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Abstract

Background—Binary diagnosis of coronary artery disease (CAD) does not preserve the 

complexity of disease or quantify its severity or mortality risk; hence, a quantitative marker of 

CAD is warranted. We evaluated a quantitative marker of CAD derived from probabilities of a 

machine learning model.

Methods—A CAD-predictive machine learning model was developed and validated using 95,935 

electronic health records, and its probabilities were assessed as in silico scores for CAD (ISCAD; 

range, 0 [lowest probability] to 1 [highest probability]) in participants in two longitudinal biobank 

cohorts. The relationship of ISCAD with coronary artery stenosis, obstructive CAD, multivessel 

CAD, all-cause mortality, and CAD sequela was measured.

Results—Among 95,935 participants, 35,749 were from BioMe Biobank (median [IQR] age, 

61 [18] years; 13,290 [37%] male; 5,130 [14%] with diagnosed CAD) and 60,186 were from 

UK Biobank (median [IQR] age, 62 [15] years; 25,031 [42%] male; 8,128 [14%] with diagnosed 

CAD). The model predicted CAD with an area under the receiver-operating-characteristic curve of 

0.95 and 0.93 in the BioMe validation and holdout sets, respectively, and 0.91 in the UK Biobank 

external test set. ISCAD captured CAD risk from known risk factors, pooled cohort equations, 

and polygenic risk scores. Coronary artery stenosis increased quantitatively with ascending 

ISCAD quartiles (12 percentage-point increase per quartile), including risk of obstructive CAD, 

multivessel CAD, and stenosis of major coronary arteries. Hazard ratio and prevalence of all-

cause mortality increased stepwise over ISCAD deciles (1.0 [0.20%], 11 [3.1%], and 56 [11%] 

in bottom, middle, and top deciles, respectively). A similar trend was observed for recurrent 

myocardial infarction. Almost half of undiagnosed individuals with high ISCAD had clinical 

evidence of CAD according to clinical guidelines.

Interpretation—EHR-based machine learning was used to generate an in silico marker for CAD 

that non-invasively quantifies atherosclerosis and mortality risk on a continuous spectrum, and 

identifies underdiagnosed individuals.

INTRODUCTION

Detection of CAD enables initiation of preventive measures, including lifestyle 

modifications and lipid-lowering therapies, to prevent cardiovascular disease.1–3 However, 

CAD is a complex disease with many contributing factors and varied clinical 

manifestations.4,5 Quantitative differences in the amount of coronary stenosis and plaque 

composition result in gradations of risk for myocardial infarction and mortality.6,7 This 

phenotypic spectrum of CAD is missed with the binary classification of CAD as case versus 

control. Misclassification of CAD is also possible whereby individuals lacking a diagnosis 

of CAD have evidence of disease.8–10 Missed diagnosis of CAD may lead to myocardial 

infarction, stroke, and death.11–15

Risk factors can inform the screening and diagnosis of CAD, including the presence of 

hypertension, diabetes, smoking, and dyslipidemia.3,16 These variables are included in risk 

scores that predict CAD events, such as the Framingham Risk Score,17 SCORE2,18 and 

pooled cohort equations (PCE).19 However, these tools use a small number of predictors and 

discard large amounts of data contained in electronic health records (EHRs); for example, 
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most vital signs, laboratory tests, medications, symptoms, and other clinical features are 

not used. Millions of these heterogenous clinical data points are accrued by patients 

longitudinally in EHR-based health systems, but are difficult to analyze or interpret without 

the use of machine learning.20–24

Machine learning models have been developed to accurately predict 5- or 10-year risk 

of CAD based on EHR data;25,26 we recently developed an EHR-based model that 

outperforms PCE and conventional risk factors in predicting one-year CAD status.27 

However, these models are primarily tested as a classification tool to predict case-control 

status of disease (binary framework) and do not attempt to measure disease on a continuous 

scale (quantitative framework). Individuals occupy a spectrum of CAD, rather than rigid 

categories of case versus control, and evaluation of CAD in a quantitative manner may 

better represent this spectrum and improve personalized care.28–30 Here, we asked whether 

a quantitative in silico score for CAD (ISCAD) derived from a machine learning model 

has clinical utility as a marker in the detection, risk stratification, and prognostication of 

CAD. Conventionally, markers are molecules or anthropometrics measured in the body as 

an in vivo indicator of disease31; we sought to examine ISCAD, an amalgam of clinical 

data points in the EHR, as an in silico marker for CAD. We evaluated the relationship of 

ISCAD with clinical outcomes of CAD—atherosclerotic plaque burden, all-cause mortality, 

and CAD sequela including recurrent myocardial infarction—and identified underdiagnosed 

individuals who had high ISCAD and EHR evidence of disease, but lacked a corresponding 

diagnosis.

METHODS

Study design

We performed a study to train, validate, and externally test a CAD-predictive machine 

learning model using clinical features extracted from EHRs in two large biobanks. This 

model was adapted from a previous model27 for the short-term risk prediction of CAD in 

a binary framework based on EHR data. In the present study, probability scores from the 

model were instead evaluated as a quantitative CAD marker.

