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The true benefits of large single-cell transcriptome and epigenome data sets can be realized only with the development of

new approaches and search tools for annotating individual cells. Matching a single-cell epigenome profile to a large pool of

reference cells remains a major challenge. Here, we present scEpiSearch, which enables searching, comparison, and indepen-

dent classification of single-cell open-chromatin profiles against a large reference of single-cell expression and open-chro-

matin data sets. Across performance benchmarks, scEpiSearch outperformed multiple methods in accuracy of search

and low-dimensional coembedding of single-cell profiles, irrespective of platforms and species. Here we also demonstrate

the unconventional utilities of scEpiSearch by applying it on single-cell epigenome profiles of K562 cells and samples

from patients with acute leukaemia to reveal different aspects of their heterogeneity, multipotent behavior, and dediffer-

entiated states. Applying scEpiSearch on our single-cell open-chromatin profiles from embryonic stem cells (ESCs), we iden-

tified ESC subpopulations with more activity and poising for endoplasmic reticulum stress and unfolded protein response.

Thus, scEpiSearch solves the nontrivial problem of amalgamating information from a large pool of single cells to identify

and study the regulatory states of cells using their single-cell epigenomes.

[Supplemental material is available for this article.]

Single-cell epigenome profiling enables the identification of active
and poised cis-regulatory sites and the underlying genome regula-
tion across in vivo and in vitro cell types and tissues. Due to several
advantages like slower degradation than RNA and a better under-
standing of heterogeneity in cellular responses, epigenome profil-
ing for single cells is increasingly adapted for atlas-scale data sets
and more accurate insights into underlying cell state regulation
(Buenrostro et al. 2015; Corces et al. 2020). Hence, an important
challenge is how to handle the problem of searching and meta-
analysis of single-cell epigenome profiles. A search tool can handle
such tasks, revealing various stages of dedifferentiation of cancer
cells and predicting a cell’s behavior in an unknown state. Such
an approach can lead to better annotation and regulatory infer-
ence from new single-cell open-chromatin profiles as it is support-
ed by a reference pool of cells in different cellular states. The
challenges and opportunities of such an approach have been dis-
cussed as one of the 11 grand challenges in single-cell data science
by (Lähnemann et al. 2020) under the topic of mapping a single
cell to a reference atlas. They have also listed integrating single-
cell data across samples and experiments as another grand chal-
lenge. There have been efforts from several groups (Srivastava et
al. 2018; Cao et al. 2020) to build search engines for single-cell ex-
pression profiles. Some tools like scfind (Lee et al. 2021) help to
identify cell type–specific and housekeeping genes. However,
they do not resolve the challenges associated with large single-
cell epigenome data sets. There have been a few studies on integrat-

ing single-cell epigenome with single-cell expression profiles (Jin
et al. 2020; Wang et al. 2020; Danese et al. 2021; Wu et al.
2021), but they have not used the approach of searching a large
pool of reference cells. Such tools also include Seurat (Stuart
et al. 2019), LIGER (Liu et al. 2020), and Conos (Barkas et al.
2019), which have been proposed for the integration of single-
cell open-chromatin profiles. However, a recent benchmarking
study by Leucken et al. (2022) compared more than 30 such sin-
gle-cell integrationmethods and revealed that themost integrative
approaches performed poorly for batch correction while integrat-
ing scATAC-seq profiles. Leucken et al. revealed a fact about such
integrative methods that only 27% of their integration outputs
for scATAC-seq profiles performed better than the best-unintegrat-
ed results (Luecken et al. 2022). Therefore, despite the availability
of large single-cell epigenome atlases (Cusanovich et al. 2018;
Domcke et al. 2020) and methods for their low-dimensional visu-
alization, there is a scarcity of a robustmappingmethodwhich can
lead to the development of search engines meant to correctly
match query single-cell epigenomeprofile to a large number of sin-
gle-cell profiles irrespective of batch effect.

Most of the published approaches that utilize canonical corre-
lation and principal component analysis focus on visualization
and analysis of scATAC-seq profiles within a group and can miss
rare cells (very few cells across the entire data set). On the other
hand, a search engine approach that can help handle every
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single-cell independent of each other would provide the tremen-
dous benefit of preserving the information of rare and unique cells
in a study and utilizing the data sets from other studies. Multiple
kinds of single-cell transcriptomes (UMI or non-UMI) could be
mentioned as single-cell RNA sequencing (scRNA-seq) profile for
brevity. In comparison to the scRNA-seq, single-cell open-chroma-
tin profiles offer new obstacles. Currently, single-cell epigenome
profiling mainly aims to capture open chromatin regions (prefer-
entially at promoters, enhancers, etc.) using DNase-seq (DNase I
hypersensitive site sequencing) (Jin et al. 2015), MNase-seq
(Micrococcal Nuclease digestion with deep sequencing) (Lai et al.
2018) or ATAC-seq (Assay for Transposase-Accessible Chromatin
using sequencing) (Cusanovich et al. 2018). Besides having more
noise and sparseness, read-count matrices for single-cell open-
chromatin profiles have a higher number of genomic loci (peaks)
as features than a similar matrix for a single-cell expression data
set. Most often, genomic loci (peaks) in the read-count matrices
of single-cell open chromatin profiles compiled by different re-
search groups are not the same. Hence existing algorithms and
searchmethods proposed for single-cell expression profiles cannot
be used directly for single-cell open-chromatin profiles.

Here we describe scEpiSearch, consisting of novel computa-
tional methods to match queried single-cell open-chromatin pro-
files with a large pool of reference single-cell open-chromatin and
single-cell expression data sets. scEpiSearch resolves the issue of
handling nonsimilar peak lists of single-cell epigenome profiles
frommultiple scientific groups and solves the problem of calculat-
ing the statistical significance of the match of the query with sin-
gle-cell expression and open-chromatin profiles. scEpiSearch uses
a gene-enrichment (GE) score as a proxy for cell type specificity
(instead of gene activity [Cusanovich et al. 2018]), while minimiz-
ing the bias and noise bias across reference cells (see Methods).
scEpiSearch also resolves the problemof using reference cell atlases
for highly efficient joint-embedding of query single-cell open-
chromatin profiles irrespective of batch effect, species, and peak
list. Here, we apply scEpiSearch to single-K562 and embryonic
stem cell epigenomes and capture heterogeneity, lineage bias
and stress response across single cells to better understand regula-
tory behaviors through their epigenomes.

Results

scEpiSearch first preprocesses the reference pool of single-cell epi-
genome and expression profiles (see Methods). In fact, it also has
its own processed reference pool of single-cell transcriptomes
and epigenomes (Fig. 1). The current reference pool of scEpiSearch
has 4.3 million expression profiles from human and mouse cells
(Supplemental Table S1), and approximately 800,000 single-cell
epigenome profiles from human and mouse cells (Supplemental
Fig. S1A). To handle such a large reference pool of single-cell
expression and epigenome profiles, scEpiSearch keeps it in a
clustered format so that it can be searched in a hierarchicalmanner
(Supplemental Fig. S1B; Fig. 1).

