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Abstract

Background—We sought to use deep learning to extract anatomic features from postnatal 

kidney ultrasounds and evaluate their performance in predicting the risk and timing of chronic 
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kidney disease (CKD) progression for boys with posterior urethral valves (PUV). We hypothesized 

that these features would predict CKD progression better than clinical characteristics such as nadir 

creatinine alone.

Methods—We performed a retrospective cohort study of boys with PUV treated at two pediatric 

health systems from 1990 to 2021. Features of kidneys were extracted from initial postnatal 

kidney ultrasound images using a deep learning model. Three time-to-event prediction models 

were built using random survival forests. The Imaging Model included deep learning imaging 

features, the Clinical Model included clinical data, and the Ensemble Model combined imaging 

features and clinical data. Separate models were built to include time-dependent clinical data that 

were available at 6 months, 1 year, 3 years, and 5 years.

Results—Two-hundred and twenty-five patients were included in the analysis. All models 

performed well with C-indices of 0.7 or greater. The Clinical Model outperformed the Imaging 

Model at all time points with nadir creatinine driving the performance of the Clinical Model. 

Combining the 6-month Imaging Model (C-index 0.7; 95% confidence interval [CI] 0.6, 0.79) 

with the 6-month Clinical Model (C-index 0.79; 95% CI 0.71, 0.86) resulted in a 6-month 

Ensemble Model that performed better (C-index 0.82; 95% CI 0.77, 0.88) than either model alone.

Conclusions—Deep learning imaging features extracted from initial postnatal kidney 

ultrasounds may improve early prediction of CKD progression among children with PUV.
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Introduction

Posterior urethral valves (PUV) are a congenital obstruction of the urinary tract caused by 

leaflets of tissue in the posterior urethra of boys [1]. These valves cause urinary obstruction 

in utero, which can cause kidney failure, pulmonary hypoplasia, and mortality in infancy [1]. 

PUV are detected in approximately 1/1250 ultrasound screenings [2, 3].

In boys with PUV, kidney injury is often established at birth. Some children, however, 

maintain preserved kidney function into adulthood, while others progress to kidney failure 

in childhood [4-7]. Our ability to effectively implement therapies to slow chronic kidney 

disease (CKD) progression is limited by our lack of understanding of which patients are at 

greatest risk for CKD progression and therefore would be most likely to benefit from early 

intervention such as intermittent urethral catheterization and closer surveillance [4, 8, 9]. 

Additionally, this uncertainty hinders physicians from accurately counseling families about 

their child’s expected clinical course at the time of birth. Currently, predicting future risk 

of CKD progression relies heavily on nadir creatinine during the first year of life [10-12]. 

A serum creatinine of less than 0.8 mg/dL has been associated with minimal risk of CKD 

progression, and a value greater than 1.2 mg/dL at 1 year of age has been associated with 

a higher risk for developing kidney failure [11, 13]. However, the clinical utility of nadir 

creatinine is limited by its lack of availability at birth. Recently, kidney features obtained 

from ultrasound have been shown to be associated with CKD progression. Our group and 

others have reported that low kidney parenchymal area measured on postnatal ultrasound 

is associated with CKD progression among boys with PUV [14-17]. Limitations to kidney 

parenchymal area include that it is laborious to measure and does not use all the information 

contained in the ultrasound images.

Our goal was to use deep learning to automatically extract features of kidneys from 

ultrasound images and to determine the performance of these features in predicting CKD 

progression among children with PUV [18]. Our secondary objective was to compare our 

deep learning models to models built using clinical data alone. We hypothesized that these 

features would predict CKD progression better than clinical characteristics such as nadir 

creatinine alone.

Methods

Study design and population

Following institutional research board approval, we performed a retrospective cohort study 

at the Children’s Hospital of Philadelphia (CHOP) and the Hospital for Sick Children 

(HSC). The electronic medical records at both institutions were queried to identify all 

patients with a history of PUV treated at the respective institutions between 1990 and 2021. 

The ICD-9 code 753.6 and the ICD-10 code Q64.2 were used to identify potential patients 

with PUV. Manual review of each patient’s chart was performed to verify the diagnosis. 

All patients with a history of PUV who presented to our respective institutions in the first 

year of life and had their diagnosis verified via cystoscopy were included in the analysis. 
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Data from both institutions were recorded in a single Research Electronic Data Capture 

(REDCap) database [19].

Outcome

The outcome of interest, CKD progression, was defined as developing kidney failure 

(receiving dialysis or kidney transplant) or decline more than 50% in eGFR. eGFR was 

calculated using the bedside Schwartz equation. eGFR was only calculated in instances 

when both creatinine and height were recorded in the electronic medical record within 

6 months of each other. In those instances, the height measurement in nearest temporal 

proximity to the creatinine value was used to calculate eGFR. Only outpatient creatinine 

values obtained when patients were at their baseline health status were used for eGFR 

calculations.

