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Abstract

We propose a method to integrate high-dimensional genomics datasets across multiple platforms 

with multiple imaging outcomes. This new statistical framework uses a hierarchical model to 

integrate biological relationships across platforms to identify genes that associate with multiple 

correlated imaging outcomes. Our two-stage hierarchical model uses the information shared across 

the platforms and thus increasing the predictive power to identify the relevant genes. We assess 

the performance of our proposed method through simulation and apply to data obtained from the 

Cancer Genome Atlas Glioblastoma Multiforme dataset. Our proposed method discovers multiple 

copy number and microRNA regulated genes that are related to patients’ imaging outcomes in 

glioblastoma.

Index Terms

Bayesian Analysis; genomics; integrative analysis; Lasso Penalization; multiple outcomes; 
sensitivity; specificity

I. Introduction

Glioblastoma Multiforme (GBM) is the most lethal brain tumor with a patient survival rate 

of 15 months [1]. GBM develops for the most part in the cerebral hemisphere. If GBM 

is operable, then surgery is performed, followed by radiation therapy or a combination 

of radiation therapy and chemotherapy. Otherwise, radiation or radation/chemotherapy are 

administered. Radiological characterization/phenotyping has been carried out to identify 

survival-associated phenotypes. Typically, such studies have focused on single phenotypes 

such as T1 or flair separately. In this study, we report analyses of combinatorial phenotypes 

that stratify survival in a subset of patients from the TCGA-GBM collection. Furthermore, 

we investigated molecular differences using messenger RNA (mRNA), microRNA (miRNA) 

expression and copy number alteration.

Cancer is a disease of the genome. Many profiling technologies have been developed and 

used to profile the cancer genome. Characterize the biology of cancer more comprehensibly 

the Cancer Genome Atlas (TCGA) created a project in 2006 to understand the molecular 
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basis of cancer through genomic profiling. TCGA profiled genomic data using multiple 

platforms on more than 20 cancer types, and GBM was the first brain tumor to be selected 

because of its poor prognosis [2]. Thus, by combining all these various types of data, one 

can provide a unified view of the different molecular processes across the whole genome, 

which enables us to understand the gene functions across platforms. In addition, integrating 

all these various types of data in one statistical model will increase the statistical power to 

identify clinical relevant genes and/or better predict relevant patient-level clinical outcomes. 

Jennings [3] et al. proposed a general integrative Bayesian analysis of genomics data (iBAG) 

framework that models the biological relationships between several platforms to a single 

clinical outcome. This approach involves a global gene search, and uses variable selection 

via the Bayesian lasso-based shrinkage prior to deal with the high dimensionality of the data.

In this paper, we introduce a multivariate integrative analysis of high-dimensional genomic 

data with correlated imaging outcomes. This model uses a hierarchal approach to model 

biological relationships among and between different platforms and subsequently uses this 

information to the find associations with imaging outcomes. In this paper, we focus on 

aberrations of the RTK/PI3K, p53, and an RB cell signaling pathway which is known to 

be important pathways in cancer. We integrate mRNA expression, miRNA expression and 

copy number alteration to predict a combinatorial phenotype that stratifies survival for GBM 

patients. The two imaging phenotypes of interest in this paper are the volume of tumor T1 

and T1 : flair ratio, where T1 is the post contrast MRI image and flair is the hypertense 

volume. We also conduct simulation studies that show high sensitivity and specificity of our 

approach in gene selection.

The outline of this paper is as follows. In Section 2, we describe our multivariate integrative 

analysis model construction. In Section 3, we describe the implementation of our model 

and a bootstrap lasso stability variable selection method to identify important predictors 

of imaging outcome(s). In Section 4 we present our simulation studies and Section 5 

summarizes the application to TCGA-GBM data. Section 6 contains conclusions and 

discussions.

II. A Multivariate Integrative Analysis of Multiplatform Genomic Data

We construct a multivariate integrative analysis model that uses a two-level hierarchical 

approach to integrate multiplatform genomic data and evaluates the relationships to the 

imaging outcome(s) of interest. The first-level is the genomic model that assesses the 

biological relationship between and among the platforms, miRNA, mRNA and copy number 

in this case, and directly infers the effects of miRNA and copy number on mRNA 

expression. We the subsequently use this information in our second stage imaging model 
to asses and detect which genes affect the imaging outcome(s).

