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Abstract 
Background and Aims: Functional loss of the gut epithelium’s paracellular tight junction [TJ] barrier and defective autophagy are factors po-
tentiating inflammatory bowel disease [IBD]. Previously, we showed the role of autophagy in enhancing the intestinal TJ barrier via pore-forming 
claudin-2 degradation. How autophagy regulates the TJ barrier-forming proteins remains unknown. Here, we investigated the role of autophagy 
in the regulation of occludin, a principal TJ component involved in TJ barrier enhancement.
Results: Autophagy induction using pharmacological activators and nutrient starvation increased total occludin levels in intestinal epithelial cells, 
mouse colonocytes and human colonoids. Autophagy induction enriched membrane occludin levels and reduced paracellular permeability of 
macromolecules. Autophagy-mediated TJ barrier enhancement was contingent on the presence of occludin as OCLN−/− nullified its TJ barrier-
enhancing effect against macromolecular flux. Autophagy inhibited the constitutive degradation of occludin by preventing its caveolar endo-
cytosis from the membrane and protected against inflammation-induced TJ barrier loss. Autophagy enhanced the phosphorylation of ERK-1/2 
and inhibition of these kinases in Caco-2 cells and human colonic mucosa prevented the macromolecular barrier-enhancing effects of autophagy. 
In vivo, autophagy induction by rapamycin enhanced occludin levels in wild-type mouse intestines and protected against lipopolysaccharide- and 
tumour necrosis factor-α-induced TJ barrier loss. Disruption of autophagy with acute Atg7 knockout in adult mice decreased intestinal occludin 
levels, increasing baseline colonic TJ permeability and exacerbating the effect of experimental colitis.
Conclusion: Our data suggest a novel role of autophagy in promoting the intestinal TJ barrier by increasing occludin levels in an ERK1/2 mitogen-
activated protein kinase-dependent mechanism.
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Autophagy, a cell survival mechanism, promotes membrane localization of barrier forming
occludin by reducing its endocytosis. Thus, autophagy enhances the epithelial tight junction
(T J) barrier against macromolecular �ux, in ERK1/2 dependent manner.
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1.  Introduction
Inflammatory bowel disease [IBD], including ulcerative col-
itis [UC] and Crohn’s disease [CD], is a chronic inflamma-
tory disorder of the gastrointestinal [GI] tract affecting over 
1.3% of the adult US population.1 The aetiology of IBD is 
multifactorial, but increased permeability of the gut epithe-
lium is a key factor determining the development, pathogen-
icity and severity of IBD.2,3 Paracellular transport is a major 
route of transport for solutes across the gut epithelium and is 
regulated through cell-to-cell junctions formed by protein ag-
gregates which seal the intermediate space between adjacent 
epithelial cells. Tight junctions [TJs] occupy the apical surface 
of the lateral plasma membrane and form a barrier against 
the free flow of solutes through paracellular space.3

Macroautophagy [autophagy] is an evolutionarily con-
served mechanism of degradation and recycling of cytosolic 
contents, serving as a mode of adaptation and protection 
against cellular stress.4 The major steps in autophagy are [i] 
initiation or formation of the isolation membrane, mediated by 
ULK1/2-ATG13-RB1CC1/FIP200 complex and the BECN1/
beclin1-PIK3C3/Vps34-PIK3R4/Vps15-ATG14 complex; 
[ii] expansion of the phagophore by ubiquitin-like proteins 
ATG12 and GABARAP/LC3; [iii] autophagosome forma-
tion with lipidation of cytosolic LC3-I to LC3-II and binding 
to the autophagosome membrane; and [iv] fusion of the 
autophagosome with the lysosome to form an autolysosome 
which degrades the cargo proteins.5 Studies have linked de-
fects in autophagy to IBD development, but a mechanistic 
understanding of the role of autophagy in the regulation of 
the gut epithelial barrier and the basis of defective autophagy 
in IBD development remains poorly understood. Being an 
intracellular degradation pathway, autophagy intersects with 
endocytic processes in tightly controlled mechanisms,6,7 and 
we have previously demonstrated that autophagy promotes 
the clathrin-mediated degradation of the pore-forming TJ 
protein claudin-2.8–10

Occludin is a MARVEL [MAL-related proteins for vesicle 
trafficking and membrane link] domain-containing protein 
family member. It is a tetra-spanning membrane protein 
with two extracellular loops, one intracellular loop, a short 
N-terminal domain and a large cytoplasmic C-terminal do-
main, with which it interacts with the guanylate kinase do-
main of ZO-1.11 Several in vitro and in vivo studies have 
established the role of occludin as a barrier-forming TJ protein 
in which depletion of occludin increases macromolecular TJ 
permeability and overexpression has the opposing effect.12–15 
IBD is characterized by loss of occludin protein and a dimin-
ished paracellular barrier,12–14 further highlighting the import-
ance of this protein. In this study, we investigated the effect 
of autophagy on occludin expression and the consequential 
effect on the TJ barrier against paracellular macromolecular 
flux. Here we report a novel role of autophagy, in which this 
traditional degradative pathway upregulates occludin protein 
levels by preventing its constitutive endocytosis and degrad-
ation with a resultant enhancement of the TJ barrier against 
macromolecular flux.