First, we trained and validated the machine learning model using 20,497 EHRs from the 

BioMe Biobank (BioMe), tested the model on a holdout set of 15,252 EHRs from BioMe, 

and externally tested the model on 60,186 EHRs from UK Biobank. Second, we assessed 

the relationship of ISCAD with clinical outcomes relevant to CAD in participants from both 

biobanks. Study protocols were approved by the Institutional Review Board at the Icahn 

School of Medicine at Mount Sinai (GCO#07–0529; STUDY-11–01139) and all participants 

provided informed consent. Use of data from UK Biobank was approved with the UK 

Biobank Resource under Application Number 16218.

Study participants

The study included participants from two EHR-linked biobanks in two countries 

(Supplementary Methods). The machine learning model was trained and validated, and 

ISCAD was evaluated, in BioMe. BioMe comprises >60,000 individuals of diverse 
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ethnicities recruited from outpatient centers in the Mount Sinai Health System across New 

York City from 2007 onwards.32 All individuals consented to providing biological and DNA 

samples linked to de-identified EHRs. Participants at least 40 years old were selected to 

ensure adequate representation of CAD cases in an age group for whom PCE guides statin 

initiation27 (Fig. 1A). The model was externally tested in UK Biobank, a community-based 

cohort of >500,000 individuals chiefly of British self-reported ethnicity between 40–69 

years old enrolled across the United Kingdom between 2006–2010.33 Participants were 

selected with the same criteria as in BioMe (Fig. 1A).

CAD and clinical outcomes

In BioMe, cases of CAD were identified by the presence of CAD diagnosis codes27 while 

controls had the absence of all CAD diagnosis codes (Supplementary Methods). In UK 

Biobank, CAD cases were identified by the presence of CAD diagnosis and procedure 

codes27; controls were identified by the absence of all CAD diagnosis/procedure codes.

Clinical outcomes relevant to CAD were obtained for 35,749 participants in BioMe. A total 

of 3,858 participants had undergone cardiac catheterization, with coronary angiography data 

available for 2,131 participants (Supplementary Methods). These reported the procedure 

date, coronary vessel, and segment; a subset of 905 also noted stenosis extent (graded 

as 7 categories of percent stenosis), SYNTAX score,34 and long (>20mm) or heavily 

calcified (>270°) lesions. Obstructive CAD,6 multivessel CAD,35 and left main, proximal 

left anterior descending, left circumflex, and right coronary artery stenosis were evaluated. 

All-cause mortality information available for 35,242 (99%) participants reported whether 

the participant had died and year of death. CAD sequela comprised recurrent myocardial 

infarction (MI), defined by an episode of MI >28 days after first MI,36 arrhythmia, and heart 

failure after CAD diagnosis.

Clinical features obtained from the EHR

In BioMe, both categorical and continuous data from the EHR were obtained as clinical 

features. Only clinical feature data before the first instance of CAD diagnosis, procedure 

(e.g., angioplasty, coronary artery bypass graft), or statin use were considered for 

CAD cases. Categorical features comprised 14,695 unique diagnosis codes and 27,802 

medications. Continuous features included 105 laboratory measurements and 9 vital traits. 

Stringent quality control was performed to filter missing and correlated data (Supplementary 

Methods) yielding 88 diagnosis codes, 104 medications, 81 laboratory results, and 9 vital 

traits to train the machine learning model (Supplementary Table 1).

In UK Biobank, we externally tested the machine learning models with EHR data before 

the first instance of CAD diagnosis or procedure for CAD cases (medication dates are 

unavailable; individuals using statins in UK Biobank were therefore removed). Continuous 

features and participants with >70% missing values were removed, and the remaining values 

were imputed using random forest-based algorithms.
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Development of the machine learning model

Our model comprised a random forest-based machine learning system27,37 to predict CAD 

using clinical features from the EHR (Supplementary Methods). The workflow used a 

random sample of 90% of cases and an equal number of controls for training, and 

the remaining 10% of cases and an equal number of controls for validation, iterated 

100 times to minimize sampling bias. Feature selection was performed on the training 

dataset and applied to the validation dataset to reduce model complexity38 and increase 

clinical interpretability.20 A 10-fold cross-validation was used to optimize the model’s 

hyperparameters. The resulting model predicted CAD status in the validation dataset; 

performance metrics were reported for the mean and 95% CI across 100 iterations. This 

workflow was repeated for an external test dataset from UK Biobank using BioMe Biobank 

features present in UK Biobank to train 100 new models (Supplementary Methods). A 

series of sensitivity analyses using variations of the model and its features was performed to 

improve validity and portability (Supplementary Methods).

ISCAD derivation

Probability scores from the machine learning model were obtained for each participant 

as their ISCAD. ISCAD ranged from 0 (lowest CAD probability) to 1 (highest CAD 

probability), and was subsequently evaluated as a quantitative marker for CAD.

Pooled cohort equations, polygenic risk score, and baseline risk

We computed PCE and polygenic risk scores (PRS) for all participants in BioMe 
(Supplementary Methods; Supplementary Figure 2). PCE represents 10-year atherosclerotic 

cardiovascular disease risk19 and PRS measures the aggregated effects of genetic variants on 

CAD risk39. We also considered a baseline of known CAD risk factors19 comprising age, 

sex, ethnicity, total cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, 

treatment for blood pressure, type 2 diabetes, smoking status, and body mass index (BMI).