Each patient datum in our analysis consists of multiple imaging outcomes (e.g. T1, flair and 

ratio), mRNA expression, miRNA binding sites, genes copy number expression and “other” 

prognostic clinical factors (e.g. age, Karnofsky score). In the subsections below, we describe 

the constructions of the genomic and imaging models.
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A. Genomic Model

Suppose n is the number of patients, j indicates the type of the genome platform and pj 

is the number of genes measured on platform j. The genomic model for each gene can be 

expressed as:

XmRNAg = XmRNAgβ1g + XCNgβ2g + Og,

where the terms in the genomic model can be described as follows:

• XmRNAg is the mRNA gene expression for gth gene denoted by geneg and is of 

dimension n×1, g = 1, …, G

• XmRNAg are the miRNAs binding sites on the complete sequence (promoter, 

five prime untranslated region (5′UTR), coding region (CDS) and three prime 

untranslated region (3′ UTR)) to geneg and is of dimension n × pjg. In the miRNA 

data, we have multiple miRNA targets bind to any given gene. We use miRWalk 

[4], a comprehensive human database, that enables us to map miRNA-validated 

targets to the associated genes.

• XCNg is the expression of geneg that is attributed to changes in copy number and 

of dimension n × 1

• Og represents the “other” (residual) part of the geneg expression unexplained by 

miRNA and CN and could be attributed to “other” biological mechanisms and is 

of dimension n × 1

In essence, the genomic component models the multiple miRNA validated targets and copy 

number jointly on the mRNA expression. Thus, for any given gene, our genomic model 
regresses (independently) each gene’s mRNA expression on the miRNA validated targets 

sites and copy number alterations – resulting in estimation of specific platform specific 

components in the above equation. We then subsequently use the estimated copy number, 

miRNA and residual components in our second level of the hierarchicy – the imaging model.

B. Imaging Model

Our imaging model relates the gene expression effects from the genomic model on the 

imaging outcome(s). We include the estimated effects from the genomic model as factors on 

the imaging model to find which genes’ expression, copy number and/or miRNA influence 

the imaging outcome(s) across multiple genes and can be written as:

Y = CγC + miRγmiR + CNγCN + RγR + ε

where the terms of the imaging model have the following representations and 

interpretations:

• Y is a n × k matrix, where k is the number of imaging outcome(s)

• miR =XmiRNAβ is a n × G matrix where the columns are the number of genes 

with miRNA expression.
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• CN= XCNβ is a n × G matrix where the columns are the number of genes with 

copy number profiling.

• R= XmRNA−(miR+CN) is a n × G matrix where the columns are the number of 

genes for the “other” genomic profiles.

• C is a n × L matrix, were the columns are the number non-genomic clinical 

variables (e.g age, demographics)

• γmiR are the expression effects through miRNA

• γCN are the expression effects through copy number

• γR are the expression effects through “other” biological mechanism

• γC are the clinical effects

The number of estimated miRNA-validated gene targets and the copy number from 

our genomic model could be very large (on the order of thousands) compared to the 

number of patients (on the scale of hundreds). The vast majority of the genes have no 

substantial influence on the imaging outcome(s); we are require, to perform some variable 

selection and/or sparse regularization to effectively identified which variables are significant/

important.

III. Implementation

The implementation of our hierarchical model and the variable selection methods are 

described in this section. To conduct the estimation and the subsequent inference we first 

apply a Yeo-Johnson transformation [5] to satisfy the normality assumptions. Subsequently 

we use a covariance decomposition based projection approach to decorrelate the imaging 

outcomes and use a L1 (Lasso [6]) penalty for variable selection and shrinkage for a fast and 

scalable implementation of our approach.

Briefly, assuming the imaging features follow a multivariate normal distribution Y ∼ 
Normal(Xγ, Σ) where X is now stacked X = {miR, CN, R} and γ = {γmiR, γCN, γO, 

γC}. To decorrelate the imaging outcomes we carry out the following steps. First we 

estimate the covariance matrix Σ using the empirical covariance matrix ∑ = YTY/n. Next, we 

decompose the estimated covariance matrix using singular value decomposition (SVD) as 

∑ = PΛPT and subsequently define a “projection” matrix Φ = PΛ− 1
2. Now define Y* = YΦ 

as the projections of Y on Φ, which now represent the decorrelated (“whitened”) imaging 

outcomes, and now can be treated as independent random variables which enables fast fitting 

out our algorithms. Thus, Y* follows a Normal(Xγ*, In) were γ = γΦ. After the whitening 

procedure is perform, we use a L1 (Lasso) penalization for variable selection and shrinkage 

for each of the imaging outcomes Y*. Thus, the lasso penalization for each of the imaging 

outcomes i is:

γ iλ
∗ = argmin yi

∗ − Xγi
∗

2
2 + λ γi

∗
1
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where λ ∈ ℜ+ is the regularization parameter, γi
∗ = γi

C ∗ , γi
miR ∗ γi

CN ∗ , γR ∗  and λ is selected to 

be min(λ) that achieves 80% of the deviance/MSE. For interpretation we transform back 

(“un-whiten”) the coefficients to the original scale by multiplying γ by Φ−1

We expect the solution to be very sparse, since most of the genes will have no substantial 

contribution on the imaging outcome(s). To find the relative importance of each gene on 

the imaging outcome(s), we perform the bootstrap-based stability selection [7] procedure as 

described below:

Bootstrap Lasso Stability Selection

1. We pair (yj1, …, yjk, xj
T) where j = 1, …n and xj

T = xj1, …, xjl .