For both query and reference single-cell open-chromatin pro-
files, scEpiSearch first normalizes the read count of every peakwith
its global accessibility score to highlight potential enhancers (Fu
et al. 2018). For both species, human andmouse, we used the glob-
al accessibility peak list compiled using several published open-
chromatin profiles of bulk samples published by different groups
and consortiums (The ENCODE Project Consortium 2012;
Bujold et al. 2016). Normalization by global accessibility score
for peaks removes the bias that could have come from other cells

in the same query. Thus, every cell in the query is treated indepen-
dently of the other.

scEpiSearch enables correct matching to reference cells

irrespective of technical biases

scEpiSearch uses peaks with high normalized counts as foreground
and others as the background set to calculate the GE score using
the Fisher’s exact test (hypergeometric test). In order to compare
to a reference scRNA-seq profile scEpiSearch estimates the median
of normalized expression values (MExTEG) (in same reference cell)
for the top 1000 enriched genes for every query cell separately (see
Methods). It uses the normalized expression (see Methods) values
in the reference scRNA-seq profile to calculate amedian expression
for query cells’ top 1000 enriched genes (MExTEG). For a query,
theMExTEGof a reference cell is converted to P-value using precal-
culated MExTEG values for cells in the null model (see Fig. 1; Sup-
plemental Fig. S1B). To compare to a large pool of reference scRNA-
seq profiles, scEpiSearch uses a hierarchical approach (Supplemen-
tal Fig. S1B; Supplemental Methods). scEpiSearch further calcu-
lates a new P-value based on the ranks of reference cells for a
query to reduce bias in the data set and search procedures (see
Methods, Supplemental Fig. S1B). Such bias can occur due to the
presence of doublets of different cell types in reference data and
even due to unseen artifacts in the null model. scEpiSearch makes
a rank adjustment for hits using their precalculated ranks for the
null model. First, we compared our method using a reference set
of 10,100 mouse single-cell expression profiles from the mouse
cell atlas (MCA). We compared it against three different approach-
es: (i) comparing gene expression to gene-activity of scATAC-seq
calculated using Seurat (Stuart et al. 2019), (ii) correlating GE
scores of scATAC-seq and expression profile of reference, (iii) calcu-
lating the correlation between the BABEL- (Wu et al. 2021) based
predicted expression of query scATAC-seq profile to reference ex-
pression (Fig. 2A). We found that our MExTEG based approach is
much superior to direct comparison (or correlation) of reference
gene-expression values to gene activity, GE scores or predicted ex-
pression of query scATAC-seq profiles (Fig. 2A; Supplemental Fig.
S2A,B).

For matching to a reference scATAC-seq profile, its median
enrichment score for top enriched genes (MESTEG) of query cells
is calculated. The MESTEG value is converted to P-value using pre-
calculated MESTEG scores for cells (vectors of enriched genes) in
the null model (Methods, Fig. 1). scEpiSearch also uses a hierarchi-
cal approach to find the most matching scATAC-seq profile in the
reference data set (Supplemental Fig. S1B). After determining the
rank of reference cells for a query cell, it calculates a new P-value
using the precalculated rank of the same reference for the null
model (see Methods). We compared the MESTEG based approach
to the direct correlation between gene activity, GE score, and
BABEL-based (Wu et al. 2021) predicted expression of query and
reference open-chromatin profiles. In our evaluation, the query
scATAC-seq profiles were not from the same data sets used to
make a reference pool of single-cell epigenomes. The MESTEG-
based approach was substantially better than other procedures in
finding correctmatching open-chromatin profiles (Fig. 2B; Supple-
mental Fig. S2C).

We also compared scEpiSearch to integrative methods, Seurat
(Stuart et al. 2019), LIGER (Liu et al. 2020), Conos (Barkas et al.
2019), and SnapATAC (Fang et al. 2021) in terms of finding the
closest matching single-cell expression profile for various types
of scATAC-seq read-count matrices. Here we provided the same
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reference single-cell expression pool of 10,100 cells from the MCA
data set published by Han et al. (Han et al. 2018) to Seurat (Stuart
et al. 2019), LIGER (Liu et al. 2020), Conos (Barkas et al. 2019),
SnapATAC (Fang et al. 2021), and scEpiSearch. For a two-dimen-
sional (2D) visualization of scEpiSearch results, we used the aver-
age of coordinates (in the t-SNE plot) of the top five matching
cells. We found that with homogeneous and smaller query sets
of single-cell open-chromatin profiles, the coembedding results
by integrative methods were unsatisfactory (Supplemental Fig.
S3A,B). It could be due to the design of integrative methods like
Seurat and LIGER to exploit heterogeneity in single-cell profiles
to find anchors, resulting in the wrong grouping of homogenous
query single-cell ATAC-seq profiles with various nonsimilar cells.
In fact, Leucken et al. (Luecken et al. 2022) also revealed the
poor performance of integrative methods for scATAC-seq data
and mentioned that gene activity scores used by many integrative
methods could be poorly suited to represent scATAC-seq data.
Another reason for the revelation of such a result could be that, un-
like previous studies, we did not calculate silhouette coefficients/
index for reference single-cell expression data points in the coem-
bedding plots, as it could have overwhelmed the corresponding
values for query single-cell ATAC-seq profiles (as shown in
Supplemental Fig. S3D). Our target was to evaluate the process of

finding matching expression profiles for single-cell ATAC-seq
data sets (like a search engine); hence we calculated silhouette co-
efficients only for query cells.

The coembedding plots improved when we increased hetero-
geneity in the query to include the single-cell ATAC-seq profiles of
three types of mouse cells (macrophages, B cells and endothelial
cells) (Fig. 2C). However, based on the measure of silhouette coef-
ficients for query single-cell ATAC-seq profiles, the integrative
methods (Seurat, LIGER, and Conos) were not comparable to scE-
piSearch (Fig. 2C; Supplemental Fig. S3C). A similar trend was ob-
served when scATAC-seq profiles of human cells were used as a
query for the same reference expression data set consisting of
10,100 cells from MCA (Han et al. 2018). When scATAC-seq pro-
files of Human embryonic stem cells (hESC) were used as a query,
scEpiSearch-based plots showed them closer to mouse ESC. Simi-
larly, for the scATAC-seq profile of Human Neuron cells, results
based on scEpiSearch showed their proximity to reference neuro-
nal cells from MCA (Supplemental Fig. S4B). Seurat and LIGER
had the same problem, such that homogenous query cells were
spread and colocalized with multiple groups of nonsimilar refer-
ence expression profiles in coembedding plots (see Supplemental
Fig. S4A,B). When we used a query consisting of scATAC-seq pro-
files of peripheral blood mononuclear cells (PBMCs) with higher

