Average single cell methylation at CpH (i.e. CpA, 

CpC or CpT) sites. f, Average single cell methylation at 269 hypomethylated promoters 

identified with DMR analysis (shown in Fig. 4e, promoters with P-value < 0.05 and at 

least −5% methylation change) in CH02 and CH04. g, Average single cell methylation at 

SUZ12 (top panel) and EZH2 (bottom panel) ENCODE ChIP-seq peaks intersected with 
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bivalently H3K27me3, H3K4me3-marked regions in CD34+ cells for CH02 and CH04. 

P-values from likelihood ratio test of LMM with/without mutation status. h, Normalized 

expression of PRC2 target genes with preferentially hypomethylated TSS (from Fig. 4e) in 

GoT data of WT versus MUT cells by progenitor subtype. P-values from likelihood ratio 

test of LMM with/without mutation status. i, Comparison of average methylation values for 

TSS ± 1 kb regions in normal HSPCs111 and DNMT3A WT (n = 6) versus DNMT3A R882, 

NPM1 mutated acute myeloid leukemia (AML; n = 7) samples in regions without (left) or 

with (right) PRC2 ChIP-seq peaks, controlling for CpG content. j, Comparison of average 

methylation values for promoter regions in WT (n = 122) versus DNMT3A R882 mutated 

AML (n = 9) samples from TCGA in regions without (left) or with (right) PRC2 ChIP-seq 

peaks, controlling for CpG content.

Extended Data Figure 9. Motif enrichment at hypomethylated CpGs and hypomethylated motif 
enrichment in regions around differentially expressed genes.
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a, Base frequency odds ratio of hypo- versus hyper-methylated CpG flanking sequences at 

positions N-2, N-1, N+1, and N+2. The odds ratios were derived from base frequencies of 

flanking positions of the CpG sites hypo- or hyper-methylated in mutant versus wildtype 

cells above the thresholds shown in the x axis for minimum absolute CpG methylation 

difference (Pearson correlation, P-values derived from F-test). b, Reported motif logos 

derived from Emperle et al.120 for either hypomethylated (disfavored) or hypermethylated 

(favored) sites for DNMT3A R882 compared to its wildtype counterpart (left). c, Similarity 

scores between the reported and our de novo DNMT3A R882 hypo- and hypermethylated 

motifs as measured by correlation coefficients of the position weight matrices for the 

respective motifs excluding the CpG dinucleotide. d, Heatmap of expression of transcription 

factors with binding motif similarity >0.5 compared to hypomethylated motif of DNMT3A 
R882 (that do not meet the overall expression threshold, Fig. 5a). e, Frequencies of 

DNMT3A R882 hypomethylated motif within 30kb of TSS of the differentially expressed 

genes between MUT and WT cells in progenitor subsets. P-values were calculated by 

Wilcoxon rank sum test. f, Frequencies of DNMT3A R882 hypomethylated motif within 

10 kb, 30 kb or 50 kb of TSS of the differentially expressed genes between MUT and WT 

cells in HSPCs and EPs. P-values were calculated by Wilcoxon rank sum test. g, Ratio of 

frequencies of DNMT3A R882 hypomethylated motif to those of the control shuffled motif 

with CpG (Fig. 5e) within 10 kb of TSS of the differentially expressed genes between MUT 

and WT cells in HSPCs and EPs. P-values were calculated by Wilcoxon rank sum test. h, 
Average per-gene incidence of DNMT3A R882 hypomethylated motif within 50kb of TSS 

by distance from TSS for differentially expressed genes between MUT and WT cells in 