2.  Materials and Methods
2.1.  Chemicals and antibodies
Rapamycin was purchased from Life Technologies 
[PH21235], and cycloheximide [C7698], lipopolysaccharide 

[LPS] O127:B8 [L3129], SBI-0206965 [SML1540], 
iodoacetamide [I1149] and FITC-tagged 4K dextran 
[102369855] were obtained from Sigma. Murine tumour ne-
crosis factor [TNF]-α [50349-MNAE] was purchased from 
SinoBiologicals. Human interferon [IFN]-γ [300-02] and 
TNF-α [300-01A] were purchased from PeproTech and IL17A 
[ILA-H5118] from Acrobiosystems. Bafilomycin A1 was pur-
chased from Santa Cruz Biotechnology, [sc-201550], U0126 
from TORCS [1144], PD98059 from Calbiochem [513000], 
and 2-mercaptoethanesulphonic acid [MESNA] from 
Acros Organics [443150250]. [3H] Inulin [specific activity 
100 mCi/mmol] was purchased from American Radiolabelled 
Chemicals [ART117]. The primary antibodies used included 
anti-occludin, anti-caveolin-1, anti-ATG7 [autophagy-
related 7], anti-SQSTM1/p62, anti-β-actin [ProteinTech; 
27260-1-AP, 66067-1-1g, 10088-2-AP, 18420-1-AP and 
HRP-60008, respectively], anti-beclin-1[Abcam 207612], 
anti-Y14-phospho caveolin-1, anti-phospho threonine, anti-
phospho tyrosine, anti-ERK-1/2 [extracellular signal regu-
lated kinase-1/2], Phospho-p44/42 MAPK [mitogen-activated 
protein kinase] [Erk1/2] [Thr202/Tyr204] and anti- LAMP2 
[Cell Signaling Technologies; 3251S, 9386S, 9411S, 4695S, 
4377S and 4906S, respectively]. The anti-rabbit horseradish 
peroxidase [HRP], anti-mouse HRP, secondary antibodies 
and all other molecular biology-grade reagents were pur-
chased from various commercial vendors. TaqMan RT pri-
mers against human occludin [Hs05465837_g1] and GAPDH 
[Hs02786624_g1] were purchased from Invitrogen.

2.2.  Cell culture
Human intestinal epithelial Caco-2 cells and T84 cells [ATCC] 
and MDCK-II cells [ECACC] were maintained in Dulbecco’s 
modified Eagle’s Medium [DMEM] – High Glucose [Gibco, Cat. 
No. 11965118] supplemented with 10% heat-inactivated fetal 
bovine serum and antibiotics at 37°C in a 5% CO2 incubator. 
Caco-2 cells were grown on 0.4-μm pore size, 12-mm-diameter 
filter inserts. The transepithelial electrical resistance [TER] of 
cells was measured by an epithelial voltohmeter [World Precision 
Instruments]. Monolayers with a TER of 450–500 Ω/cm2 were 
used for experiments. Nutrient starvation was induced in the 
different cell lines by replacing DMEM with serum-free Earle’s 
Balanced Salt Solution [EBSS] for 24 h for all experiments, un-
less stated otherwise [Sigma, E3024].

2.3.  Determination of Caco-2 paracellular flux
Permeability was determined by measuring the apical-to-
basal flux of the paracellular marker inulin [3H, Mr = 5000]. 
3H-inulin [1.5  µM, 0.1  µCi] was added to the apical solu-
tion and radioactivity was measured in the basal solution 
at 30 and 60 min using a scintillation counter, as described 
previously.15

2.4.  Western blot analysis
Western blot analysis was performed by electrophoresing 
protein samples in a 4–15% SDS-PAGE gel as discussed by 
us previously.9

2.5.  Transmission electron microscopy
Caco-2 cell monolayers grown on a 0.4-µm membrane were 
subjected to starvation as mentioned above. The control and 
starvation-induced samples were prepared for immune-gold 
staining and transmission electron microscopy [TEM].8
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2.6.  Confocal immunofluorescence
Confocal immunofluorescence for occludin, ERK1/2, 
caveolin-1 and beclin-1 was performed by standard methods. 
The slides were examined using a Leica SP8confocal fluor-
escence microscope. Images were processed with LAS X 
software [Leica Microsystems]. Images are presented as 
maximum-intensity projections rendered from 30 z-stacks of 
0.30 µm. Representatives were of several fields from at least 
three separate samples.