Underdiagnosed CAD identified by ISCAD

The utility of ISCAD in identifying underdiagnosed cases of CAD was assessed. A subset 

of 26 individuals with high ISCAD ≥0.9 lacked a prior CAD diagnosis. Manual EHR review 

was performed for these undiagnosed individuals and a propensity score-matched set of 26 

undiagnosed participants with low ISCAD ≤0.1 (nearest neighbor matching on age, sex, 

statin use, and Elixhauser comorbidity index) while blinded to ISCAD to identify those with 

evidence of CAD according to clinical guidelines16.

Statistical analysis

Differences in categorical and continuous variables were assessed with 2-sided unpaired 

Fisher’s exact tests and t-tests, respectively. Models to predict CAD were evaluated 

with area under the receiver-operating characteristic curve (AUROC) and area under the 

precision-recall curve (AUPRC) using the pROC package (version 1.16.2),40 and sensitivity, 

specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). 

Linear, logistic, and Cox proportional hazards regression tested the association of ISCAD 

with continuous, categorical, and temporal outcomes, respectively. Regression models were 

Forrest et al. Page 5

Lancet. Author manuscript; available in PMC 2024 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adjusted for age, sex, BMI, smoking status, and self-reported ethnicity, unless otherwise 

stated. Significance level was set at 0.05. Associations of ISCAD with atherosclerosis and 

survival were assessed in pre-specified subgroups of males and females. In each case, 

interaction between sex and ISCAD was tested, and heterogeneity of sex-specific results 

was evaluated with Cochran’s Q test. All statistical tests and plots were generated with R 

(version 3.5.3).

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.

RESULTS

Study population

The study population included 95,935 participants from two biobanks with EHR data to 

train, validate, and externally test the machine learning model (Fig. 1A). The model was 

trained and validated on EHR data for 20,497 participants from BioMe (median age, 61 

years [interquartile range (IQR), 18]; 6,718 [38%] male; 5,887 [29%] European ethnicity) 

with 2,669 (13%) cases of CAD (Table 1). A holdout EHR dataset comprised 15,252 

participants from BioMe (median age, 61 years [IQR, 18]; 6,572 [43%] male; 5,201 [34%] 

European ethnicity) with 2,461 (16%) cases of CAD (Supplementary Table 3). An EHR 

dataset for 60,186 participants from UK Biobank (median age, 62 years [IQR, 15]; 25,031 

[42%] male; 56,986 [95%] European ethnicity) was used for external testing, including 

8,128 (14%) cases (Supplementary Table 4). The association of ISCAD with clinical 

outcomes of CAD—atherosclerotic burden, all-cause mortality, and CAD sequela such as 

recurrent MI—was evaluated in the BioMe cohort.

Model performance in validation, holdout, and external testing datasets

In the validation dataset, the model predicted CAD with an AUROC of 0.95 (95% CI, 0.94–

0.95), sensitivity of 0.94 (95% CI, 0.94–0.95), and specificity of 0.82 (95% CI, 0.81–0.83) 

(Table 2 and Fig. 1). The prevalence of CAD was 13% in the validation dataset, with a NPV 

of 0.93 (95% CI, 0.93–0.93) and PPV of 0.84 (95% CI, 0.83–0.95). In the holdout dataset, 

the model predicted CAD with an AUROC of 0.93 (95% CI, 0.92–0.93), sensitivity of 0.90 

(95% CI, 0.89–0.90), and specificity of 0.88 (95% CI, 0.87–0.88). The prevalence of CAD 

was 16% in the holdout dataset, with a NPV of 0.89 (95% CI, 0.89–0.89) and PPV of 0.88 

(95% CI, 0.88–0.88). In the external test dataset, the model predicted CAD with an AUROC 

of 0.91 (95% CI, 0.91–0.91), sensitivity of 0.84 (95% CI 0.83–0.84), and specificity of 0.83 

(95% CI, 0.82–0.83). The prevalence of CAD was 14% in the external test dataset, with 

a NPV of 0.84 (95% CI, 0.83–0.84) and PPV of 0.83 (95% CI, 0.82–0.83). The models 

were calibrated with Brier scores of 0.048, 0.053, and 0.056 in the validation, holdout, and 

external test datasets, respectively (Supplementary Figure 3).

Sensitivity analyses of ISCAD

Sensitivity analyses showed similar performance of a portable model (with shared features 

in validation and external test datasets) in the external test dataset with no retraining 
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(Supplementary Figure 5); a portable model derived from the external test dataset and 

assessed in the training/validation dataset with no retraining (Supplementary Figure 6; 

Supplementary Table 7); and a streamlined model solely based on routine laboratory 

measurements, vitals, and demographics (Supplementary Figure 7; Supplementary Table 

8). Removal of heart failure-related features such as echocardiography measurements, 

electrocardiogram data, cardiac enzymes, and heart failure medications had minimal effect 

on the performance of the model (Supplementary Figure 8). In contrast, an ascertainment 

model testing indicators of the presence or absence of features instead of the values of 

features performed poorly (Supplementary Figure 9).