Exposures

Imaging features—The first available postnatal kidney ultrasound images were obtained 

for all patients. All ultrasounds were performed prior to any intervention (ablation or 

diversion). Kidney ultrasound images from HSC were transferred to CHOP, and imaging 

analysis was performed in CHOP’S secure bioinformatics environment. Only patients with 

images available prior to day 90 of life were included in the analysis. All ultrasound 

images were resized to have the same size of 224×224 with cropping, and each image’s 

intensity values were normalized to (0, 255). For each patient, transverse and sagittal 

kidney ultrasound images were identified using Python 3.7.0 Pytesseract optical character 

recognition to identify existing orientation labels, and results were manually verified for 

accuracy. Python 3.7.0 Pytesseract optical recognition was used to classify bladders as 

decompressed or full at the time of ultrasound. We included ultrasounds performed at 

our institutions as well as ultrasounds performed at outside institutions. As a result, 

the ultrasound images were obtained using a wide variety of ultrasound machines and 

transducers.

Clinical variables—Clinical data were aggregated longitudinally within distinct 6-month 

time periods beginning with each patient’s initial presentation to CHOP or HSC until they 

reached the outcome or their last date of follow-up. Age at time of valve ablation or urinary 

diversion, history of vesicostomy creation, history clean intermittent catheterization and/or 

catheterizable channel creation, anticholinergic use within each distinct 6-month window, 

and the presence of a concomitant genetic abnormality were obtained from the medical 

records. The initial postnatal voiding cystourethrogram was analyzed for the presence 

of vesicoureteral reflux. The lowest creatinine measurement in the first year of life was 

designated as their nadir creatinine. Nadir creatinine and age at time of ablation were treated 

as continuous variables, while the remaining variables were treated as binary. Patients were 

followed until the date they reached the outcome or were censored at their last known 

clinical encounter.

Machine learning analysis—The deep learning method was implemented using Python 

3.7.0 and TensorFlow 2.34. Deep learning imaging features were extracted by a pretrained 

ResNet-50 deep learning model [20]. We applied the pretrained ResNet-50 model to all 
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available transverse and sagittal kidney ultrasound images from each patient. Deep learning 

imaging features were extracted from the last layer (avg_pool) of this model. Three 

base time-to-event prediction models were built. The first model (Imaging Model) used 

random survival forests on the deep learning imaging features alone. The second model 

(Clinical Model) used random survival forests on clinical features alone. Clinical features 

included were history of vesicoureteral reflux, nadir creatinine at 1 year of life, need for 

intermittent catheterization via urethra or catheterizable channel, prior vesicostomy creation, 

and prior history of treatment with anticholinergics for at least 6 months at any point in 

the patient’s life. A time-to-event prediction model combining imaging features and clinical 

characteristics (Ensemble Model) was then generated by averaging the risk scores of the 2 

models (Imaging Model and Clinical Model).

Four models using time-dependent covariates were created for each base model at 6 

months, 1 year, 3 years, and 5 years. The time-dependent covariates included intermittent 

catheterization, anticholinergic use, vesicostomy creation, catheterizable channel creation, 

and nadir creatinine in the first year of life. For these time-dependent models, only data 

that were available at the particular time points after birth were included. For example, if a 

patient has started on intermittent catheterization at age 2 years, that information was only 

included in the year 3 and year 5 Clinical Model but not in the 6-month and 1-year models 

because this information would not be available to a clinician until the patient was 2 years 

old.

The performance of each time-dependent survival model was assessed using concordance 

index (C-index) and receiver operating curves (ROC) with areas under the curve (AUC) 

measurements at 2, 5, and 10 years. In order to create ROCs at 2, 5, and 10 years, follow-up 

was stopped at those points, and predictions for the entire cohort up to those time points 

were analyzed. Each of the models was evaluated using a stratified 5 K-fold cross validation 

on the entire data set with an 80/20 training and test split. Each split was the same for all 

three models.

Based on each model’s prediction results (the risk scores assigned to each subject), a risk 

threshold was used to stratify patients into high risk (top 20%) and low risk (bottom 80%) 

groups. The high-risk group was those patients predicted to have CKD progression, while 

the low-risk group was patients predicted to not reach the outcome. The high-risk group 

included 20% of our patients because roughly 20% (22.6%) of our patients were observed to 

have CKD progression. Observed CKD progression over time was compared between these 

groups using Kaplan–Meier curves and log-rank tests.