HSPCs (top) and EPs (bottom).
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Extended Data Figure 10. Single nucleus ATAC-seq of Dnmt3a R878H Lin-, c-Kit+ progenitors 
reveals enhanced accessibility of R882 hypomethylated motif and TF motifs with high similarity 
scores to the hypomethylated motif.
a, Distribution of fragment size in snATAC-seq data of Dnmt3a R878H and wildtype Lin-, 

c-Kit+ progenitors (n = 3 in each cohort). b, TSS enrichment of accessible fragments as a 

function of unique fragments per cell. c, UMAP of integrated datasets Dnmt3a R878H and 

wildtype Lin-, c-Kit+ progenitors, displayed per sample (n = 3 in each cohort). d, Heatmap 

of gene accessibility scores for differentially accessible progenitor identity marker genes 

across progenitor subsets. e, Scatterplot of similarity scores of mouse TF motifs versus 

human TF motifs to the R882-hypomethylated motif (Pearson’s correlation, P-value derived 

from F-test). f, Binding motifs of mouse and human TFs with high similarity score to 

the R882-hypomethylated motif and expression in HSPCs (Fig. 5b, HOCOMOCO v11). g, 
FWER-adjusted P-values for accessibility changes between wildtype and Dnmt3a R878H 

cells by progenitor identities for hypo-methylated motif and shuffled motifs controls (with 
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and without CpG), as well as motif accessibility deviation of the TFs identified Fig. 5b 

(related to Fig. 5f). h, Accessibility of PRC2 targets between wildtype and Dnmt3a R878H 

and wildtype Lin-, c-Kit+ progenitor subsets.

Extended Data Figure 11. Integration of CH05 and control bone marrow CD34+ scRNA-seq data 
and assignment of progenitor subsets.
a, UMAP of CD34+ progenitor cells from samples CH05 and samples BM01–05 after 

integration using the Seurat package (online methods). b, Number of genes per cell (top) 

and number of UMIs per cell (bottom) from CD34+ hematopoietic progenitors by patient 

sample after QC filters and down-sampling to equivalent geometric means of UMIs per 

patient. c, Heatmap of top 10 differentially expressed genes for progenitor subsets. d, 
UMAP representation of CD34+ cells showing cell marker gene expressions. e, Modules 

from Velten et al.53 (Supplementary Table 2) are scored and projected onto the UMAP 

representation of CD34+ cells.
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Extended Data Figure 12. Bone marrow clonal hematopoiesis patient sample confirms results 
from CH01-CH04.
a, Per-patient comparison of megakaryocytic-erythroid module scores in control bone 

marrow versus CH05 IMPs (Supplementary Table 2). Cell number downsampled to the same 

number (n = 132 cells per sample). P-values were calculated from likelihood ratio test of 

LMM with/without CH status. b, Per-patient comparison of granulocytic-monocytic module 

scores in control versus CH IMPs (Supplementary Table 2). P-values were calculated from 

likelihood ratio test of LMM with/without CH status. c, Fraction of IMP-ME cells out 

of all biased IMP (IMP-ME + IMP-GM) cells in control versus CH populations. P-value 

was calculated from one-sample t-test. d, Per-patient comparison of module scores for 

differentially down- or up-regulated genes in mutant DNMT3A HSPCs (identified in GoT 

data, Fig. 3a,c) in control versus CH HSPCs. P-values were calculated from likelihood 

ratio test of LMM with/without CH status. e, Per-patient comparison of module scores 

for differentially down- or up-regulated genes in mutant DNMT3A EPs (identified in GoT 
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data, Fig. 3a,c) in control versus CH EPs. P-values were calculated from likelihood ratio 

test of LMM with/without CH status. f, Module scores for genes upregulated in at least 2 

cell types (identified in GoT data, Fig. 3b) in control versus CH cells of major cell types. 

P-values from likelihood ratio test of LMM with/without CH status. g, Fraction of control 

BM or CH05 cells in EP1 versus EP2 cell clusters. h, UMAP of CH05 cells (clustered 

independently of the control BM samples) with progenitor cell assignments. i, UMAP of 

CH05 cells with genotyping data for WT (n = 397 cells) and DNMT3A R882 mutant (MUT; 

n = 290 cells). j, Normalized expression of differentially upregulated genes in at least 2 cell 

types, highlighted in Fig. 3b in wildtype versus mutated cells in CH05. k, UMAP of CH05 

cells with protein expression (CITE-seq) and gene expression for CD38 and CD9. l, UMAP 

of CH05 cells highlighting HSPCs, IMP-ME, and MkPs (left) included in the comparison of 

CD9 expression in wildtype versus mutated cells (right).