2.7.  Co-immunoprecipitation
Using methods previously discussed, the 
co-immunoprecipitation (co-IP) experiments were performed 
using protein G dynabeads from Invitrogen [10004D] ac-
cording to the manufacturer’s protocol.8

2.8.  Quantitative real-time polymerase chain 
reaction [PCR]
Cells were dissolved in TRIZol [Invitrogen, 15596026] 
followed by RNA isolation using the Direct-zol RNA 
Miniprep Plus Kit [Zymo Research, R2072] according to the 
manufacturer’s instructions. Transcript levels of occludin and 
GAPDH were quantified as discussed previously.16

2.9.  Cell surface biotinylation and endocytosis 
assay
Surface proteins on Caco-2 cells were biotinylated using a 
Pierce Cell Surface Protein Biotinylation and Isolation Kit 
[Thermo Scientific, A44390], following the manufacturer’s in-
structions. Cells were then incubated in either normal media 
or EBSS at 37°C for 0, 3 or 6 h. Isolation and determination 
of biotinylated protein fractions were performed as previ-
ously described.15

2.10.  CRISPR/Cas9 knockout of occludin, ATG7, 
ERK-1 and ERK-2
Single guide RNA [sgRNA] targeting the region 
TGAGCAGCCCCCCAATGTCG of OCLN, AAATAA 
TGGCGGCAGCTACG of ATG7, CGGGGAGCCCC 
GTAGAACC of ERK-1 [MAPK-3], CGCGGGCAGG 
TGTTCGACGT region of ERK-2 [MAPK-1] or scrambled 
sgRNA for control in pCRISPR-LVSG03 [Genecopoeia] was 
used to generate OCLN−/−, MAPK dKO, ATG7−/− and Scr 
Caco-2 cells.8 Occludin ORF in pCMV6-AC-GFP [Origene] 
and corresponding control plasmid were used to trans-
fect Caco-2 cells using Lipofectamine 2000 [Invitrogen, 
11668027] as per the manufacturer’s instructions.

2.11.  Experimental animals
Experimental methodologies used in the study were ap-
proved by the Institutional Animal Care and Use Committee 
[IACUC] of The Pennsylvania State University College of 
Medicine. Mice were engineered with floxed alleles of Atg7, 
and a transgene expressing the TAM-regulated Cre recom-
binase fusion protein under control of the ubiquitously ex-
pressed ubiquitin C [UBC] promoter was generously provided 
by Dr Eileen White [Rutgers].17 Atg7 deficiency was created by 
providing tamoxifen [Sigma Cat No. T5648; 20 mg/mL sus-
pended in 98% sunflower seed oil and 2% ethanol mixture] 
to 10-week-old mice as described previously to generate Atg7 
conditional knockout mice (cKO).8 The wildtype C57BL/6J 
mice [Stock No. 000664, Jackson Laboratory] were treated 
with rapamycin [40 mg/kg/day for 3 days, i.p injection]. In 

the dextran sulphate sodium [DSS] model, mice were given 
2.5% DSS in drinking water for 7  days.16 LPS and TNF-α 
[0.2 µg/kg each] were dissolved in sterile PBS and injected i.p 
followed by incubation for 12 and 4 h respectively.

2.12.  Measurement of paracellular permeability 
of murine and human colonic tissues
The paracellular permeability of the mice and human intes-
tinal tissues was measured using 0.03-cm2-aperture Ussing 
chambers [Physiologic Instruments] and mucosal-to-serosal 
flux of [3H]-inulin.18 TER [Ω/cm2] was calculated from the 
spontaneous potential difference and short-circuit current.

2.13.  Human tissue samples and treatment
The surgically resected, fresh human intestinal tissue sam-
ples were obtained from the Department of Surgery, Division 
of Colon and Rectal Surgery, as per the protocols approved 
by the Institutional Review Board. Tissues were ascribed 
as normal or diseased by the Department of Pathology 
and Laboratory Medicine, Penn State College of Medicine. 
Tissues were processed8 and incubated in the presence and 
absence of 300 nM rapamycin [Alfa Aesar, J62473] with or 
without 25 µM U0126 or 20 µM PD98059. Human colonic 
organoids were grown in InstiCult Organoid growth media 
[Stem Cell, 100-0190] following the manufacturer’s instruc-
tions. Organoids were differentiated in InstiCult Organoid 
differentiation media [Stem Cell, 100-0214] and subjected to 
starvation with EBSS for 24 h in the presence and absence of 
U0126 or PD98059.

2.14.  Statistical analysis
Data are reported as means ± SEM. Data were analysed by 
using appropriate statistical tests [Sigma Stat, Systat Software].