Figure 1. A graphical outline describing the proposed approach and algorithms in scEpiSearch for annotation of new single-cell open-chromatin profiles
and better inference of their regulatory states using the collection of available data sets of single-cell epigenomes and transcriptomes. It involves the steps
named as: Epigenome and Expression Reference Data Preparation, Query Processing andMapping, and Cross-Species and Cross-Batch Query embedding.
The cross-species and cross-batch query embedding represents the coembedding ofmultiple open-chromatin profiles irrespective of differences in peak list
in the read-count matrix, batch effect, and species using existing reference single-cell profiles.
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heterogeneity, the results for LIGER and Seurat improved such that
query cells appeared closer to immune cells in their coembedding
plots (Fig. 2D; Supplemental Fig. S4C). However, whenwe calculat-

ed the silhouette coefficients for query cells to evaluate the efficacy
of the integrative method as a search engine, their performance
was not comparable to simple embedding based on the results of

A

C

D

E

B

Figure 2. Evaluation of the accuracy of scEpiSearch. (A) Comparison of scEpiSearch with three approaches based on correlation of gene scores (activity,
enrichment and BABEL-based predicted expression) for matching single-cell open-chromatin profiles to a pool of reference single-cell transcriptome. Here
the reference data set consisted of single-cell expression profiles of 10,100 cells chosen from the mouse cell atlas (MCA). Accuracy here shows the percent-
age of query cells which had the correct cell type among the top five matches. (B) Comparison of five methods for matching query single cell open-chro-
matin profile to reference sci-ATAC-seq profile of ∼81,000 mouse cells published by Cusanovich et al. (2018). (∗∗∗) P-value <0.001; (∗∗) P-value <0.01. (C)
Comparison of scEpiSearch integrative method using reference single-cell expression profiles of 10,100 cells from MCA data set. Here query consisted of
scATAC-seq profiles of three types of mouse cells, namely, B cells, macrophages, and endothelial. The silhouette index of query cells, for being in proximity
to correct reference cell types, is shown for different methods, on the right panel. (D) Evaluation of cross-species search for integrative methods and ap-
proach of scEpiSearch using human PBMC scATAC-seq profiles as query and reference single-cell expression profiles from MCA. Silhouette coefficients
for human PBMCs are also shown for different methods. Here immune cells in references and query cells were considered to belong to one class, whereas
other cell types as second class for calculation of silhouette coefficients. (E) Accuracy achieved by scEpiSearch engine for matching query scATAC-seq read-
count matrices to its own collection of reference single-cell profiles; shown from left to right as such: (i) query human single-cell epigenome (open-chro-
matin) profile to reference human single-cell epigenome; (ii) query human single-cell open-chromatin profile to reference human single-cell expression
collection; (iii) query mouse single-cell epigenome to reference single-cell expression profiles; (iv) query mouse single-cell epigenome (open-chromatin)
to reference mouse single-cell expression profile; (v) cross-species search, query human single-cell epigenome to reference mouse single-cell expression.
The y-axis shows accuracy in the percentage of query cells for which correct annotation came among the top five hits. It shows accuracies as bar plots for
faster and accurate modes of scEpiSearch.
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scEpiSearch (Supplemental Fig. S4A,B,D; Fig. 2D). Overall, our re-
sults indicate that integrative methods could not provide an effi-
cient search for matched expression profiles for query scATAC-
seq data sets like scEpiSearch.

The standalone and web server versions have their database of
reference expression andGE scores of scATAC-seq profiles. Both ver-
sions of scEpiSearch have scalable visualization, where results of
more than1000query scATAC-seqprofiles can bevisualized interac-
tively. Evaluation using several scATAC-seq profiles with known
cell-type annotation revealed that for most of the queries, the accu-
racyof the searchof scEpiSearch is about 80%–100%inhighlighting
the correct cell type among the top five matches (Fig. 2E; Supple-
mental Fig. S5A,B; Supplemental Tables S2, S3). The results from sev-
eral query scATAC-seq profiles also demonstrated that our approach
of rank-basedP-value adjustment improves the accuracyof search in
many cases (Supplemental Fig. S5C) and pseudocount value of 1 for
normalization by global accessibility score is better than smaller val-
ues (Supplemental Fig. S5D). In the faster version of scEpiSearch, a
predefinedpeak list is used todetermine theproximal genes directly.
For a query with more than 200,000 peaks, an intersection with a
predefined peak list with global accessibility speeds up the process
of determining proximal genes by 1000 times (Supplemental Fig.
S5E),with almost 75%–90%peaks coveredmost of the time (Supple-
mental Fig. S5F). Our approach of using proximal genes enrichment
and expression profiles also allowsmatching query scATAC-seq pro-
files from human cells to mouse reference scRNA-seq profiles with
high accuracy (see Fig. 2D,E; Supplemental Table S4).

To ensure that scEpiSearch does not report false matches in
the absence of the correct cell type in its reference data set, we per-
formed a test with negative controls. From the reference single-cell
expression pool of 10,100 cells from theMCAdata set (used for Fig.
2A,B), we first removed the correct matching cell types for query
scATAC-seq profiles. We found that in the absence of the suitable
relevant cell types from the reference, most often, scEpiSearch re-
ports insignificant P-values (more than 0.05) for top matches
(Supplemental Fig. S6A,B). A similar pattern was observed while
using reference scATAC-seq profiles without correct cell types for
query (Supplemental Fig. S6C). Such negative control based evalu-
ations hint about the reliability of scEpiSearch.

There are several possible applications of scEpiSearch, includ-
ing (i) finding cell types for scATAC-seq profiles fromunannotated
cells from in vivo samples, (ii) studying heterogeneity and tracking
divergences in the state of cells and their potency, for example, one
cell line showing the differentiation potential toward several line-
ages, such as K562 cells (Tetteroo et al. 1984), (iii) finding amatch-
ingmousemodel for a human cell which is not characterized well,
(iv) highlightingmarker genes representing query cells, (v) embed-
ding and clustering multiple scATAC-seq profiles irrespective of
their sources, technique, and species. Using scEpiSearch search-
engine for unannotated cells in single-cell indexed ATAC-seq
(sciATAC-seq) data set published by Cusanovich et al. (2018) and
single-cell epigenome profiles for human cells provided very rele-
vant hits and important genes (see Supplemental Results;
Supplemental Figs. S7A,B, S8A–D, S9A–D, S10A,B). We further ap-
plied scEpiSearch for different types of case studies to demonstrate
its scientific utility.

Determining lineage of cancer cells and understanding their

multipotent behavior using scEpiSearch

Recently several groups have started profiling scATAC-seqprofiles of
frozen nuclei derived from tumor samples known to have heteroge-

neity and cells with unreported intermediate cellular states. Repro-
gramming and dedifferentiation in cancer cells are often
associated with drug resistance and unexpected lineage switching
(Slany2009; Jacoby et al. 2016). Thus, it becomes crucial to compare
the scATAC-seq profile of cancer cells to the existing pool of cells to
find their lineage and potency to better understand tumor patho-
genesis. Hence as proof of concept, we first evaluated the perfor-
mance of scEpiSearch in identifying lineage using scATAC-seq
profiles of HL60 and K562 cell lines. HL-60 cells derived frommye-
loid leukaemia patients show neutrophilic promyelocytic morphol-
ogy (Gallagher et al. 1979). For scATAC-seq read-count matrices of
HL60cells, scEpiSearch found that top-matchingexpressionprofiles
were frommyeloid lineage cells (dendritic andLangerhans cells). For
18% of the HL60 cells, scEpiSearch also reportedmonocytes among
the top fivematching cells (Fig. 3A; Supplemental Table S5). Such re-
sults could be due to the differentiation potential of HL60 toward
monocyte, which is well known (Imaizumi et al. 1987). The most
frequently enriched genes included LYST, ALOX5, RASSF4, AOAH,
RXRA, MEF2A, PRAM1, and AKAP13 (Supplemental Fig. S11A),
which have been cataloged in gene sets for myeloid lineage in
the Human_Gene_Atlas listed in Enrichr (Kuleshov et al. 2016)
(https://maayanlab.cloud/Enrichr/#stats).