2. for b = 1, …, B, resample the y1j, …, ykj, xj
T

a. Decorrelate the k imaging outcomes

b. for i = 1, …, k

c. Γiλ
∗ (b) = argmin yi

∗ (b) − X(b)Γ ∗ 2
2 + λ Γ ∗ 1 , λ = min(λ ≥ Deviance0.80) 

and i = 1, …, k

d. “Un-whiten” Γλ
∗ (b) = Γ1λ

∗ (b), …, Γkλ
∗ (b) Γ(b)

3. repeat

Given the coefficients effect estimates for the B bootstrap samples, we determine 

the variable gene importance. We do this by first defining a practically minimum 

effect size δ (δ = 0.01, our analysis). Note that for any bootstrap sample b, γi, l
(b), is 

considered not important if it does not exceed the δ cut-off. Then, we compute a gene 

marker l importance “probability”, P(yi, xl) = ∑b = 1

B I( | γi, l
(b) | ≥ δ) for each i imaging outcome. 

Finally, we select the gene markers for each of imaging outcomes as important if the 

P(yi, xl) = ∑b = 1

B I( | γi, l
(b) | ≥ δ) ≥ 0.5, ∀i,l.

Once the relevant genes are identified, we estimate the gene effects, by regressing the 

imaging outcome(s) on the relevant genes to learn which genes have a positive effect on the 

imaging imaging(s) and vice-versa.

IV. Simulations

In this section, we assess the performance of our models in terms of accuracy (sensitivity 

and specificity) of detecting associated genes. To better illustrate the basics features of our 

imaging model, we generate data with two distinct outcome variables based on our real data. 

We set n = 100, X ~ Normal(0, 1) and Y∼ Normal(Xγ, Σ). The correlation for the two 

imaging outcomes is set to ρ = −0.5. This correlation was chosen to mimic the correlation 

of the TCGA data imaging outcome(s). We simulated data for p = (100, 250) predictors for 

γ1 and γ2, were 90% of γ1 and γ2 are set to 0, and the other 10% of Γ1 and γ2 are sample 

from Normal(4, 1) with probability 0.5 or from a Normal(−4, 1) with a probability 0.5. We 
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allowed 5% both γ1 and γ2 to have an effect on the outcomes. For example, the regression 

coefficients for the first and second response could be:

γ1 = (1, 1, …, 1, 1, …, 1
5%

10%

, 0, 0, 0, 0, 0, 0, 0, 0, 0, …, 0
90%

)

γ2 = (0, 0, …, 0
5%

, 1, 1, 1, …, 1, 1, 1, 1
10%

, 0, 0, 0, …, 0
85%

)

Now we apply our method to estimate the coefficients for our imaging model and evaluate 

the number of genes identified, the number of true positive rate and true negative rate which 

are shown in Table 1. Our simulation suggests that our method is very effective in selecting 

true positive and true negative genes. Our method mean γ1 and γ2 sensitivity is about 98% 

and mean specificity is about 92% for 200 parameters (100 each). The mean specificity 

and sensitivity for 500 parameters (250 each) is about 86% and is 82% respectively – thus 

demonstrating good performance in relevant gene selection.

V. Integrative analysis of GBM data

Radiological characterization/phenotyping was been done to identify survival-associated 

phenotypes on 83 TCGA-GBM patients. The two radiological characterization are T1 and 

ratio. The T1 feature represent the volume contrast enhancing region of the tumor as seen as 

a T1-weighted post contrast MRI image. The ratio refers to the ratio of the T1 post contrast 

image to the volume T2-flair image. In our integrative analysis we use 83 matched tumor 

samples that have been assayed by expression, microRNA and copy number platforms.

A. Description of data

We focus on 49 genes of the RTK/PI3K, p53, and RB cell signaling pathways which is 

known to be an important pathway in cancer [8]. The level 3 processed data was downloaded 

from TCGA data portal by MD Anderson. The Karnofsky score (KPS) was downloaded 

from cBioPortal for Cancer Genomics [9] which resulted in the following data matrices:

• Radiological features (83×2) : T1 is the volume enhancing region, ratio of the T1 

and flair hypertense volume

• Pathway-mRNA (83×49) contains the mRNA expression level for genes and 

patients.