CAD risk captured by ISCAD

We next used CAD probabilities from the model to generate ISCAD for all 20,497 

participants in BioMe and examined its characteristics. Mean ISCAD was greater in CAD 

cases compared to controls by 0.55 (95% CI, 0.54–0.55; P<0.0001) (Supplementary Figure 

10) and CAD onset occurred 1.8 years earlier per quartile increase in ISCAD (95% CI, 1.5–

2.3; P<0.0001). Known risk factors for CAD were associated with ISCAD (Supplementary 

Figure 11); for example, ISCAD increased monotonically by 0.085 per decade of age (95% 

CI, 0.082–0.087; P<0.0001) and was greater for individuals with dyslipidemia (0.076; 95% 

CI, 0.069–0.083; P<0.0001) and type 2 diabetes (0.13; 95% CI, 0.12–0.14; P<0.0001). In 

addition, ISCAD captured axes of CAD risk from PCE and PRS (Supplementary Figure 

11): ISCAD increased by 0.080 per 10-point increase in PCE (95% CI, 0.076–0.084; 

P<0.0001) and by 0.023 per standard deviation (SD) increase in PRS (95% CI, 0.018–

0.027; P<0.0001). Non-traditional clinical features in the EHR were also important in the 

model, including acetaminophen, ejection fraction, T axis, hemoglobin A1c, and glucose 

(Supplementary Table 5). Analysis of the model’s interpretability with SHAP values showed 

that features that are CAD risk factors contributed to the model predictions in the direction 

expected with their biological effects (Supplementary Figures 12–13).

Evaluation of atherosclerosis with ISCAD

After establishing the CAD risk captured by ISCAD, we assessed if ISCAD can represent 

a quantitative marker for coronary atherosclerosis. Mean ISCAD was greater in participants 

who underwent cardiac catheterization than those who had not by 0.38 (95% CI, 0.37–

0.39; P<0.0001) (Fig. 2A). Stenosis increased quantitatively by 12-percentage points per 

ISCAD quartile (95% CI, 10–13 percentage points; P<0.0001) (Fig. 2B). Complexity of 

atherosclerosis, measured by SYNTAX score, also increased monotonically by 1.2 per 

ISCAD quartile (95% CI, 0.93–1.54; P<0.0001) (Fig. 2C). We also evaluated clinically 

significant angiographic outcomes: there was an adjusted odds ratio (OR) of 2.1 for 

obstructive CAD (95% CI, 1.8–2.5; P<0.0001), 1.6 for multivessel CAD (95% CI, 1.3–

1.9; P<0.0001), 2.8 for long atherosclerotic lesions (95% CI, 1.7–4.6; P<0.0001), and 

2.3 for heavily calcified lesions (95% CI, 1.4–4.1; P=0.002) per ISCAD quartile. These 

relationships of ISCAD with atherosclerotic burden were consistent in pre-specified sex 

subgroups (Supplementary Figure 14); for both stenosis and SYNTAX, no significant 

heterogeneity between sexes (P=0.070, P=0.16) or interaction between sex and ISCAD 

(P=0.21, P=0.69) was observed. Stenosis of major anatomical vessels and coronary 

vasculature regions were further examined with ISCAD (Fig. 2D). Adjusted OR for stenosis 
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increased quantitatively with ascending ISCAD quartiles for all coronary sites tested, 

including left main (1.7; 95% CI, 1.3–2.6; P=0.008) and proximal left anterior descending 

coronary arteries (1.3; 95% CI, 1.2–1.6; P<0.0001).

Assessment of all-cause mortality by ISCAD

We then evaluated the relationship of ISCAD with all-cause mortality using survival 

analyses. A total of 815 (4.1%) participants were deceased at the time of analysis (median 

age of death [IQR], 68 [17] years). ISCAD was associated with a quantitative increase in 

risk of death with an adjusted hazard ratio [HR] of 1.5 (95% CI, 1.4–1.6; P<0.0001) per SD 

increase in ISCAD. Prevalence and risk of death increased stepwise over ascending ISCAD 

deciles: 4 of 2009 (0.20%) deceased participants in the bottom decile, 62 of 1971 (3.1%) in 

the middle decile (adjusted HR, 5.3; 95% CI, 1.9–15; P=0.002), and 218 of 1994 (11%) in 

the top decile (adjusted HR, 56; 95% CI, 20–158; P<0.0001) (Fig. 3). Results were similar 

when stratified by ISCAD quartiles (Supplementary Figure 15) and sex (Supplementary 

Figure 16). No heterogeneity between sexes (P=0.80) or interaction between ISCAD and sex 

(P=0.35) was observed.