The K562 leukaemia cell line has been broadly utilized in con-
sideration of erythroid differentiation. K562 cells serve as an experi-
mental model to study the early steps of megakaryoblast and
macrophage commitment and differentiation (Tetteroo et al. 1984;
Sutherland et al. 1986). Using the default mode of using the top
1000enrichedgenes inscEpiSearch, the top fivehits forallK562cells
consistedmainly of erythroid-like and erythroid precursor cells (Fig.
3B). In the top five matching expression profiles, we also found a
few cells from the embryoid bodywhose lineagewasnot annotated.
Genes with a higher frequency of being among the top 50 enriched
genes for query scATAC-seq profiles of K562 included KSR1 and
PRKCB (Supplemental Fig. S11B), which have been reported to
have higher expression in erythroid cells in the mouse cell atlas
scRNA-seq data set by Han et al. (2018). At the same time, frequent
top enrichment of genes involved in early erythropoiesis like
NR2F2 and SOCS1 (Sarna et al. 2003; Fugazza et al. 2021) hints at
the dedifferentiated state of K562 and their similarity with erythro-
cyte progenitors. Overall, scEpiSearch can predict the major lineage
of cancer cells and is useful in highlighting relevant genes.

Further for detecting multipotency and heterogeneity among
K562 cells, we used the clustering result provided by scEpiSearch,
which is basedon theirmatchwith the reference epigenomeprofile.
Clustering of K562 scATAC-seq profiles revealed two major clusters
(Fig. 3C). We compared results of matching scRNA-seq profiles
found by scEpiSearch using the top 1000 and top 2000 enriched
genes for the query K562 cells. Cells in cluster-2 always had the
top five matching scRNA-seq profiles from erythroid-like or ery-
throid precursor cells with both parameter settings (top-1000 and
top-2000 enriched genes) (Fig. 3C,D). However, cells in cluster-1
also had other types of matching expression profiles in addition to
erythroid-like cells. Using top-2000 enriched genes of query cells,
other matching expression profiles for cluster-1 cells were Macro-
phages, dendritic cells (including Langerhans) and a few bonemar-
row mononuclear cells (BMMC) (Fig. 3D). We took an average of P-
values for top-five expression matches provided by scEpiSearch for
K562 cells from cluster-1.We found that expression profiles ofmac-
rophages had the most significant P-values of the match with clus-
ter-1 cells (Fig. 3E). For dendritic and erythroid lineage cells,
average P-values for thematch to cluster-1 cells were also significant
but comparable to each other. We also found a few genes labeled as
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markers ofdendritic cells (available inEnrichr [Kuleshovet al. 2016])
likeNTRK3, MCTP2, MTFHS, N4BP1, CBFA2T3, which had a higher
frequency of appearance in the top 50 genes for cluster-1 cells in
comparison tocluster-2 (Fig. 3F; Supplemental Fig. S11C). Thediffer-
entiation potential of K562 cells toward macrophage lineage is well
known (Sutherland et al. 1986). Several groups have also reported
the potency of K562 cells to differentiate toward dendritic lineage
(Zhao et al. 2005). Our analysis revealed that a minor population
of K562 cells had slightly more significant similarity with macro-
phages than erythroid lineage. It also hints toward a potential appli-
cation of scEpiSearch in studying heterogeneity in the underlying
poised state of cancer cells for oncology studies.

scEpiSearch enables joint embedding and visualization of single-

cell epigenome profiles across batches and species

Even though scEpiSearch findsmatching transcriptome and open-
chromatin profiles for single query cell epigenome, it is often nec-

essary to visualize and cluster cellular profiles frommultiple sourc-
es to get an insight into discrete ormixed cellular states. Therefore,
scEpiSearch is also designed to embed and provide an integrated
visualization of multiple, scATAC-seq profiles with different peak
list and batch-effect irrespective of their species of origin.
scEpiSearch calculates distances among query cells based on the
similarity of top-matching mouse reference expression profiles.
Here, mouse expression profiles are called similar if they belong
to the same cluster in the processed reference scRNA-seq data set
of scEpiSearch. We compared the performance of scEpiSearch
with five methods meant for embedding (SCANORAMA, MINT,
SCVI, SCALE, HARMONY) (Rohart et al. 2017; Lopez et al. 2018;
Hie et al. 2019; Korsunsky et al. 2019; Xiong et al. 2019) using
four different collections of scATAC-seq read-count matrices.
SCANORMA, MINT, and SCVI use genes as features hence GE
scores frommultiple scATAC-seq profiles (query cells) were provid-
ed to them for 2D embedding. Whereas for SCALE, its latent space
representation of scATAC-seq read-count matrices was used with
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Figure 3. Case study of using scEpiSearch to reveal lineage and underlying multipotency of cancer cells. (A) The pie chart shows the proportion of cell
types for the top five matching single-cell expression profiles for scATAC-seq read-count matrix for HL60 cells. A word-cloud of annotations of matching
single-cell expression profiles is also shown on the right side of the pie chart. (B) The proportions of cell types for the top fivematching single-cell expression
profiles for scATAC-seq read-count matrix for K562 cells. The corresponding word-cloud is shown on the right. (C) Heatmap of match scores achieved with
topmatching reference epigenome profiles for scATAC-seq read-countmatrices of K562 cells. Columns in the heatmap showmatching epigenome profiles
from reference, and every row represents a Query cell (K562 cell). Two clusters of query cells are also shown. (D) The annotations of cells for the top five
match expression profiles matching to a scATAC-seq data set of K562 cells in cluster-1 and cluster-2. The result has been shown when top-1000 and top-
2000 enriched genes are used. (E) Average P-values for matching (while using top 2000 enriched genes) to cluster-1 K562 cells with different cell types. (F )
Fold change in frequency of being in the top 50 enriched genes is shown for query K562 cells from two clusters. Each dot represents a gene. It is plotted only
for those genes which have a frequency of at least 10% in either class and have a fold change above 1.05. Genes whose names are displayed in the plot are
known to be markers for dendritic lineage.
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t-SNE to perform 2D embedding. As shown in Fig. 4A–D and
Supplemental Fig. S12A,B, the 2D embedding plot made by
scEpiSearch for scATAC-seq profiles has almost correct colocaliza-
tion of similar cell types irrespective of the species and laboratory
of origin. Other available embedding (SCANORAMA, MINT, SCVI
SCALE, andHARMONY) provided thewrong grouping of cells (Fig.
4A–D; Supplemental Fig. S12A). For further confirmation, we esti-
mated clustering purity after density-based spatial clustering (us-
ing DBSCAN [Ester et al. 1996]) of the embedding results using
cell type labels as true clusters. The clustering purity-based adjust-
ed Rand index (ARI) and normalized mutual information (NMI)
scores showed the superiority of scEpiSearch in the embedding
of open-chromatin profiles in an unbiased manner (Fig. 4A–D;
Supplemental Fig. S12B). The silhouette coefficients-based com-
parison is shown in Supplemental Figure S12B. For further evalua-
tion of coembedding by scEpiSearch, we tested it for cases where as
negative control there were cell types which did not have any
matching cell group (Supplemental Fig. S13). In such cases
scEpiSearch did not force colocalization of nonmatching cell
types.