Extended Data Figure 13. Single nucleus ATAC-seq data from bone marrow clonal hematopoiesis 
reveals enhanced accessibility of hypomethylated motif in mutated erythroid progenitors.
a, Distribution of fragment size in snATAC-seq data of patient CH05 with DNMT3A R882 

CH. b, TSS enrichment of accessible fragments as a function of unique fragments per cell. c, 
Heatmap of the gene accessibility scores for cluster marker genes (FDR < 0.01 and Log2FC 

> 1) by cell cluster. d, Pseudotime trajectories for either erythroid (left, n = 1,843 cells) or 

lymphoid (right, n = 1,740 cells) differentiation. e, Difference between hypomethylated and 

shuffled motif accessibility z-scores across either erythroid (n = 1,843 cells) or lymphoid 

(n = 1,740 cells) pseudotime trajectory quartiles. P-values were calculated by Wilcoxon 

rank sum test. HSPC, Hematopoietic stem and progenitor cell; IMP-ME, immature myeloid 

progenitor with megakaryocytic/erythroid bias; IMP-GM, immature myeloid progenitor 

with granulocyte/monocyte bias; LMPP, Lymphoid-myeloid pluripotent progenitor; MkP, 

Megakaryocyte progenitor; NP, Neutrophil progenitor; CLP, Common lymphoid progenitor; 

Pre-B1/2, Pre-B cell; EP1/2, Erythroid progenitor.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genotyping of Transcriptomes demonstrates co-mingling of mutated and wildtype cells 
in DNMT3A R882-clonal hematopoietic differentiation.
a, Schematic of GoT workflow. UMI, unique molecular identifier; UTR, untranslated 

region. b, Uniform manifold approximation and projection (UMAP) of CD34+ cells (n = 

27,324 cells) from clonal hematopoiesis samples (n = 4 individuals), overlaid with cluster 

assignment (left); projections of cell cycle gene module scores (top right) or uncommitted 

hematopoietic stem cell (HSC) associated gene modules (bottom right, Supplementary 

Table 2). c, UMAP of CD34+ cells (n = 27,324 cells) with projected mutation status 

assignment for WT (n = 4,641 cells), DNMT3A R882 mutant (MUT; n = 1,789 cells) 

or unassigned (NA; n = 20,894 cells). d, Percent of genotyped cells per cluster for all 

samples (bars) and for each patient sample (points) (top) and normalized gene expression 

of DNMT3A per cluster (bottom). HSPC, hematopoietic stem progenitor cells; IMP, 

immature myeloid progenitors; IMP-ME, megakaryocytic-erythroid biased IMP; IMP-GM, 

granulo-monocytic biased IMP; LMPP, lympho-myeloid primed progenitors; CLP, common 

lymphoid progenitor; MEP, megakaryocytic-erythroid progenitors; E/B/M, eosinophil, 

basophil, and mast cell progenitors; EP, erythroid progenitor; MkP, megakaryocytic 

progenitor; NP, neutrophil progenitor; WT, wildtype; MUT, mutant; NA, not assignable.
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Figure 2. DNMT3A R882 mutated CH cells demonstrate distinct differentiation biases at key 
junctures.
a, UMAP highlighting multi-lineage lympho-myeloid primed progenitors (LMPPs) and 

common lymphoid progenitors (CLPs); UMAP showing analytically isolated and re-

clustered LMPPs and CLPs, showing branch point of divergence into myeloid versus 

lymphoid primed progenitors (left middle); UMAP showing the cell density of DNMT3A 
R882 MUT and WT cells (left bottom). The normalized frequency of mutant cells in 

subclusters for aggregate analysis of samples CH01-CH04 with mean ± s.d. of 100 

downsampling iterations to 1 genotyping UMI per cell (right, downsampling performed 

to control for potential greater ability to detect the mutant heterozygous allele in cells 

with higher DNMT3A expression, see online methods). The heatmap at the bottom depicts 

representative lineage-specific genes for individual clusters. P-value was calculated from 

likelihood ratio test of LMM with/without cluster identity. b, Normalized frequency of 

DNMT3A R882 mutant cells in progenitor subsets with at least 200 genotyped cells. Bars 
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show aggregate analysis of samples CH01-CH04 with mean ± s.d. of 100 downsampling 

iterations to 1 genotyping UMI per cell. Points represent mean of n = 100 downsampling 

iterations for each sample. Heatmap depicts representative lineage-specific genes for 

individual progenitor subsets. c, Megakaryocytic-erythroid module scores in wildtype versus 

mutant IMPs (Supplementary Table 2). P-value was calculated from likelihood ratio test 

of LMM with/without mutation status. d, Fraction of IMP-ME cells out of all biased 

IMP (IMP-ME + IMP-GM) cells in wildtype versus DNMT3A R882 mutant populations. 