Sensitivity analysis—We performed two sensitivity analyses. First, we redefined CKD 

progression as a decline of ≥ 35% in eGFR or receiving dialysis or kidney transplant. A 35% 

decline in GFR was chosen as an outcome measure to assess our model’s ability to identify 

milder CKD progression. Adult CKD studies have shown eGFR decline of 30–40% over 

a 2- to 3-year period as a reliable surrogate for development of dialysis-dependent kidney 

failure [21, 22].
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Second, we used the chronic kidney disease in children (CKiD) U25 eGFR equation 

to calculate eGFR. The U25 CKiD GFR equation was analyzed to validate our model 

using this new GFR calculation that has been purported to be appropriate for our patient 

population [23, 24].

Results

We identified 537 patients with PUV who were treated at CHOP (n = 370) and HSC (n = 

167) during the study period. We included in the analysis the 225 patients who had initial 

postnatal ultrasound images and a full clinical history including nadir creatinine within the 

first year of life available. Fifty-one patients (22.6%) had CKD progression (37 patients who 

developed kidney failure and 14 patients who had a decline in eGFR of 50%) over a median 

follow-up of 6.1 years (IQR 2.1, 11). Cohort characteristics are summarized in Table 1.

Primary analysis

From our cohort of 225 patients, a mean of 7.8 transverse images of the kidney (SD 5.2) 

and a mean of 6.4 sagittal images (SD 4.8) were available for each patient. All images were 

static. Forty-eight (21%) of the 225 patients had a fully decompressed bladder at the time of 

ultrasound.

Table 2 reports the C-indices of our 6-month models and AUCs assessing outcomes at 2, 

5, and 10 years of follow-up. C-indices and AUCs of our other models can be found in 

Supplemental Table 1. All models had C-indices of 0.7 or higher. The Clinical Models 

consistently outperformed the Imaging Models at all time points. Permutation scoring 

identified nadir creatinine as the strongest contributor to the Clinical Models’ performance. 

However, the Clinical Model created using only time-dependent covariates that were 

available at 6 months of life (6-month Clinical Model) performed worse than the Clinical 

Model built on clinical information available at 1 year and beyond. Combining the 6-month 

Imaging Model (C-index 0.7; 95% confidence interval [CI] 0.6, 0.79) with the 6-month 

Clinical Model (C-index 0.79; 95% CI 0.71, 0.86) resulted in a 6-month Ensemble Model 

that performed better (C-index 0.82; 95% CI 0.77, 0.88) than either model alone. Figure 

1 demonstrates the ROC curves of all three models built upon information available at 6 

months of life. ROC curves for all other models are available in the supplement.

Twenty-seven of 51 (52.9%) patients classified into the high-risk group based on their risk 

score provided by our 6-month Ensemble Model developed CKD progression, while 19 of 

the 174 (10.9%) patients in the low-risk group reached the outcome (p-value<0.01) (Fig. 2). 

Kaplan–Meier curves for risk groups derived from each model can be found in supplemental 

figures.

Sensitivity analyses

We identified 32 patients who had a decline in eGFR of 35%, which increased the number 

of patients who developed CKD progression from 51 (22.6%) to 69 (30.7%). Using the 

CKiD U25 equation, we identified 11 patients with a 50% decline in eGFR. Similar to 

the primary results, the Clinical Model outperformed the Imaging Model at all time points, 

and combining the 6-month models resulted in an Ensemble Model that outperformed each 
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individual model. Both changing the threshold of eGFR decline to 35%, and using the CKiD 

U25 equation to calculate eGFR resulted in a decline in the C-index of all 3 models. See 

complete results in the supplemental table.

Discussion

We found that clinical characteristics and kidney features extracted from initial postnatal 

ultrasounds were strong predictors of CKD progression for boys with PUV. Deep learning 

imaging features extracted from initial postnatal ultrasounds performed well on their 

own (C-index 0.7), but time-varying clinical features alone consistently outperformed the 

imaging features, with nadir creatinine at 1 year of life the most important feature. At the 

6-month time point, we found combining imaging features from first postnatal ultrasound 

with clinical data had better predictive performance than either clinical characteristics or 

imaging features alone. These results suggest that features extracted from routine kidney 

ultrasounds can improve prediction of CKD progression in the immediate postnatal period 

when additional clinical information is not yet available, thus allowing earlier prediction and 

months later by increasing the predictive performance of nadir creatinine.

Kidney features obtained from ultrasounds have previously been shown to be associated 

with future CKD progression. Our group and others have reported that low kidney 

parenchymal area measured on postnatal ultrasound is associated with higher odds of 

CKD progression among boys with PUV [17, 25]. Here, we extend upon the evidence 

base of imaging biomarkers of CKD progression by using deep learning to automatically 

extract features from postnatal kidney ultrasounds of infants with PUV to predict CKD 

progression. These deep learning imaging features could serve as novel biomarkers that are 

easily reproducible, do not require invasive testing, and are potentially available as early as 

the first day of life. Deep neural network learning (aka deep learning) avoids the need to 

identify data features of interest prior to analysis. Instead of adopting empirically derived 

image features (i.e., what clinicians think about from prior experience), deep learning-based 

methods detect informative features (i.e., see patterns we have not considered). This 

approach is automated and free of the need for any type of human selection of regions 

of interest in order to eliminate bias and increase clinical uptake. In addition, this approach 

makes feature extraction more robust to noise. As a result, the features extracted by our 

model cannot be equated to familiar clinical parameters such as parenchymal thickness or 

echogenicity.