A case study of embedding: understanding multiple phenotype acute leukemia

To get further insights from the joint embedding of single-cell epi-
genome profiles and underlying cell states, we analyzed scATAC-
seq profiles from patient blood cells with mixed-phenotype acute
leukaemia (MPAL) (Granja et al. 2019). An initial analysis of MPAL
cells and PBMCs from healthy patients in the same study revealed
a change in the fraction of cell types. Such that for single-cell epi-
genomes of PBMCs from healthy individuals, the matching
scRNA-seq profiles were from similar fractions of blood cell types
as reported by others (Supplemental Fig. S10A; Kleiveland 2015).
However, for MPAL cells from two patients, we found an increase
in the fraction of cell types of dendritic,monocyte and erythrocyte
lineage (Supplemental Fig. S14A). It is not trivial to find whether it
represented true fractions or it was due to sampling bias during
scATAC-seq profiling. Nevertheless, we performed embedding of
scATAC-seq profiles of MPAL cells from two patients, PBMCs
fromhealthy individuals andprogenitors of cells in the blood (pro-
genitors of hematopoietic cells) (Buenrostro et al. 2018), T cells,
and B cells (Supplemental Methods; Pliner et al. 2018). For our
analysis, we included the scATAC-seq profiles of progenitors of he-
matopoietic cells (Buenrostro et al. 2018) isolated from human
bone marrow, namely megakaryocytic-erythroid progenitor
(MEP), common myeloid progenitor (CMP), common lymphoid
progenitor (CLP), granulocyte-monocyte progenitor (GMP), and
mast cell progenitor (MCP). In the 2D embedding results from
scEpiSearch many MPAL cells overlapped with different types of
hematopoietic progenitor cells. Multiple PBMCs colocalized with
T cells, B cells and a few with MPAL cells (Fig. 5A). In our embed-
ding results, PBMCs rarely overlappedwith hematopoietic progen-
itor cells. PBMCs colocalizing with B cells and T cells in
coembedding plot also had a top matching hit as a transcriptome
from B and T cells (Supplemental Fig. S14B). A few PBMCs with a
top-matching hit as a transcriptome (Supplemental Fig. S14B)
from dendritic or monocytic cell were close toMPAL cells from pa-
tient-2 (Fig. 5A). Such results hint about the levels and types of un-
differentiated states of MPAL cells. The undifferentiated states of
MPAL cells could explain their plasticity and lineage-switching ca-
pability (Slany 2009). Further detailed analysis revealed that only a
fewMPAL cells for two patients showed overlap (Fig. 5A). The ma-
jority of cells from two patients with MPAL did not overlap with

each other and showed closeness with hematopoietic progenitor
cells (Fig. 5A). We further used scEpiSearch to perform coembed-
ding of the scATAC-seq profile of MPAL cells and hematopoietic
stem cells (HSC) from young and fetal mice. In our result, fetal
mice HSC were closer to humanMPAL cells than HSC from young
mice (Fig. 5B). Such results hint thatMPAL cells and fetalmiceHSC
could share common features such as fast cell-cycling and possibly
some similarity in potency. We also applied SCANORAMA, MINT,
SCVI, SCALE, andHARMONYon the same set of read-countmatri-
ces (Supplemental Methods) and found that they either mixed the
location of different types of blood cell progenitors or showed no
colocalization of PBMCs with B cell or T cell (Fig. 5C). Given the
fact that B cells and T cells are frequently present among PBMCs,
it became quite evident that using other methods could not lead
to the result achieved by scEpiSearch (Fig. 5C). We also performed
another case study of coembedding of the single-cell open-chro-
matin profile of renal cancer cells (Wang et al. 2022) and adult
and human fetal kidney (Supplemental Fig. S15) cells. The renal
cancer cells colocalizing with fetal human kidney cells also had
top-5 matching hits from fetal mice kidneys while searching for
their match in the reference mouse transcriptome (Supplemental
Fig. S15). In summary, scEpiSearch can display closeness and dif-
ferences among subpopulations of cells irrespective of source
and batch effect and highlight undifferentiated states and plastic-
ity of cells derived from patient samples.

Application in highlighting unique regulatory patterns

in a subpopulation of stem cells

Heterogeneity within a population of stem cells has been widely
identified in single-cell genomics studies. We hypothesized that
clustering scATAC-seq profiles of embryonic stem cells based on
matched scores with reference data sets could highlight cells
with differential peak enrichment across features. We generated
and reanalyzed plate-based scATAC-seq data from mouse embry-
onic stem cells (mESC) in Serum conditions (Chen et al. 2018), ap-
plied scEpiSearch combining scATAC-seq profiles and calculated
read counts per cell for clustering of open-chromatin patterns.
The hierarchical clustering of our queried scATAC-seq profiles us-
ing match score with reference data sets (using top 2000 enriched
genes) captured four major clusters of mESC cells. The cells in four
clusters hadhighmatching scoreswith reference cells belonging to
published embryonic stemcells, epiblast cells, and different blasto-
cyst stage cells (Fig. 6A). The cluster-1 cells matched closely to late-
blastocyst cells, whereas cells in clusters 2 and 4 matched with
mid- and early-blastocyst cells (Fig. 6B). Using the top 10,000 peaks
per cluster with the highest normalized read counts, we performed
Gene Ontology (GO) enrichment using GREAT (McLean et al.
2010). We found cluster-1 cells were enriched for negative regula-
tion of the G2/M phase, apoptosis, cellular response to unfolded
protein, H4K5 and H4K8 acetylation and DNA damage terms
(Fig. 6C; Supplemental Table S6). To have a systematic overview,
we selected a few terms appearing among top-enriched from
each of the four clusters of cells (Supplemental Table S6). Then
for the selected terms, we curated enrichment scores (P-values) cal-
culated by GREAT for each cluster (see Fig. 6C). We found that
terms like positive regulation of intrinsic apoptotic signaling path-
way were specifically enriched for cluster-1 cells (Fig. 6C).

The gene-set enrichment performed by GREAT (McLean et al.
2010)oftenusesgenes lying faraway frompeaks;hence, somemore
evidence is needed to support its estimation. Therefore, we calcu-
lated the read count at promoters of all RefSeq genes for all four

Mishra et al.