3.  Results
3.1.  Autophagy increases cellular occludin and its 
membrane localization, reducing macromolecular 
flux across the paracellular space
We have previously shown that autophagy enhances the in-
testinal TJ barrier by reducing levels of the pore-forming TJ 
protein claudin-2 through its interaction with the μ-subunit 
of the clathrin adaptor protein AP2 and autophagy receptor 
LC3.8,9 Besides claudin-2, the barrier-forming protein oc-
cludin is another major component of the TJ barrier that 
regulates macromolecular flow across the paracellular space 
and whose levels diminish in IBD. To study if autophagy af-
fects occludin, we used an established model of nutrient star-
vation to induce autophagy. We examined occludin levels in 
colonic epithelial Caco-2 cells upon starvation and found a 
significant increase in occludin protein levels [Figure 1A and 
B]. Starvation also increased occludin levels in other epithe-
lial cell lines MDCK-II and T84 [Figure 1C and D], indicating 
that the starvation-induced increase in occludin protein is 
not cell-line specific. Next, we examined the effect of known 
chemical inducers of autophagy on cellular occludin levels. 
Rapamycin,9 resveratrol,19 SMER28,20 and metformin,21 
which induce autophagy by different mechanisms, reduced the 
protein levels of the autophagy substrate p62/SQSTM1 and 
significantly increased occludin protein levels in Caco-2 cells 
[Figure 1E and F]. Overall, the data show that autophagy-
induction in different epithelial cell lines and by different 
mechanisms increases cellular occludin levels.
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Next, we investigated the fate of this increased cellular 
occludin by cell fractionation analysis and found enhanced 
levels of occludin in the membrane fractions of Caco-2 cells 
upon starvation [Figure 2A and B]. Additionally, confocal im-
munofluorescence [Figure 2C and D] and TEM [Figure 2E] 
also showed that starvation enhanced the localization of oc-
cludin to the TJs. Furthermore, consistent with the import-
ance of Thr phosphorylation of occludin in promoting its TJ 
localization and the opposing effect of Tyr phosphorylation,22 
we found that occludin immunoprecipitates from Caco-2 
cells had a significant reduction of Tyr phosphorylation and a 
corresponding increase of Thr phosphorylation upon starva-
tion [Figure 2F–H].

We have previously shown that starvation increases 
TER and decreases the paracellular small solute flux, via 
claudin-2 degradation.9 However, occludin is known to 
regulate the transport of larger, uncharged solutes across 

the paracellular space otherwise referred to as the leak 
pathway, which allows movement of solutes of up to ~100 Å 
diameter in size.23,24 To examine whether starvation has a 
barrier-enhancing effect on the leak pathway, we used two 
markers, inulin [~12  Å diameter] and 4K dextran [~15  Å 
in diameter] which, owing to their larger size, cannot be 
transported through the pore pathway for small molecule 
[~6–8 Å] transport. We found that starvation significantly 
decreased the paracellular flux of macromolecules inulin 
[Figure 3A] and 4K dextran [Figure 3B]. Furthermore, the 
starvation-induced reduction in inulin flux was independent 
of the autophagy-mediated degradation of claudin-2 since 
the baseline inulin flux across Scr and CLDN2−/− Caco-2 cell 
monolayers remained unaltered [Figure 3C]. Together, these 
studies demonstrate that starvation increases the levels and 
TJ localization of the occludin protein and enhances the TJ 
barrier against macromolecule flux.
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Figure 1. Autophagy enhances cellular occludin levels and enhances the TJ barrier against macromolecular flux. [A] Western blot for Caco-2 occludin 
levels after starvation. β-Actin is shown as a loading control. [B] Quantification of occludin in panel A using ImageJ software. Blot and densitometry 
data representative of more than three independent experiments. [C, D] Starvation increased occludin levels in MDCK-II and T84 cells. Blots are 
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induction. Occludin levels were increased by all the autophagy inducers. [F] Quantification of occludin levels in panel E. Blot and densitometry analysis 
from three independent experiments. Student’s t-test or one-way ANOVA with Tukey’s post-hoc test. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, 
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438 K. Saha et al.

3.2.  Autophagy reduces occludin endocytosis 
and enhances the protein half-life
We next examined the possible mechanism underlying the 
starvation-mediated upregulation of occludin protein. We ob-
served no significant difference in occludin transcript levels 
in Caco-2 cells upon starvation [Figure 4A]. Thus, we inves-
tigated the possibility of reduced occludin protein degrad-
ation. In contrast to a temporal reduction of the occludin 
protein in the control samples in the presence of the protein 
synthesis inhibitor cycloheximide, occludin protein levels in 
the starved Caco-2 cell samples showed no significant change, 
suggesting that starvation protects occludin from degradation 
[Figure 4B]. Occludin undergoes caveolar endocytosis by 
interacting with caveolin-1, the primary protein component 
of caveolar structures.15,25 Additionally, we have reported 
the autophagy-independent role of the Atg6/Beclin-1 protein 
in the constitutive caveolar endocytosis and lysosomal deg-
radation of occludin.26 Therefore, we probed occludin 
immunoprecipitates from control and starved Caco-2 cells 
for caveolin-1, beclin-1 and the lysosomal marker LAMP-2. 