We are not the first to report the strong predictive capabilities of nadir creatinine in 

this population [8, 10, 12]. A serum creatinine of less than 0.4 to 0.8 mg/dL has been 

associated with a low risk of CKD progression, and value greater than 0.8 to 1.2 mg/dL 

at 1 year of age has been associated with a higher risk of future kidney failure [11, 13]. 

Additionally, Coleman et al. reported that a nadir creatinine greater than 0.85 mg/dL at 1 

month of life is associated with a higher risk of kidney failure, and values of less than 0.4 

mg/dL are associated with a lower risk [26, 27]. Clinical prediction models have recently 

been published that rely heavily on nadir creatinine. Our group previously reported that 

CKD progression among patients with PUV could be predicted with fairly high accuracy 

(C-index 0.77) using clinical characteristics [28]. Vasconcelos et al. similarly reported that 
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the probability of CKD ≥ stage 3 at 10 years of age was estimated at 6%, 40%, and 70% 

for patients assigned to the low-risk, medium-risk, and high-risk groups, respectively (P < 

0.001) [29].

A limitation of nadir creatinine is that it is not available until the patient is 1 year old. 

Ultrasounds, on the other hand, are available as early as the first day of life. Should these 

results be confirmed by others and in prospective cohorts, imaging features could help guide 

family counseling immediately after birth and improve clinical decision-making in the first 

year of life, such as considering aggressive management (e.g., vesicostomy) for children 

predicted to have a high risk of CKD progression as predictive performance increases when 

nadir creatinine becomes available.

Our machine learning model allows clinicians to identify PUV children at highest risk of 

CKD earlier than any existing tools. Patients can be risk stratified within days to weeks 

after birth as opposed to months to years. The potential clinical ramifications of having 

this information available at such an early stage in life cannot be overstated. Currently, our 

ability to make informed treatment decisions for these patients immediately after birth is 

compromised by our inability to effectively risk stratify patients in the newborn period. Our 

machine learning model can augment a physician’s clinical decision-making process in the 

first month of life.

Our models were less accurate in predicting CKD progression defined as a 35% decline 

in eGFR. However, the models still performed well and suggest that machine learning of 

ultrasound images can predict even more subtle changes in eGFR with additional clinical 

information. In our second sensitivity analysis, using the U25 CKiD equation resulted in 

3 patients, who were classified as having a 50% eGFR decline by the bedside Schwartz 

equation, being reclassified as not having a 50% decline in eGFR. Reclassification of these 

3 patients resulted in models that were slightly less accurate at predicting CKD progression. 

Studies with greater power would be needed to better understand this change in model 

performance.

There are several limitations to our study. Our study is vulnerable to selection bias and 

confounding innate to any retrospective study. As a result of our inclusion criteria to only 

include ultrasounds performed within the first 90 days of life, we have excluded patients 

with PUV who present later in life. The results of our study cannot be extrapolated to this 

cohort of patients as their clinical course can be markedly different. In addition, overfitting 

and generalizability are two known limitations of machine learning. Our relatively large 

sample size that was drawn from two separate institutions and cross-validation method 

helped mitigate this risk. Additionally, we included ultrasounds performed at other 

imaging sites, which should increase generalizability. Nonetheless, continued calibration 

and validation of these models with additional patients at more institutions will be 

critical moving forward. Incorporating longitudinal images could potentially improve the 

performance of our model in the future as only the first postnatal ultrasound was included in 

the current study. Training and testing our model on ultrasound images performed prenatally 

as early as the 20th week of gestation will further increase its clinical utility. Future 

prospective trials are needed to validate our model.
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Conclusion

Our study suggests that deep learning imaging features extracted from initial postnatal 

ultrasounds can improve the early prediction of CKD progression of children with PUV.
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Fig. 1. 
ROC curves illustrating the performance of the 6-month models. A AUC of Imaging Model 

at 5 years = 0.75 (0.68, 0.84). B AUC of Clinical Model at 5 years = 0.82 (0.74, 0.89). C 
AUC of Ensemble Model at 5 years = 0.85 (0.76, 0.9)
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Fig. 2. 
Kaplan–Meier plots depicting difference in CKD progression in patients classified by the 

6-month Ensemble Model as low or high risk of CKD progression. Progression-free survival 

was longer in the low-risk group compared to the high-risk group. Median time to CKD 

progression was 1875 (1512, 4089) days in the high-risk group
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