224 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1


A

B

C

D

Figure 4. Evaluation of embedding of query sets of single-cell open-chromatin profiles irrespective of batch effect, species, differences in peak list and
their source (scientific group). (A) For this case study, queries consisted of separate read-count matrices for scATAC-seq profiles of human-neuron, mouse-
neuron, human-HSC (hematopoietic stem cells), mouse-HSC, human-myoblast, human-GM12878 (GM) cells from two batches, and mouse B cells. Here
the x-axis shows dimension-1 whereas the y-axis shows dimension-2 of low dimensional embedding. The peak lists of query read-count matrices were dif-
ferent from each other. Embedding plots from five other methods are also shown here. While SCANORAMAmixed the location of all cells, MINT could not
group cells of the same type together like scEpiSearch. (B) The plot of embedding results shows the alignment of the same cells from different species and
batches together. Queries are made for human-GM12878 (GM) cell, mouse B cell, human-HEK293T, and mouse-proximal tubule. The embedding plot
from scEpiSearch derived from projections onto mouse expression profiles. (C) The plots show the 2D embedding of cells from different species and batch-
es. Queries were made for human-GM12878 (GM), mouse B cell, human T cell, and mouse T cell. (D) The purity of density-based spatial clustering (using
DBSCAN) with embedded coordinates is also shown here in terms of ARI and NMI scores. The silhouette coefficients calculated without DBSCAN-based
clustering are shown in Supplemental Figure S12B.
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clusters of mESC and performed their quantile normalization.
Except for cluster-3, which had a lower number of cells, we got
decent normalized read counts at promoters for other clusters.
It revealed that genes associated with intrinsic_apoptotic_
signalling_pathway_in_response_to_DNA_damage and ER_unfolded_
protein_response had higher open-chromatin accessibility at their
promoters in cluster-1 cells (see Fig. 6D). For comparison, we also
made box plots for read counts on promoters of other control
gene-sets (see Supplemental Fig. S16A). We believe that cells in
cluster-1might havehigher chromatin plasticity poised for cellular
responses like apoptosis and ER stress compared to cluster-4 with
post-replicated single-cells and a defined chromatin state.

We visualized the differences in peak accessibility at single-
gene promoters (UCSC Genome Browser) across clusters.
Whereas pluripotency factors (Oct4/Pou5f1 and Sox2) had no
substantial differences in peak accessibility at promoters
(Supplemental Fig. S16B), we observed higher accessibility in clus-
ter-1 cells for Fis1 related to apoptosis and Rhbdd1 (Lastun et al.
2016) and Dab2ip (Fig. 6E; Bellazzo et al. 2017) associated with
ER stress and unfolded protein response. Our results are consistent

with earlier studies describing ER stress due to unfolded proteins in
stem cells (Yang et al. 2016). It also demonstrates a better under-
standing and interpretation of single-cell open-chromatin peaks
can provide novel insights into the heterogeneous stem cell chro-
matin landscape and underlying regulation.

Discussion

A major challenge in single-cell genomics is to have an accurate
and robust projection of single-cell epigenome profiles to refer-
ence epigenome and expression atlases and meaningful interpre-
tation of matching cells. This challenge is confounded by batch
and technical biases, including cell-to-cell variability both in sig-
nal (peak accessibility) and noise, differential read depths, proto-
cols, platforms, and laboratories. Here, we proposed our approach
and showed how such challenges could be handled to enable the
cross matching of single-cell epigenomic profiles. Notably, our
method does not use distance-based measures (correlation or co-
sine distance) or hashing, and latent-feature extraction approach-
es but leverages median expression and enrichment of top genes
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Figure 5. Using scEpiSearch for 2D embedding to track the dedifferentiated state of leukemia cells from blood-cancer patients. (A) scEpiSearch-based 2D
embedding of single-cell open chromatin profiles of three types of cells: blood cells collected frompatients withmixedMPAL, PBMC, from healthy (normal)
individuals, and progenitors of blood cells (derived from bone marrow). The scATAC-seq profiles of MPAL and PBMCs were published by Granja et al.
(2019), and progenitor cell epigenomeprofiles are from a different study. In the embedding plot by scEpiSearch,most of the PBMCs are far from progenitor
cells and closer to B cells. MPAL cells are closer to progenitor cells. Some MPAL cells overlap with blood cell progenitors, highlighting their highly undif-
ferentiated state. The same 2D embedding plot from scEpiSearch is shown with a different color for cells according to the source of data and patient. (B)
scEpiSearch based 2D embedding of single-cell open chromatin profile of MPAL cells with HSC from fetal and young mice. (C) Results from other tools for
the 2D embedding of the single-cell open-chromatin profile of three types of cells: blood cells collected from patients with MPAL, PBMCs from healthy
individuals, and progenitors of blood cells. Other methods either mixed up the locations of different types of hematopoietic progenitor cells or could
not colocalize B and T cells with PBMCs.
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and peaks (MExTEG and MESTEG) to mitigate batch and techni-
cal biases.

The uniqueness of scEpiSearch also lies in its statistical ap-
proach to reducing bias during the search for matching transcrip-
tome and open-chromatin profiles. It is resourceful in terms of
search using a large pool of reference cell profiles and various facil-
ities it provides, such as low-dimensional embedding robust to
batch effect, summary word-cloud for overall notion about query
scATAC-seq profiles and enrichment scores of genes to highlight
possiblemarkers for cell types. Thus, scEpiSearch can also be useful
for cross validation of rare cellular states discovered using single-
cell open chromatin profiles, especially from patient samples.

The standalone version of scEpiSearch also has an in-built prepro-
cessed reference and can be used securely and locally to maintain
the confidentiality of sensitive and clinical data.

Our analysis revealed the benefits ofmapping single-cell epige-
nomes to reference-cell profiles, as observed in the coembedding of
scATAC-seq. scEpiSearch-based resultswere substantially better than
integrativemethods like Seurat, LIGERConos, and SnapATAC.Most
integrative methods depend on the dimensionality reduction ap-
proach (such as canonical correlation, principal component analy-
sis, and linear matrix factorization), which may not efficiently
capture thenonlinear relationships among themodality of different
types of single-cell profiles. Our results indicate that integration of
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Figure 6. Studying single-cell epigenome profile of stem cells using scEpiSearch. (A) Heatmap obtained from scEpiSearch showing biclustering of match
scores of query scATAC-seq profiles of mouse embryonic cells (rows) with top matching reference single-cell epigenome profile (columns). The columns,
highlighted with the pink bar below (and arrow), belong to reference cells from the late blastocyst, which show high similarity with the mESC of clusters-1.
(B) The pie charts show cell types of the top five matching expression profiles to query scATAC-seq profiles of mESCs belonging to different clusters. It is
based on a top-2000 enriched genes-based search. (C) The result of gene-set enrichment for selected biological functions using genes proximal to the top
10,000 peaks specific tomESC cells belongs to different clusters. The gene-set enrichment was performed using theGREATGeneOntology enrichment tool
using default parameters. (D) The read counts at the promoter of genes belonging to the gene set for biological function terms: “intrinsic apoptotic sig-
naling pathway in response to DNA damage” and “positive regulation of endoplasmic reticulum unfolded protein response.” Here a matrix consisting of a
read count for four clusters is quantile normalized to avoid bias. The star (∗) shows a significant P-value (<0.03) calculated usingWilcoxon rank-sum test. (E)
The snapshot of the UCSC Genome Browser showing the difference in the activity level of the promoter of two genes (Rhbdd1, Dab2ip) associated with
unfolded protein response and endoplasmic reticulum stress and one gene (Fis1) associated with apoptosis, cell cycle, and mitochondrion fission.
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single-cell profiles of two different modalities could be improved if
regulatory link between them is exploited with proper approach
to avoid batch effect such as scEpiSearch relies on P-value for
MExTEG values to avoid reference specific artifacts.