• Pathway-CopyNumber (83 × 49) contains the genes log copy numnber and the 

patients

• Pathway-microRNA (83 × 534) contains the miRNA target sites and the patients

We removed six patients from our analysis. One TCGA patient is missing from the 

mRNA platform, another one is missing from the copy number platform, three more are 

missing from microRNA platform, and one more for being an outlier (TCGA-08-0352 

flair=2.73E+05 T1=286 ratio=953.1). Thirteen KPS values were imputed. Therefore, at the 

end, we kept 77 patients for each platform. After performing a multivariate Yeo-Johnson 
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transformation ( T1
0.29 and ratio0.1), we apply our method to estimate the effects of our 

integrative model.

B. Results

The results indicate that 28 genes are significant from the 49 genes aberrations of the RTK/

PI3K, p53, and RB cell signaling pathways. In figure 1 and 2, we show the gene relative 

importance “probability” for the 49 genes group by copy number, miRNA and “other”. We 

consider a gene to be significant if the relative importance “probability” is greater than 

the cut-off 0.5, otherwise, it is classified as not significant. The genes with higher relative 

importance “probability” are blue in the heatmap and those that are not significant are gray. 

Few genes barely meet the cut-off, for example, the PDGFRB for the “other” biological 

mechanism importance “probability” is 0.51 for T1 and .502 for ratio. We found 28 genes 

to be significant, 12 genes attributed through copy number (FGFR1, CDKN2B, CDKN2C, 

PIK3R1, CCND1, HRAS, PDGFRA, AKT3, CDK6, PIK3CD, MDM2 and AKT1), 2 genes 

attributed through miRNA (CCND2 and PDPK1) and 15 genes attributed through the 

“other” (MDM4, AKT2, ERBB2, PIK3CG, PDGFRA, ARAF, PIK3C2G, PIK3R1, PIK3CB, 

CBL, CDKN2C, TP53, MDM2, IRS1 and PDGFRB) biological mechanism in both T1 

and ratio. Only four genes CDKN2C, PIK3R1, PDGFRA and MDM2 were classified to 

be significant for both copy number and the “other” (e.g. methylation, transcriptional) 

mechanism.

After selecting the importance genes, we regress the two radiological phenotypes (T1,ratio) 

on the estimated pieces for those relevant genes from the genomic model and the two 

clinical predictors (KPS, Age). In figure 3, we show that eight genes to be significant for 

the T1 image outcome and eleven genes to be significant for the ratio image outcome. Six 

out of the eight significant genes from the T1 image outcome have a negative effect (smaller 

tumor) and two have a positive effect (larger tumor) on T1. Four out of the eleven significant 

genes from the ratio image outcome have a negative effect (greater infiltration) and seven 

have a positive effect (smaller infiltration) on ratio. We found that copy number attribute 

gene FGFR1 has antagonistic gene effect on the imaging T1 and ratio outcomes.

VI. Conclusion

In this paper, we have introduced an innovative multivariate integrative model that integrates 

genomic data from various platforms with multiple imaging outcome(s). Our model uses 

a two level hierarchical approach to integrate biological relationships, and then uses 

this information to identify the significant genes that influence the imaging outcome(s). 

Our simulation shows that our model identifies true positive and true negative genes 

very effectively. We apply this model to integrate copy number, micorRNA and “other” 

expression from TCGA-GBM data. Our model helps us identify relevant genes effects 

from copy number, microRNA and “other” biological mechanisms influence the imaging 

outcome(s). In summary, the advantages from our model are to (i) identify genes effects 

that influence a disease, (ii) integrate a number of multiple platforms into one statistical 

model, (iii) model biological relationships among and between different platforms to the 

imaging outcome(s), (iv) handle high-dimensional data effectively and (v) relates effectively 
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multiple correlated imaging outcome(s) to predictors from different genomic platforms. In 

the future, we plan to investigate non-linear extensions of our model which might be more 

biologically relevant in some instances. Another avenue of research might be to include a 

multiple pathways into our model to further explore the effects on imaging outcomes.
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Fig. 1. 
T1 significant importance “probability” heatmap plot. A gene is consider significant if the 

“probability” of being chosen is greater than 0.5. The gray shaded markers are the genes that 

are not significant and the blue shaded markers are the significant genes.
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Fig. 2. 
ratio significant importance “probability” heatmap plot. A gene is considered significant if 

the “probability” of being chosen is greater than 0.5. The gray shaded markers are the genes 

that are not significant and the blue shaded markers are the significant genes.
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Fig. 3. 
The direction of the important gene effects for the T1 and ratio outcomes. Red: significant 

negative effect on T1 (smaller tumor) and on ratio (greater infiltration); Blue: significant 

positive effect on T1(lager tumor) and on ratio (less infiltration) ; Green: not significant
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