Co-IP showed a temporal reduction in the interaction of oc-
cludin with all three proteins upon starvation [Figure 4C and 
D]. We next assessed if this reduction of occludin degrad-
ation and association with caveolin-1 is a consequence of 
starvation-induced abrogation of the global caveolar endo-
cytosis pathway. Studies have reported that caveolin-mediated 
endocytosis requires the phosphorylation of the caveolin-1 
protein on the Y-14 residue,23 and hence we determined the 
level of phospho-caveolin-1 [pY-14-Cav-1] in Caco-2 cells 
and observed an increase during starvation, indicating that 
the global caveolae-mediated endocytosis remains unaffected 
during autophagy induction [Figure 4E]. In a complemen-
tary approach, we also assessed the uptake of cholera toxin, 
which is known to undergo caveolar endocytosis, by control 
and starved Caco-2 cells and observed no difference in the 
ability of the cells to endocytose the toxin between control 
and starved samples [data not shown].

Next, we directly assessed the effect of starvation on oc-
cludin endocytosis using biotin labelling.15,27 For this, after 
biotinylation of the membrane proteins, the Caco-2 cells were 
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subjected to starvation, followed by removal of all surface 
biotin and isolation of endocytosed biotinylated proteins. 
We observed increased levels of biotinylated occludin in con-
trol cell lysates compared to starved cells, indicating reduced 
endocytosis of occludin after starvation [Figure 4F and G]. 
We have previously shown that treating Caco-2 cells with 
caveolin-1 scaffold domain [CSD] peptide induces occludin 
degradation by enhancing its endocytosis in caveolar pits.26 
Assessment of occludin levels in Caco-2 cells showed a sig-
nificant reduction upon CSD treatment alone, but starvation 
prevented CSD-mediated reduction in occludin levels [Figure 
4H]. Furthermore, confocal imaging showed increased 

co-localization between occludin and caveolin-1 upon CSD 
treatment which was absent in the cells subjected to star-
vation [Figure 4I]. Thus, starvation selectively protected oc-
cludin from endocytosis and degradation by disrupting its 
association with caveolin-1.

3.3.  Starvation-induced enhancement of the TJ 
barrier is autophagy and occludin dependent
We next confirmed the role of autophagy on starvation-
induced upregulation in occludin levels and the TJ barrier en-
hancement. We found that autophagy inhibitors, bafilomycin 
A1 or SBI-0206965, prevented the starvation-induced 
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increase in occludin levels [Figure 5A and B]. Inhibition of 
autophagy with bafilomycin A1 or SBI-0206965 also pre-
vented the starvation-mediated reduction in the paracellular 
inulin flux [Figure 5C]. To further verify the role of autophagy 
in TJ barrier enhancement and occludin upregulation, we 
used CRISPR/Cas9-mediated ATG7 knockout [ATG7−/−] to 
disrupt the autophagy pathway in Caco-2 cells [Figure 5D].8 
To this end, we observed no changes in occludin levels upon 

starvation in ATG7−/− cells compared to Caco-2 cells and non-
target, scrambled [Scr] guide RNA transfected Caco-2 cells 
[Figure 5E and F]. Additionally, unlike Scr cells, starvation in 
ATG7−/− cells did not reduce the inulin flux [Figure 5G], nor 
the CSD-induced co-localization of occludin and caveolin-1 
[Figure 5H–J]. Together, these data demonstrate that the 
autophagy pathway plays a key role in the upregulation of 
occludin protein levels and enhancement of the paracellular 
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barrier against macromolecular flux via the reduction in 
caveolae-mediated occludin endocytosis.

To test whether occludin is needed for the starvation-
induced TJ barrier enhancement against macromolecular 
flux, we utilized CRISPR/Cas9 to generate occludin knockout 
[OCLN−/−] Caco-2 cells [Figure 6A]. We observed that starva-
tion significantly increased the TER in OCLN−/− cells [Figure 
6B], but the inulin flux in the OCLN−/− cell monolayers re-
mained unchanged upon starvation [Figure 6C]. Together, 
these data demonstrate the key role of occludin in the 
autophagy-induced paracellular macromolecule permeability 
reduction.

3.4.  Starvation-induced enhancement of cellular 
occludin levels and TJ barrier is mediated by 
ERK-1/2
Previous studies have shown the critical role of the MAPK 
pathway in both autophagy28 and membrane localization of TJ 
proteins.29 Additionally, our analysis of the Caco-2 proteome 
also indicated links between the ERK1/2 kinases, occludin, 
autophagy and associated endocytic components [Figure 7A]. 
Therefore, we tested the role of ERK1/2 in the starvation-
induced enhancement of the TJ barrier. Starvation activated 
ERK-1 and 2, as evidenced by the increased phosphorylation 
of these kinases [Figure 7B and C]. Pharmacological inhibition 
of the ERK1/2 kinases with either U0126 or PD98059 pre-
vented the starvation-induced reduction of inulin flux [Figure 
7D]. In contrast, p38 or JNK MAPK inhibition [SB 202190 
and SP600125, respectively] did not affect the autophagy-
induced reduction in macromolecular flux [data not shown]. 
Next, we employed CRISPR/Cas9 to knock out the ERK-1 
and 2 genes in Caco-2 cells [dKO] [Figure 7E]. Though like 
the non-target Scr cells, the TER significantly increased in 
the dKO cells upon starvation [Figure 7F], starvation failed 
to reduce the inulin flux in the dKO cells [Figure 7G]. This 
observation supports the presence of distinct mechanisms of 
autophagic regulation of the pore and leak pathways.