Further, runtime benchmarking using a single CPU core re-
vealed that with preprocessed reference data set, scEpiSearch need-
ed the lowest amount ofmemory for the same size of reference and
query cells in comparison to integrative methods evaluated here
(Supplemental Table S7). The initial preprocessing of reference
data set by scEpiSearch can also be done with limited
memory and time (Supplemental Table S7). Our analysis using
scEpiSearch also highlighted a conceptual advancement that using
reference cell profiles for feature extraction and calculating dis-
tances among cells can achieve better embedding of open-chroma-
tin profiles than other latent feature extraction methods like
SCALE, MINT, and SCANORAMA.

In addition, clustering based on similarity with reference
cells could highlight new features in minor populations of cells
that could have been overwhelmed by properties of cell-states
in the majority due to the reference-free feature extraction meth-
od. While cells exist in a continuum of states across tumors and
cell cultures and show heterogeneity in activity response to the
environment, scEpiSearch was able to group these K562 and
mESCs into discrete clusters based on single-cell accessibility
peaks and similarity to reference data sets. We found a subset
of K562 cells increasingly poised toward macrophages and den-
dritic lineage, indicative of regulatory rewiring. We believe that
the scEpiSearch-based clustering and comparison can help create
a new hypothesis and better understand cellular heterogeneity.
For example, we observe four mESC clusters based on chromatin
accessibility after matching with reference data sets, where clus-
ter-1 cells are similar to late blastocyst cells and likely with
high cellular plasticity for response to stress. Some of the top en-
riched terms for mESC in cluster-1, like, unfolded protein re-
sponse with stress in the endoplasmic reticulum (ER) (Lin et al.
2019), apoptosis, H4K5 and H4K8 acetylation, and DNA damage,
are known to co-occur (Dhar et al. 2017; Bolland et al. 2021).
Such results hint that heterogeneity in poising toward ER stress
and unfolded protein response in multiple types of stem cells
and preimplantation embryos (Yang et al. 2016) can also be stud-
ied using their scATAC-seq profile with scEpiSearch. Various re-
ports have also linked DNA damage, apoptosis, and ER stress in
the development of diabetes, cancer, and other disorders
(Yoshida 2007; Urra et al. 2016). Hence analysis of their single-
cell open chromatin profiles using a pool of large reference cells
with scEpiSearch could help better elucidate the cause or effect of
such disorders.

Overall, wehave shown a few capabilities of scEpiSearch, such
as (i) correct matching of query single-cell open chromatin profile
to a large pool of single-cell profiles, (ii) cross-species search for
query single-cell open-chromatin profile, (iii) correct coembed-
ding of single-cell open-chromatin profiles from two species (iv)
highlighting footprints of poising for stress-response and apopto-
tic behavior in a subpopulation of embryonic stem cells. The cur-
rent version of scEpiSearch has a limitation that it can efficiently
handle queries of only single-cell open-chromatin profiles.
Currently, scEpiSearch cannot be used for single-cell DNAmethyl-
ation profiles or a few kinds of histonemodification profiles. In the
future, we anticipate that scEpiSearch can incorporate single-cell
histone modification data sets (Supplemental Fig. S10B; Rotem et
al. 2015) and provide an increasingly efficient search engine for
major epigenetic regulators.

Methods

Preprocessing of single-cell ATAC-seq reference data

For each cell in the reference data set of scATAC-seq, the read count
on every peak is normalized by its global accessibility score to enu-
merate its cell type specificity. In other words, for every cell, peaks
with cell type–specific activity (possible enhancers) are highlight-
ed by normalization with its global accessibility score (see
Supplemental Methods). The normalized read count tij of a peak
i in a single-cell j is calculated as

tij = rij/ (ai + 1). (1)

Here, the read count rij of the peak i in the single-cell j is nor-
malized by its global accessibility score ai added with a pseudo-
count ɛ. Here, we kept the value of pseudocount as 1 after testing
various values for accuracy of scEpiSearch (Supplemental Fig.
S5D). Considering proximal (nearest) genes to all peaks as back-
ground, and genes nearest to the top 10,000 enriched peaks are
taken in the foreground set for every cell to calculate the P-value
(of gene enrichment) using Fisher’s exact test (based on hypergeo-
metric distribution). Thus, the equation of calculation of the P-val-
ue of enrichment of genes can be written as

∑min(n, Km)

i=km

Km

i

( )
N − Km

n− i

( )

N
n

( ) . (2)

Here Km represents the number of times a gene m appears in
the background set, and N is the number of the appearance of all
genes in the background (includes foreground). Whereas Km is
the number of times, the gene m appears in the foreground. At
the same time, n is the total number of all genes in the foreground.
For single-cell epigenome profiles, we selected 10,000 peaks after
analyzing multiple data sets as a robust cutoff. However, for data
sets with lower than 10,000 peaks, we utilize all peaks (with non-
zero read count) toward analysis. Notice that it is the gene enrich-
ment calculation, and it is not the same as gene-set enrichment
performed by different tools (McLean et al. 2010; Chawla et al.
2021). Using our approach, we processed each single-cell open-
chromatin profile data set separately to make a large pool of refer-
ence in scEpiSearch.

Preprocessing reference single-cell expression

Data sets from different studies for human cells are assembled to-
gether using the same set of genes. Similarly, expression profiles
of single-cells from mouse samples were assembled together. The
single-cell RNA-seq based expression (FPKM)profiles were quantile
normalized (Cole et al. 2019) with respect to one of the reference
data sets. For every reference cell, the expression of a gene is nor-
malized by its mean expression across all the cells to achieve its
cell-specific expression. After the calculation of cell-specific-ex-
pression values of genes, each reference expression data set was
processed separately. Further details are provided in the
Supplemental Methods.

Query preprocessing

For query scATAC-seq profiles, scEpiSearch highlights cell-specific
peaks by normalization with a global accessibility score and calcu-
late the GE score. For this purpose, it also optimizes proximal gene
finding as explained in detail in the Supplemental Methods.

Mishra et al.