CAD sequela tracked by ISCAD

We examined if ISCAD is also associated with CAD sequela, including recurrent myocardial 

infarction, arrhythmia, and heart failure. Among 2,481 CAD cases without reinfarction 

within 28 days of incident myocardial infarction, 505 (20%) had recurrent myocardial 

infarction. There was an adjusted OR of 1.5 (95% CI, 1.3–1.7; P<0.0001) for recurrent 

myocardial infarction per SD increase in ISCAD. Prevalence and odds of recurrent 

myocardial infarction increased quantitatively with higher ISCAD quartiles from 79 of 666 

individuals (12%) in the lowest quartile to 155 of 666 (23%) in the highest quartile (adjusted 

OR, 2.2; 95% CI, 1.6–3.1; P<0.0001) (Supplementary Figure 17). Among 2,620 CAD cases 

without an arrhythmia prior to CAD, 402 (15%) had post-CAD arrhythmia. A SD increase 

in ISCAD was accompanied by an adjusted OR of 1.5 (95% CI, 1.3–1.8; P<0.0001) for 

arrhythmia, and higher ISCAD quartiles had increasing prevalence and odds of arrhythmia 

from 42 of 655 individuals (6.4%) in the lowest quartile to 132 of 655 (20%) in the highest 

quartile (adjusted OR, 3.6; 95% CI, 2.5–5.2; P<0.0001) (Supplementary Figure 17). Out of 

2,540 CAD cases without heart failure prior to CAD, 842 (33%) had post-CAD heart failure. 

An adjusted OR of 1.8 (95% CI 1.6–2.0; P<0.0001) for heart failure was associated with a 

SD increase in ISCAD. The prevalence and odds of heart failure rose with higher ISCAD 

quartiles from 97 of 635 individuals (15%) in the lowest quartile to 272 of 635 (43%) in the 

highest quartile (adjusted OR, 3.7; 95% CI, 2.8–5.0; P<0.0001) (Supplementary Figure 17).

ISCAD compared to PCE and PRS

We evaluated the performance of ISCAD in tracking atherosclerosis, mortality, and 

CAD sequela compared to that of PCE and PRS. Across all outcomes, ISCAD 

demonstrated greater associations compared to PCE or PRS (Supplementary Figures 18–

22; Supplementary Table 9). For example, stenosis increased by 12-percentage points per 

ISCAD quartile (95% CI, 10–13; P<0.0001), 2.8-percentage points per PCE quartile (95% 

CI, 0.61–5.0; P=0.012), and 1.9-percentage points per PRS quartile (95% CI, 0.18–3.6; 

P=0.031). Furthermore, we examined the performance of ISCAD in tracking outcomes after 
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accounting for PCE, PRS, and a baseline of known CAD risk factors19 (Supplementary 

Table 10). The magnitude and statistical significance of associations of outcomes with 

ISCAD adjusted for a combination of PCE, PRS, and baseline risk were similar to 

associations of outcomes with ISCAD alone in the primary analysis.

ISCAD application to holdout and external test datasets

We assessed ISCAD in the holdout and external test datasets for association with CAD-

related outcomes. In the holdout dataset, ISCAD was associated with clinically significant 

CAD (e.g., OR of 2.4 for obstructive CAD [95% CI, 2.0–2.9; P<0.0001] per quartile) and 

stenosis of major vessels (e.g., OR of 2.5 for proximal left anterior descending CAD [95% 

CI, 2.0–3.1; P<0.0001]); all-cause mortality (HR=2.7 per SD increase [95% CI, 2.5–2.9; 

P<0.0001]); and recurrent myocardial infarction (OR=1.2 per SD increase [95% CI, 1.1–1.3; 

P<0.0001]), arrhythmia (OR=1.2 per SD increase [95% CI, 1.1–1.2; P<0.0001]), and heart 

failure (OR=1.2 per SD increase [95% CI, 1.1–1.3; P<0.0001]) (Supplementary Table 6; 

Supplementary Figure 4). In the external test dataset, ISCAD was associated with all-cause 

mortality (HR=2.7 per SD increase [95% CI, 2.5–2.9; P<0.0001]), recurrent myocardial 

infarction (OR=1.2 per SD increase [95% CI, 1.1–1.3; P<0.0001]), arrhythmia (OR=1.2 per 

SD increase [95% CI, 1.1–1.2; P<0.0001]), and heart failure (OR=1.2 per SD increase [95% 

CI, 1.1–1.3; P<0.0001]) (Supplementary Figure 5). We further examined in the training/

validation dataset (BioMe) outcomes tracked by ISCAD derived from the external test 

dataset (UK Biobank) and observed similar associations with atherosclerosis, mortality, and 

CAD sequela (Supplementary Table 7; Supplementary Figure 6).

Underdiagnosed CAD

We asked whether ISCAD can identify individuals who have clinical evidence of CAD 

but lack a diagnosis. Twenty-six participants with high ISCAD ≥0.9 and no prior CAD 

diagnosis were identified, along with a propensity-matched set of 26 participants with low 

ISCAD ≤0.1 and no prior CAD diagnosis (median age, 73 years [IQR, 20]; 31 [60%] 

female; 26 [50%] European ethnicity) (Supplementary Figure 23). Twelve individuals (46%) 

in the high ISCAD group were found to have clinical evidence of CAD according to 2014 

American College of Cardiology/American Heart Association Task Force Guidelines16 upon 

clinician-conducted manual EHR review while blinded to ISCAD group.