Next, we assessed the effect of ERK1/2 deletion on occludin 
endocytosis. The occludin immunoprecipitates showed that 
starvation failed to reduce the association of occludin with 
caveolin-1, beclin-1 and LAMP-2 in the dKO cells [Figure 
8A and B]. Furthermore, in the dKO cells, starvation did 
not prevent the association between occludin and caveolin-1 
upon CSD treatment [Figure 8C and D]. Upon assessing the 
phosphorylation status of occludin in the Scr and dKO cells, 
we observed increased Thr phosphorylation of the protein 
upon starvation in both cell lines [data not shown]. However, 
compared to Scr cells, the dKO cells exhibited higher base-
line levels of Tyr phosphorylation, which further increased 
upon starvation [Figure 8E]. Thus, these studies demonstrate 
the essential role of the ERK-1/2 kinases in regulating the 
phosphorylation state of phosphorylation state of occludin, 
thereby maintaining its stability at TJs and protecting it from 
degradation and thereby regulating the macromolecular flux 
upon autophagy induction.

3.5.  Occludin protects against inflammation-
induced barrier loss
We next assessed if the starvation-induced upregulation of 
occludin protects the epithelial TJ barrier against immune 
injury. Increased production of IFN-γ, TNF-α and IL-17A 
by hyperactive gut-resident lymphocytes and loss of the gut 
epithelial barrier are hallmarks of IBD.30,31 Therefore, we 

assessed the effect of starvation on the cytokine-induced 
barrier loss. For this, filter-grown Caco-2 cells were incu-
bated with a cytokine cocktail comprising the three cyto-
kines added to the basolateral side. Cytokine treatment 
significantly reduced occludin levels, which was prevented 
by starvation [Figure 9A and B]. Cytokine addition pro-
gressively decreased the TER over time compared to con-
trol cells, but incubation of Caco-2 cells with starvation 
media prevented this cytokine-induced loss of TER [Figure 
9C]. Additionally, the macromolecular inulin flux which is 
primarily related to occludin was significantly increased 
upon cytokine treatment and was prevented by starvation 
[Figure 9D]. We next assessed the effect of exogenous oc-
cludin overexpression in the cytokine-induced paracellular 
TJ barrier loss. In a similar cytokine treatment on Caco-2 
cells overexpressing occludin [Caco-2OCLN] [Figure 9E and 
F], we did not observe loss of the paracellular TJ barrier 
[Figure 9G] compared to empty vector control [Caco-2Scr]. 
Epithelial occludin has been shown to impact susceptibility 
for apoptosis under inflammatory conditions.32 Autophagy-
mediated or exogenously up-regulated occludin levels in 
Caco-2 cells, however, did not show increased apoptosis 
upon cytokine treatment [Figure 9H]. Collectively, these 
data highlight the protective role of the increased levels 
of occludin in maintaining the TJ barrier during cytokine 
injury.

3.6.  Autophagy induction protects against LPS 
and TNF-α-induced intestinal injury in vivo
Next, we examined the protective role of autophagy-induced 
increase in occludin levels in vivo. Intraperitoneal rapamycin 
injection in WT mice successfully induced autophagy in the 
mouse colon, as evidenced by the degradation of the autophagy 
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substrate p62/SQSTM1. Rapamycin administration also in-
creased colonic epithelial occludin protein levels [Figure 10A 
and B], and reduced colonic inulin flux [Figure 10C]. We 
next tested the effect of this rapamycin-induced autophagy 

and occludin upregulation in intestinal injury models. LPS, 
major components of gram-negative bacterial cell walls, and 
TNF-α, a pro-inflammatory cytokine, are known to elicit in-
testinal injury and cause loss of the occludin-associated TJ 
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barrier.25,34,35 Intraperitoneal LPS injection in WT mice led to 
a significant loss in colonic occludin levels which was pre-
vented upon autophagy-inducer rapamycin treatment [Figure 
10A, B, and D]. Loss of occludin levels in LPS-injected mice 
was accompanied by increased colonic inulin permeability, 
and rapamycin significantly protected against LPS-induced 
increase in colonic TJ permeability [Figure 10C]. Similar to 
LPS, intraperitoneal TNF-α administration increased the 
mouse colonic permeability of inulin [Figure 10E] which was 
significantly attenuated by rapamycin. Rapamycin also pre-
vented the TNFα-induced increase in occludin–caveolin-1 as-
sociation in mouse colonocytes [Figure 10F]. Intraperitoneal 
rapamycin administration also prevented the LPS- and TNF-
α-induced increase in inulin flux in mouse small intestine 
[data not shown].