228 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277015.122/-/DC1


Finding a match in the scRNA-seq reference data set

scEpiSearch computes MExTEG (Median expression of top en-
riched genes) for query cells in representative expression vectors
for clusters or reference cells, such that for query cell q the
MExTEG value in reference cell (or cluster) m is

MExTEGq(m) = median(Exprm (top enriched genes in q)). (3)

Thus, a MExTEG value represents the median of cell type–specific
(or normalized) expression (in a single reference cell) of the top
1000 enriched genes of a query scATAC-seq profile. If the sequenc-
ing depth of queried scATAC-seq is low, it uses only those genes
which have nonzero enrichment value. Additionally, the user
has the choice to utilize the top 2000 enriched genes, for a more
detailed analysis of poised states or regulatory epigenomic signa-
tures. It calculates P-value corresponding to a MExTEG value by
comparison with null model to reference specific bias such vari-
able sparseness and noise. Further, the search for matching sin-
gle-cell transcriptome for query scATAC-seq profile is done
hierarchically (Supplemental Methods; Supplemental Fig. S1B).
As a final refinement score, a new P-value is calculated based on
rank usingMExTEG based P-value ranks (Supplemental Methods).

Statistical approach to calculate the significance of match. A null
model was prepared by randomly selecting a few normalized
scATAC-seq profiles using global accessibility scores of peaks. For
the randomly selected 500 cells, the top 1000 genes with the high-
estGE scorewere extracted. Randompairs weremade from selected
500 cells, and the top enriched gene lists of two cells in a pair were
merged. Among the merged list of 2000 genes for every pair of
cells, 1000 genes were randomly selected. Thus, we made 1000
query vectors that served as false queries (cells), each having a
thousand genes. For every cell in the set of false queries,
MExTEG is calculated using cell-specific expression profiles of
the reference cell to get a matrix of size 1000×No of reference sin-
gle cells. For a reference cell, we calculate the P-value of similarity
as the fraction of null model cells (false queries), which have high-
er values ofMExTEG than for the query cell. Thus, the significance
(P-value) of the match between query q and the reference expres-
sion profile of cell m is calculated as

Pvalq(m) = Number of Null model cells with MExTEGnull(m) . MExTEGq(m)
1000

.

(4)

Finding a match among a huge set of reference single-cell

epigenome profiles

Similar to the expression matching procedure, MESTEG (median
gene enrichment scores of top enriched genes) for query cells q is
calculated using its representative GE vectors of reference cell n is

MESTEGq(n) = median(GEn (top enriched genes in q)). (5)

Further, the conversion of the MESTEG value for the query to the
P-value is done using the null model for representative GE vectors
for clusters. After finding the top matching clusters using P-value
forMESTEG, thematching is done at the single-cell level following
the hierarchical approach of search (Supplemental Fig. S1B).
Again, these MESTEG values for the query are converted to P-val-
ues to find the significance of match with each reference cell in
topmatching clusters. Further using the rank ofmatched reference
cells, the new P-value is calculated to reduce such bias in the search
(as explained below).

Statistical approach to calculate the significance of match with ref-
erence open-chromatin profile. Initially, a random selection of 500
normalized ATAC-seq cells GE scores ismade fromvarious profiles.
Then, random pairs of cells were taken, and for every pair of cells,

the mean normalized read count was calculated. Thus, a total of
1000 false queries is made whose MESTEG is calculated for all
scATAC-seq reference profiles. For every reference cell, the P-value
of the match with the query is calculated as the fraction of null
model cells (false queries), which have higher values of MESTEG
than the query cell. Thus P-value for the match between query q
and reference cell n,

Pvalq(n) =
Number of Null model cells with MESTEGnull(n) . MESTEGq(n)

1000
.

(6)

After convertingMESTEG to P-value of thematch, the rank of a
reference cell for a query cell is used to calculate the new P-value.
The new P-value of thematch between a reference cell and a query
cell is calculated as the fraction of cells in the null model for which
the same reference cell has a better rank than for the query cell.

Embedding of multiple query scATAC-seq profile

We devised a novel method included in scEpiSearch to handle
multiple query read count matrices with a different peak list
from both human and mouse cells and perform their coembed-
ding. For this purpose, scEpiSearch computes GE scores for cells
in each batch of query scATAC-seq profiles with different peaks/
species separately. Further it integrates GE scores for different
read count matrices into the same matrix. However, scEpiSearch
does not use GE directly for embedding as it is influenced by the
batch effect. Once GE scores from multiple read count matrices
are assembled together, matches for queries are found in mouse
single-cell expression profiles using the procedure described
above. For mouse query cells, the null model for the mouse is
used. For human query cells, scEpiSearch uses a null model made
using human cells, just as explained above for cross-species search.
It is to be noted that because we use P-value based on MExTEG to
find the top matching reference cluster or cell, there is less chance
of artifacts in the result due to batch effect in the reference expres-
sion profile. After finding matching mouse cells for all query cells,
scEpiSearch builds a network with every node representing a query
cell. It connects two query cells (nodes) with an edgewith aweight
equal to the number of top-matching reference cells belonging to
the same cluster. For example, consider a query cell A for which
four out of the top tenmatchingmouse expression profiles belong
to a subcluster X. If another query cell B has five out of the top ten
matching expression profiles from the same subcluster X, then the
weight of an edge between query cells A and B would be 4.

After calculating all edge weights scEpiSearch builds a KNN-
based graph with nodes as query cells. Further, it uses the
Fruchterman and Reingold algorithm (Supplemental Methods)
to calculate the 2D coordinate of nodes. (Fruchterman and
Reingold 1991). After determining the 2D coordinate of nodes
(representing query cells), it uses the networkX library (draw_net-
work_nodes function) to plot the network for visualization
(Hagberg et al. 2008). To assist users, it also performs spectral clus-
tering (Xiang and Gong 2008) using the KNN-based network of
queries to find clusters of cells.

The description about other functionalities of scEpiSearch is
provided in Supplemental Methods and Results.

Mouse embryonic stem cell culture

E14mESCwere cultured in 6-well dishes, precoated with 0.1% gel-
atin, and in Serum+LIF media containing DMEM knockout
(Gibco 10829), 15% FBS (Gibco 10270), 1 × Pen-Strep- Glutamine
(Gibco 10378), 1 ×MEM (Gibco 11140), 1 ×B-ME (Gibco 21985),
and 1000 U/mL LIF (Merck ESG1107).
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Single-cell chromatin accessibility

We generated and reanalyzed additional single-cell chromatin ac-
cessibility profiles from mESCs (Chen et al. 2018). Briefly, mESCs
were trypsinized, washed in 1×DPBS, and counted, and 50,000
cells were used for plate-based scATAC-seq analysis, as previously
described (Xu et al. 2021).

Data access

The raw and processed scATAC-seq data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE192644. The standalone version of scEpiSearch, with a
user-friendly graphical user interface and functionality of embed-
ding, can be downloaded from http://reggen.iiitd.edu.in:1207/
episearch/index.php?view=download and from GitHub (https://
github.com/reggenlab/scEpiSearch). The code of scEpiSearch is
also available as Supplemental Material (Supplemental Code and
Data 1 and Supplemental Code and Data 2). The webserver
version of scEpiSearch without the functionality of embedding is
available at http://www.scepisearch.com/ or http://reggen.iiitd
.edu.in:1207/episearch/index.php. The codes and data used for
the evaluation of different methods and figure generation are
also available at the GitHub link and at http://reggen.iiitd.edu.in
:1207/episearch/index.php?view=download.
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