P-value was calculated from proportions test. e, -Log10(P-value) of cell cycle module 

scores enriched in mutated versus wildtype progenitor subsets (Extended Data Fig. 5a). 

P-values were calculated from likelihood ratio test of LMM with/without mutation status. f, 
RNA velocity field vectors overlaid on UMAP, demonstrating differentiation trajectories 

computed via scVelo (online methods)57. g, Schematic representation of the transition 

probabilities between HSPCs and IMP subsets from samples CH01-CH04 (right). Odds 

ratios (OR) were calculated as the ratio between DNMT3A R882 MUT and WT transition 

probabilities, as measured using RNA velocity57. Single cell mean IMP → IMP-ME or 

IMP → IMP-GM transition probabilities between wildtype or DNMT3A R882 mutant 

cells, inset. P-values were calculated from likelihood ratio test of LMM with/without 

mutation status (see Extended Data Fig. 6 for per-sample data). HSPC, hematopoietic 

stem progenitor cells; IMP, immature myeloid progenitors; IMP-ME, megakaryocytic-

erythroid biased IMP; IMP-GM, granulo-monocytic biased IMP; LMPP, lympho-myeloid 

primed progenitors; CLP, common lymphoid progenitor; MEP,megakaryocytic-erythroid 

progenitors; E/B/M, eosinophil, basophil, and mast cell progenitors; EP, erythroid 

progenitor; MkP, megakaryocytic progenitor; NP, neutrophil progenitor; WT, wildtype; 

MUT, mutant; NA, not assignable.
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Figure 3. Differential gene expression analysis between mutated and wildtype cells reveals 
markers of lineage aberrancies and dysregulated MYC activity.
a, Differentially expressed (DE) genes between DNMT3A R882 mutant and wildtype 

hematopoietic stem progenitor cells (HSPC) via permutation test (online methods). Genes 

highlighted in red represent DE genes overlapping with 58 genes upregulated on acute 

myeloid leukemia stem cells (LSC) compared to normal HSCs (P = 9.3 × 10−5)67. 

P-value was calculated by hypergeometric test. b, Heatmap of upregulated genes in 

DNMT3A mutant cells compared to wildtype cells, in at least two cell clusters (P < 

0.05, permutation test). Histograms show numbers of upregulated genes in each cluster 

(top) and numbers of clusters per upregulated gene (left). Next to the genes are listed 

putative TFs (TRANSFAC) with black indicating the TFs that overlap for more than one 

recurrent DE gene. c, Differentially expressed genes between DNMT3A R882 mutant 

and wildtype EPs via permutation test. Pathway enrichment of MSigDB CGP gene 

sets shows enrichment of Benporath MYC MAX targets (FDR-adjusted P-value = 0.01) 

and Coller MYC targets (FDR-adjusted P-value = 0.01, see Supplementary Table 4 for 

complete gene set enrichment results against the MSigDB CGP dataset). P-values were 

calculated from hypergeometric test with FDR (Benjamini-Hochberg) correction. d, Local 

regression of normalized expression levels as a function of pseudotime of MYC/MAX 

targets (differentially upregulated in Fig. 3c) for WT and DNMT3A R882 mutant (MUT) 

cells. Shading denotes 95% confidence interval. Histogram shows cell density of clusters 

included in the analysis, ordered by pseudotime.
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Figure 4. DNMT3A R882 promotes selective hypomethylation of PRC2 targets in human 
hematopoiesis.
a, Schematic representation of the single-cell multi-omics platform that captures methylome, 

transcriptome, and somatic genotype status. b, UMAP dimensionality reduction (n = 528 

cells) showing the assigned progenitor identities (left) or the assigned genotype (right) from 

available samples CH02 and CH04. (c-d) Average single cell methylation at CpG islands c, 
and enhancers d, from double digest experiments (online methods). P-values from likelihood 

ratio test of LMM with/without mutation status. e, Differentially methylated promoters 

between wildtype and DNMT3A R882 mutant hematopoietic progenitors. P-values from 

generalized linear model (GLM) to account for global hypomethylation in DNMT3A 
mutated cells and identify regions of preferential hypomethylation (online methods). Red 

dots indicate significantly hypomethylated Benporath PRC2 and EED target genes (MSigDB 