To confirm the role of autophagy in the TJ barrier protec-
tion conferred by rapamycin in the LPS and TNF-α models 
described above, we performed the same experiments in 
autophagy-deficient atg7 cKO mice. Acute deletion of Atg7 
in adult mice disrupted autophagy8 and reduced baseline oc-
cludin protein levels in the mice colon [Figure 11A and B]. 
The atg7 cKO mice also showed increased baseline colonic 

inulin flux compared to Atg7fl/fl mice [Figure 11C]. Both 
LPS and TNF-α significantly increased colonic inulin flux in 
atg7 cKO mice compared to Atg7fl/fl mice [Figure 11D and 
E]. Moreover, unlike the WT mice, rapamycin had no pro-
tective effect against the LPS- and TNF-α-induced increase in 
colonic inulin permeability in autophagy-deficient atg7 cKO 
mice [Figure 11D and E]. Finally, consistent with a previous 
report,36 and our recent data showing increased susceptibility 
of the atg7 cKO mice to experimental DSS colitis compared to 
Atg7fl/fl,8 the atg7 cKO DSS mice also showed remarkably in-
creased colonic large molecule flux compared to Atg7fl/fl DSS 
mice [Figure 11F]. In sum, these studies strongly underscore 
the role of autophagy-mediated increases in occludin levels 
against inflammation-associated TJ barrier loss.

3.7.  Autophagy upregulates occludin levels and 
enhances the TJ barrier in human colonic explants 
and colonoids in an ERK1/2-dependent process
We next assessed the role of autophagy on occludin levels in 
the human colon. Rapamycin increased occludin levels in ex-
plant cultures from surgically resected diseased and adjoining 
normal colonic tissues from CD patients [Figure 12A and B]. 
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Similarly, autophagy induction with incubation in starva-
tion media or treatment with rapamycin increased occludin 
immunofluorescence in human colonic stem cell-derived 
colonoids [Figure 12C and D]. Moreover, MAPK inhibitors 
U0126 or PD98059 inhibited rapamycin and starvation-
induced increase in occludin levels in normal human colon 
explants [Figure 12E and F] and occludin immunofluor-
escence in the colonoids [Figure 12C and D], respectively. 
Finally, in functional studies on Ussing chambers, rapamycin 
reduced paracellular inulin flux in the normal human co-
lonic mucosa, which was prevented by both U0126 and 
PD98059 treatment [Figure 12G]. Together, these data show 

that autophagy induces upregulation of occludin in human 
colonic tissues and enhances the paracellular TJ barrier, in an 
MAPK-dependent manner.

4.  Discussion
We have previously reported that nutrient starvation-induced 
autophagy reduces intestinal epithelial TJ permeability and 
enhances TJ barrier function via degradation of the cation-
selective, pore-forming TJ protein claudin-2.8,9 Here we show 
a novel role of the autophagy pathway, which is tradition-
ally thought to be degradative, in selective preservation of 
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the TJ protein occludin and reduction in the paracellular 
permeability of macromolecules. The starvation-mediated 
upregulation of the barrier-forming protein occludin contrasts 
with its degradation-promoting effect on the pore-forming 
protein claudin-2 and emphasizes two distinct mechanisms 
through which autophagy mediates enhancement of the TJ 
barrier.

Our study shows that starvation-induced autophagy 
upregulates occludin in different epithelial cell lines, mouse and 
human intestinal tissue, and tissue-derived organoids, and this 
effect was also produced by several known pharmacological 
inducers of autophagy. Starvation reduced the Tyr phosphor-
ylation and increased Thr phosphorylation of occludin, re-
sulting in stabilization of the protein’s localization to the TJs 
and the consequential enhancement of the paracellular barrier 
against macromolecular flux. On the other hand, pharmaco-
logical and genetic inhibition of the autophagy pathway pre-
vented starvation-induced TJ barrier enhancement. We also 
highlight the importance of occludin in maintaining the para-
cellular barrier. Consistent with the previous reports,37–39 the 
baseline inulin flux in the OCLN−/− cells remained unaltered, 
but autophagy-induced barrier enhancement was not ob-
served in these cells. These observations agree with previous 
reports where mice lacking occludin had no morphological 
or functional differences in the TJs but showed retarded 
post-natal development, age-dependent barrier dysfunction 
and an increased propensity for gut injury, implicating that 
occludin is crucial for TJ barrier maintenance.39–42 Several 

studies, including ours, have demonstrated that occludin 
is constitutively trafficked via caveolae.11,20,43,44 Our pre-
sent study demonstrates that autophagy enhances occludin 
levels by reducing its endocytosis from the membrane and 
increasing its half-life. Furthermore, we show that autophagy 
shunts occludin off the constitutive degradation pathway by 
disrupting its association with caveolin-1 and Atg-6/beclin-1. 
Previously, we reported that Atg-6/beclin-1 regulates constitu-
tive degradation of occludin,26 and our present findings sug-
gest that engagement of beclin-1 in the autophagy pathway 
spares occludin from degradation.