We then evaluated ISCAD as a marker for CAD risk among 17,828 participants without 

a diagnosis of CAD. In these undiagnosed individuals, ISCAD was associated with PCE 

score (0.063 increase in ISCAD per 10-point increase in PCE score; 95% CI, 0.060–0.067; 

P<0.0001) and PRS (0.0031 increase in ISCAD per SD increase in PRS; 95% CI, 0.00063–

0.0055; P=0.014) (Supplementary Figure 24). Stenosis and SYNTAX score were generally 

low in 120 undiagnosed individuals with coronary angiography data (median [IQR], 14% 

[0] and 5.1 [3.2], respectively); yet, even in this group with subclinical atherosclerosis, 

ISCAD still tracked plaque burden with a 2.8-percentage point increase in stenosis (95% CI, 

0.28–5.1 percentage points; P=0.031) and 0.58 increase in SYNTAX score (95% CI, 0.046–

1.1; P=0.036) per ISCAD quartile (Supplementary Figure 25). All-cause mortality was also 

associated with ISCAD among 17,524 undiagnosed individuals with mortality data. A SD 

increase in ISCAD was accompanied by an adjusted HR of 8.8 (95% CI, 5.6–14; P<0.0001) 
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for death. Both the prevalence and risk of mortality increased continuously with ascending 

ISCAD deciles from 4 of 1,789 individuals (0.22%) in the lowest decile to 43 of 1,761 

(2.4%) in the middle decile (adjusted HR, 3.7; 95% CI, 1.3–11; P=0.017) to 149 of 1,733 

(8.6%) in the highest decile (adjusted HR, 62; 95% CI, 22–178; P<0.0001) (Supplementary 

Figure 26).

DISCUSSION

Here, we sought to evaluate the performance of a novel in silico quantitative marker for 

CAD, generated from a machine learning model trained on EHR data in two large biobanks, 

to capture CAD risk, atherosclerosis, and mortality in a diverse population. The primary 

finding was that an artificial intelligence-derived marker could capture the clinical risk of 

PCE and genetic risk of PRS for CAD, and non-invasively quantify plaque burden and 

mortality risk. The marker illustrates the phenotypic spectrum of CAD, revealing distinct 

gradations of disease risk, atherosclerosis, and survival that would otherwise be missed 

with binary case-versus-control schemas. The breadth and richness of EHR data contained 

in biobanks unselected for a specific disease—for example, a median of 10 years (IQR, 

6.3) of longitudinal EHR data and millions of unique diagnosis codes, laboratory tests, and 

medications in BioMe—opens an avenue to apply machine learning analyses of disease 

spectrums for a wide array of conditions.

Machine learning of EHR data can predict CAD with high accuracy,25,26 expanding the pool 

of informative features beyond traditional risk factors to include lifestyle, biomarker, and 

genetic features that improve predictive ability.41–44 These multimodal models, including 

the ones we used recently27 and in the present study, demonstrate good performance 

in classifying individuals as a CAD case or control. However, it was unknown whether 

probability scores from a machine learning model could be used as a quantitative marker 

for CAD. Prior studies indicate that CAD exists as a continuous phenotype and that small 

changes in the stenosis of coronary arteries, even subclinical, confer different degrees of 

risk for myocardial infarction and death.6,7 The ISCAD marker recapitulated this continuum 

and showed a quantitative increase in levels of atherosclerosis, all-cause mortality, and 

CAD sequela (Figs. 2 and 3). This is analogous to coronary artery calcium scoring, which 

is often used as a clinical marker of CAD, but requires specialized cardiac computed 

tomography and may miss early atherosclerotic lesions or non-calcified risk features of 

lesions.45,46 Common diseases, including CAD, lie on a spectrum and assigning case versus 

control categories discretizes this spectrum.28 Indeed, we found that almost half of the 26 

individuals with high ISCAD who lacked a case label had clinical evidence of CAD. Disease 

assessment in a quantitative manner more faithfully represents its phenotype and has the 

potential to improve risk stratification and diagnosis of individuals.29,30 The potential of 

machine learning to create a digital biomarker extends beyond CAD to other diseases that 

may also be evaluated on continuums of severity, such as Parkinson’s disease47, carpal 

tunnel syndrome48, and lung cancer49. As discussed previously27, application of machine 

learning for precision medicine more broadly necessitates a consistent set of features across 

different health systems, access to EHRs available for research and development, and 

infrastructure and resources for evaluation and deployment in clinical settings. Transparent 
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and explainable models, as exemplified with SHAP and feature importance analyses, are 

needed for adoption by health systems and clinicians.

There were study limitations. First, CAD case status was obtained using diagnosis codes, 

which may lead to misclassification. However, we used codes from previous studies27,39,50 

that recapitulated established genetic associations with CAD. Second, low sample size may 

predispose machine learning models to overfitting and worsen generalizability.51 This is 

likely not the case for our model as it demonstrated consistent performance in validation, 

holdout, and external test datasets. Third, the study was retrospective, examining EHR data 

over decades from two biobanks. This led to imbalanced counts of cases and controls. 

We mitigated bias due to imbalance by selecting equal numbers of cases and controls in 

the training and testing of the model. Fourth, only a subset of participants had coronary 

angiography data available for analysis. Larger, prospective studies are needed to further 

validate the utility of ISCAD in the evaluation of atherosclerotic plaque burden. Fifth, 

clinical outcomes of ISCAD were assessed in a health system-based biobank and may not 

reflect other clinical practices or the general population. Sixth, only all-cause mortality 

information was available and death attributed to specific causes was unknown.