C2: CGP gene sets)97. f, Differentially hypomethylated ChIP-seq peaks (ENCODE hg38 Tf 

clusters)163 ranked by P-value. P-values from a GLM to account for global hypomethylation 

in DNMT3A mutated cells and identify regions of preferential hypomethylation. g, Single 
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cell average methylation at ChIP-seq peaks (ENCODE hg38 Tf clusters163 intersected 

with bivalent peaks (H3K27me3, H3K4me3) from human CD34+ hematopoietic progenitor 

cells111) for either SUZ12 (left) or EZH2 (right). P-values from likelihood ratio test of LMM 

with/without mutation status. h, Comparison of AML samples with/without DNMT3A 
R882 showing DNMT3A mutant-to-wildtype ratio of methylation at TSS overlapping 

PRC2 ChIP-seq peaks or non-overlapping CpG rich TSS164 as control. P-value from two-

sided Wilcoxon rank sum test. HSPC, hematopoietic stem progenitor cells; IMP, immature 

myeloid progenitor; NP, neutrophil progenitor; M/D, monocytic/dendritic cell progenitors; 

EP, erythroid progenitor; WT, wildtype; MUT, mutant; NA, not assignable.
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Figure 5. DNMT3A R882 displays flanking sequence specificity associated with MYC binding 
motif.
a, Motif logo for the odds ratio of base frequency of the flanking positions (N-1, N-2, 

N+1, N+2) of CpG sites. Odds ratios were calculated based on the flanking regions 

of CpG sites hypomethylated or hypermethylated in DNMT3A R882 mutant compared 

with wildtype hematopoietic progenitors (online methods). b, Similarity score between 

the hypomethylated motif of DNMT3A R882 (Fig. 5a) and TF binding motifs in the 

HOCOMOCO v11 collection of human TF binding motifs. Relevant transcription factors 

with expression level in CD34+ cells > 0.5 (counts per 10,000 transcripts; Smart-seq2) 

and motif similarity > 0.5 are labeled. c, Frequencies of DNMT3A R882 hypomethylated 

motif within 30 kb of TSS of the differentially expressed genes between MUT and WT 

cells in HSPCs and EPs (identified in GoT data, Fig. 3a,c, see Extended Data Fig. 9e for 

other progenitor subsets, Extended Data Fig. 9f for 10 kb and 50 kb of TSS, Extended 

Data Fig. 9g for data accounting for CpG content, Extended Data Fig. 9h for CpG density 
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centered at TSS of differentially expressed genes). P-values were calculated by Wilcoxon 

rank sum test. d, UMAP dimensionality reduction of murine wildtype (n = 3 mice) and 

Dnmt3a R878H (n = 3 mice) Lin−, Kit+ snATAC-seq data showing progenitor cluster 

annotation and representative progenitor gene marker accessibility (n = 46,496 cells). e, 
UMAP showing accessibility deviation as calculated with chromVar for hypomethylated 

motif (left) and shuffled motif (right, z-scores). f, Bonferroni FWER-adjusted P-values for 

accessibility changes between wildtype and Dnmt3a R878H cells by progenitor identities 

for hypomethylated motif and negative control shuffled motifs (with/without CpG), as well 

as binding motifs of the TFs identified in Fig. 5b. g, Similarity between binding motifs 

of all TFs plotted in Fig. 5b and the hypomethylated motif of DNMT3A R882 as a 

function of FWER-adjusted P-value rank for accessibility changes between wildtype and 