TJ barrier composition and integrity are regulated by dif-
ferent kinases, and the protective role of the Ser/Thr kin-
ases ERK-1 and ERK-2 have been established previously.45,46 
Activation of ERK-1 and 2 by the AMP-activated protein 
kinase [AMPK] and subsequent activation of TSC2 or their 
AMPK-independent activation by protein kinase C [PKC]47 is 
involved in promoting autophagy.28,48 Our findings show the 
necessity of ERK-1 and ERK-2 activation in starvation- asso-
ciated TJ barrier enhancement and occludin localization to 
the TJ barrier. Our data also underscore the importance of the 
ERK kinases in protecting occludin from degradation as, in 
their absence, autophagy induction failed to reduce the asso-
ciation of occludin with either caveolae or lysosomes, and did 
not protect against CSD-induced occludin endocytosis. Our 
study also highlights the importance of the ERK1/2 kinases 
in altering the phosphorylation state of occludin, which in 
turn determines the stability of occludin at the TJs. Based on 
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the current literature, we speculate that this altered occludin 
phosphorylation after autophagy induction is due to the re-
ciprocal regulation between ERK1/2 and the c-Src kinase, 
which is known to facilitate the Tyr phosphorylation of oc-
cludin and compromise its TJ stability22,49–51 and needs fur-
ther investigation. In addition, though we found that ERK1/2 
does not have conventional caveolin binding motifs [CBMs], 
non-conventional CBMs, which are also known to mediate 
interaction with the scaffold domain [SD] of caveolin-1, 
were found in both ERK1/2.52 These observations, coupled 
with our data that starvation enhances the association be-
tween the ERK kinases and caveolin-1 alongside the Caco-2 
protein interactome upon starvation, point to a direct role of 
autophagy-activated ERK1/2 kinases in preventing the asso-
ciation between caveolin-1 and occludin.

Occludin has been described as a critical regulator of the 
leak pathway, which due to its ability to allow fluid and large 
solute movement including luminal antigens, plays a pivotal 

role in the regulation of the gut mucosal immune responses 
and gut inflammation.25,53,54 To understand the relevance of 
autophagy-mediated occludin upregulation in inflamma-
tion, we used multiple in vitro and in vivo injury models of 
cytokines, LPS and DSS colitis, which have previously been 
shown to increase gut permeability. We found that in vitro, 
autophagy induction by starvation or exogenous occludin 
overexpression successfully prevented the cytokine-induced 
increase in paracellular macromolecule permeability. This is 
unlike a previous report in MDCK II cells that shows deple-
tion of the TJ barrier with overexpression of occludin during 
cytokine treatment,44 possibly due to the different cell line 
models or the autophagy-mediated regulation of intracellular 
pathways including caveolin-1. Furthermore, in vivo obser-
vations show that autophagy induction with rapamycin in 
the intestine of WT, but not Atg7−/−, mice protects against 
the disruptive effect of LPS and TNF-α on the TJ barrier. 
Additionally, the overall severity of DSS colitis including the 
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colonic paracellular macromolecule flux was markedly in-
creased in Atg7−/− mice. These observations, along with the 
decreased baseline occludin expression and increased colonic 
macromolecule flux in Atg7−/− mice, support our previous 
in vitro findings26 that autophagy is essential for regulating 
constitutive occludin levels and the TJ barrier function. In 
addition to the in vitro and in vivo approaches using epithe-
lial cell lines and mouse models, we show that autophagy-
induction increases occludin protein levels in healthy and IBD 
patient-derived colonic tissues and tissue-derived organoids 
in an ERK1/2-dependent way.

Presently, autophagy is known to degrade several mem-
brane proteins including amyloid precursor protein, Notch1, 
focal adhesions and claudin-2.8,55–57 Thus, autophagy-
mediated suppression of occludin degradation appears to be 
a unique function of autophagy. Occludin overexpression 
or promotion of occludin expression is generally known to 
restrict TJ barrier loss.25,42,58,59 On the other hand, the in-
flamed intestinal mucosa in patients with active IBD had 
decreased occludin expression.12–14 Thus, our findings of 
autophagy-induced upregulation of occludin are highly sig-
nificant given the role of occludin in the TJ barrier, along 
with the defects in the TJ barrier and autophagy reported 
in IBD. In conclusion, our present study demonstrates a 
unique function of autophagy in occludin up-regulation 
and enhancement of the TJ barrier. Autophagy may provide 
a novel tool to promote epithelial integrity during intestinal 
inflammation.
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