We leveraged a machine learning model trained on EHR data to synthesize an in 
silico quantitative marker for CAD. Atherosclerotic plaque burden, mortality, and CAD 

complications increased on a continuous spectrum with ISCAD. The marker identified 

individuals with a potentially missed diagnosis of CAD. Further research in prospective 

studies is required to assess the relationship of in silico markers with incident CAD events 

and death, and to examine its efficacy in other populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

Evidence before this study

On July 2, 2022, we searched PubMed without language or date restrictions for 

studies reporting the development and validation of machine learning-based markers 

for coronary artery disease, including atherosclerosis, mortality, and myocardial 

infarction. The following terms and related terms were used when searching: (“machine 

learning”, “artificial intelligence”, or “random forest”) and (“coronary artery disease”, 

“atherosclerosis”, “plaque”, or “myocardial infarction”). We identified several machine 

learning models in the past decade that predict coronary artery disease. However, 

these studies used machine learning models as a classification tool to simply predict 

case-control status of coronary artery disease (binary framework of disease) and none 

use models to capture coronary artery disease on a spectrum of disease probabilities 

(quantitative framework of disease). Many of the prior studies are based on a limited 

set of features or predetermined risk factors. Hence, assessments of the clinical utility 

of coronary artery disease-predictive machine learning models are limited. Therefore, we 

investigated probabilities generated by a machine learning model as an in silico marker 

for coronary artery disease. Its clinical utility to quantify atherosclerotic plaque burden, 

survival, and risk of myocardial infarction on a continuum was assessed in a longitudinal 

multi-ethnic cohort, while underdiagnosed individuals with CAD were identified as an 

example of its intervenability. Our multimodal model analyzes millions of diverse clinical 

datapoints of diagnoses, laboratory test results, medications, and vitals contained in the 

electronic health records of participants.

Added value of this study

This marks the first study to our knowledge that constructs a quantitative marker for 

coronary artery disease risk, severity, and prognosis from a machine learning model 

trained on clinical data from electronic health records. Individuals with common diseases 

occupy a spectrum of disease that represents an individual’s mix of risk factors 

and pathogenic processes; quantitative differences in coronary stenosis, for example, 

result in gradations of mortality risk. Quantifying where an individual falls on the 

disease spectrum is needed for clinical screening and management. We developed and 

externally tested a coronary artery disease-predictive machine learning model using 

95,935 electronic health records in the multi-ethnic BioMe Biobank and UK Biobank, 

and from it generated an in silico score for coronary artery disease (ISCAD). We found 

that coronary stenosis from angiography data increased quantitatively with ascending 

ISCAD, including risk of obstructive CAD, multivessel CAD, and stenosis of each major 

coronary artery such as the left main and proximal left anterior descending arteries. 

All-cause mortality increased stepwise over ascending ISCAD and sequela such as 

recurrent myocardial infarction rose in gradations with ISCAD. ISCAD showed greater 

associations with these CAD outcomes than did conventional risk scores of pooled cohort 

equations and polygenic risk scores. We identified participants with high ISCAD who 

had no prior CAD diagnosis and found that almost 50% of them had clinical evidence of 

underdiagnosed CAD upon manual chart review.
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Implications of all the available evidence

Our study demonstrates a reconceptualization of coronary artery disease—including 

atherosclerosis, mortality, and sequela—as a spectrum of disease that is quantifiable 

with artificial intelligence trained on clinical data. This in silico marker derived from 

machine learning captured CAD pathophysiology and clinical outcomes on a continuum. 

The model is holistic in drawing on a wide array of clinical information from population-

based biobanks, inclusive in representing diverse populations, and faithful in preserving 

the complexity of disease. The implementation of machine learning-based quantitative 

markers for CAD may help define the disease state and clinical outcomes in patients, 

while optimizing the detection of disease and reducing underdiagnosis.
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Fig. 1. 
Performance of the machine learning model for the detection of coronary artery disease 

(CAD) in the validation, holdout, and external test sets.

The machine learning model was trained/validated in the BioMe Biobank (BioMe 1), 

assessed in a holdout set in BioMe (BioMe 2), and externally tested in the UK Biobank. 

a, Electronic health records (EHRs) of study participants contained both categorical data 

(i.e., diagnosis codes and medications) and continuous data (i.e., laboratory readings and 

vital measurements). Only EHR data prior to the earliest date of coronary artery disease 

(CAD) diagnosis, procedure (e.g., angioplasty), or medication (e.g., statins) prescription 

were used for CAD cases. In UK Biobank, date of statins prescription is unavailable and 

individuals with statins were excluded; controls with an Elixhauser comorbidity index of 

zero were retained. Participants with >70% missing data in the EHR were removed, and the 

EHR data of the remaining individuals underwent imputation with a random forest-based 

algorithm. We restricted to participants at least 40 years of age as the target population 

for which CAD is prevalent and the pooled cohort equations (PCE) is designed to guide 

statin initiation. Age was defined by the last considered clinical feature entry. Participants 

with at least one year of EHR data and three recorded clinical encounters were retained. b, 

The machine learning model discriminated CAD controls from cases with area under the 

receiver-operating-characteristic curves (AUROCs) of 0.95 (95% CI, 0.94–0.95), 0.93 (95% 

CI, 0.92–0.93), and 0.91 (95% CI, 0.91–0.91) for the validation, holdout, and external test 

datasets, respectively.
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Fig. 2. 
Relationship of in silico score for CAD (ISCAD) with coronary stenosis and atherosclerosis 

complexity on cardiac catheterization.