Dnmt3a R878H cells by progenitor identities. Rank calculated as follows: -log10(FWER-

adjusted P-value) * sign((MUT-WT) accessibility)). Correlation coefficient R calculated 

using Pearson’s Correlation. P-value derived from Fisher’s Z transform. h, Comparison 

of single cell average methylation of ARNT binding motifs (intersected with ARNT ChIP-

seq peaks, ENCODE hg38 Tf clusters163) between wildtype and DNMT3A R882 mutant 

hematopoietic progenitor cells. P-values from likelihood ratio test of LMM with/without 

mutation status. i, Comparison of single cell average methylation of MYC binding motifs 

(intersected with MYC ChIP-seq peaks, ENCODE hg38 Tf clusters163) between wildtype 

and DNMT3A R882 mutant hematopoietic progenitor cells. P-values from likelihood ratio 

test of LMM with/without mutation status. j, Relative expression per cell (AUC) of MYC 

downstream targets inferred using the SCENIC package165 (online methods) as a function 

of average MYC motif methylation. Correlation coefficient R calculated using Pearson’s 

Correlation. P-value derived from GLM. HSPC, hematopoietic stem progenitor cells; 

MP, multipotent progenitors; IMP, immature myeloid progenitors; LMPP, lympho-myeloid 

primed progenitors; CLP, common lymphoid progenitor; EP, erythroid progenitor; MkP, 

megakaryocytic progenitor; NP, neutrophil progenitor; MP, monocytic progenitor.
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Figure 6. Bone marrow clonal hematopoiesis progenitor cells display megakaryocytic-erythroid 
differentiation bias, MYC target gene expression, and enhanced accessibility for the R882 
hypomethylated motif.
a, UMAP of CD34+ cells (n = 44,782 cells) for scRNA-seq data from a clonal hematopoiesis 

sample (CH05) and previously published five control bone marrow samples142,143 (BM01–

05), labeled with cluster assignments. b, UMAP of CD34+ cells (n = 44,782 cells) labeled 

with CH (n = 5,770) or control (n = 39,082) status. c, Megakaryocytic-erythroid module 

scores in control versus CH IMPs (left, Supplementary Table 2) granulocytic-monocytic 

module scores in control versus CH IMPs (right, Supplementary Table 2). P-values 

were calculated from likelihood ratio test of LMM with/without CH status. d, Module 

scores for differentially down- or up-regulated genes in mutant DNMT3A HSPCs and 

EPs (identified in GoT data, Fig. 3a,c) in control versus CH HSPCs and EPs. e, Local 

regression of normalized expression levels as a function of pseudotime of MYC/MAX 

targets (differentially upregulated in Fig. 3c) for control and DNMT3A R882 CH cells. 

Shading denotes 95% confidence interval. Histogram shows cell density of clusters included 

in the analysis, ordered by pseudotime. Boxplot shows comparison of module scores 

between control and CH cells within the two EP clusters. P-value calculated from likelihood 
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ratio test of LMM with/without CH status. f, UMAP dimensionality reduction of CD34+ 

cells (n = 3,824 cells) for snATAC-seq data from a clonal hematopoiesis sample (CH05) 

depicting the cell cluster assignment and cell type labels. g, Motif accessibility z-scores for 

shuffled, hypo-methylated motif and relevant transcription factors for the HSPC cluster (n 

= 788 cells). P-values correspond to Wilcoxon rank sum test between accessibility of the 

shuffled motif and the indicated motif. h, UMAP projection of genotype assignment for 

WT (n = 135 cells) and MUT (n = 160 cells). i, Motif accessibility z-score comparison 

for either hypo-methylated or shuffled motifs between WT (n = 135 cells) and MUT (n 

= 160 cells). P-values were calculated by Wilcoxon rank sum test. HSPC, Hematopoietic 

stem and progenitor cell; IMP-ME, immature myeloid progenitor with megakaryocytic/

erythroid bias; IMP-GM, immature myeloid progenitor with granulocyte/monocyte bias; 

LMPP, Lymphoid-myeloid pluripotent progenitor; MkP, Megakaryocyte progenitor; NP, 

Neutrophil progenitor; CLP, Common lymphoid progenitor; Pre-B1/2, Progenitor B-cells; 

EP1/2, Erythroid progenitor.
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