Cardiac catheterization data were examined for association with ISCAD. This comprised 

percent coronary stenosis, recorded as 7 strata ranging from [0, 30), less than 30%, to [100], 

100%, and SYNTAX score ranging from 0, low complexity, to 30, high complexity. ISCAD 

were stratified by quartiles. a, Individuals who underwent cardiac catheterization (red) had 

higher mean ISCAD (dashed line) than those who had not underwent cardiac catheterization 

(purple). b, Violin plots show the distribution of samples across coronary stenosis values 

along with the mean value overlaid as a point for each ISCAD quartile. c, Violin plots show 

the distribution of samples across SYNTAX score values along with the mean value overlaid 

as a point for each ISCAD quartile. d, Schematic of coronary arteries depicts the association 
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of ISCAD with obstructive CAD (≥50% stenosis in the left main coronary artery, ≥70% 

stenosis in any other coronary artery, or both), multivessel CAD (≥70% stenosis in at least 

two coronary arteries, or ≥50% stenosis in left main coronary artery and ≥70% stenosis 

in another coronary artery), left main stenosis (≥50%), proximal left anterior descending 

(LAD) stenosis (≥70%), left circumflex stenosis (≥70%), and right coronary artery stenosis 

(≥70%). Results are reported as adjusted odds ratio (95% CI) P value per increase in ISCAD 

quartile.
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Fig. 3. 
All-cause mortality stratified by in silico score for CAD (ISCAD).

All-cause mortality was stratified by ISCAD deciles and adjusted hazard ratios (HR) were 

compared to the lowest decile. a, Percent mortality and adjusted HR for mortality increased 

monotonically over ascending ISCAD deciles. b, Kaplan-Meier survival curves relate age in 

increments of one year on the X-axis to cumulative survival for each age on the Y-axis and 

differed by ISCAD decile. Higher ISCAD deciles had lower survival over increasing ages 

compared to lower ISCAD deciles.
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Table 1.

Characteristics of participants in the training/validation set.

Characteristic All participants (N=20,497) CAD controls (N=17,828) CAD cases (n=2,669)

Median age (IQR) — years 62 (19) 61 (18) 72 (16)

Sex — no. (%)

 Female 12,470 (61) 11,110 (62) 1,360 (51)

 Male 8,027 (39) 6,718 (38) 1,309 (49)

Ethnicity — no. (%)

 African 5,480 (27) 4,755 (27) 725 (27)

 European 5,887 (29) 5,276 (30) 611 (23)

 Hispanic 7,424 (36) 6,276 (35) 1,148 (43)

 Other 1,704 (8.3) 1,519 (8.5) 185 (6.9)

Ever smoked — no. (%) 3,830 (19) 3,308 (19) 522 (20)

Median vitals (IQR)

 Weight — lbs 172 (53) 170 (55) 180 (37)

 Height — inches 65 (5.1) 65 (5.0) 66 (5.3)

 Systolic blood pressure — mmHg 128 (17) 127 (18) 133 (9.7)

 Diastolic blood pressure — mmHg 73 (10) 74 (11) 72 (6)

 Pulse — sec−1 77 (12) 77 (12) 75 (11)

 Oxygen saturation — % on room air 98 (1.0) 98 (1.5) 97 (0.72)

 Respirations — min−1 18 (1.0) 18 (1.1) 18 (0.52)

 Temperature — °F 98 (0.55) 98 (0.60) 98 (0.21)

Median laboratory measurement (IQR)

 Low-density lipoprotein cholesterol — mg/dL 100 (35) 101 (34) 90 (31)

 High-density lipoprotein cholesterol — mg/dL 53 (19) 54 (19) 48 (17)

 Triglycerides — mg/dL 115 (67) 114 (67) 124 (65)

 Glucose — mg/dL 92 (22) 91 (20) 103 (43)

 Hemoglobin A1c — % 5.7 (0.80) 5.7 (0.73) 5.1 (1.5)

 Troponin-I — ng/dL 0.011 (0.040) 0.010 (0.035) 0.023 (0.13)

 Lactate dehydrogenase — U/L 213 (44) 211 (42) 224 (53)

 Erythrocyte sedimentation rate — mm/hr 22 (24) 21 (23) 33 (27)

Comorbidities — no. (%)

 Hypercholesterolemia 10,748 (52) 8,506 (48) 2,207 (83)

 Hypertension 11,762 (57) 9,376 (53) 2,365 (89)

 Type 2 diabetes 6,395 (31) 4,834 (27) 1,529 (57)

IQR, interquartile range; no., number; ethnicity, self-reported ethnicity; other, other miscellaneous ethnicities besides the ones listed.
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